95
CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

  • View
    235

  • Download
    2

Embed Size (px)

Citation preview

Page 1: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

CPSC 641 Computer Graphics: Animation with Motion Capture

Jinxiang Chai

Page 2: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Outline of Mocap (Motion Capture)

Mocap history

Mocap technologies

Mocap pipeline

Mocap data fromat

Page 3: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Motion Capture

“ …recording of motion for immediate or delayed analysis or playback…”

- David J. Sturman

“The creation of a 3d representation of a live performance”

- Alberto Menache

“…is a technique of digitally recording movements for entertainment, sports, and medical applications.”

- Wikipedia

Page 4: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

History of Motion Capture

Eadweard Muybridge (1830-1904)

• first person to photograph movement sequences

Page 5: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

History of Motion Capture

Eadweard Muybridge (1830-1904)

• first person to photograph movement sequences

• whether during a horse's trot, all four hooves were ever off the ground at the same time.

• the flying horse

Sequence of a horse jumping (courtesy of E. Muybridge)

Page 6: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

History of Motion Capture

Eadweard Muybridge (1830-1904)

• first person to photograph movement sequences

• the flying horse

• animal locomotion (20k pictures about men, women, children, animals, and birds).

Woman walking downstairs (courtesy of E. Muybridge)

Page 7: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Rotoscope

Allow animators to trace cartoon character over photographed frames of live performances

• invented by Max Fleischer in 1915

Page 8: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Rotoscope

Allow animators to trace cartoon character over photographed frames of live performances

• invented by Max Fleischer in 1915

• 2D manual motion capture

A horse animated by rotoscoping from Muybridge’s photos

Page 9: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Rotoscoping

“rotoscoping can be thought of as a primitive form or precursoro to motion capture, where the motion is ‘captured’ painstakingly by hand.” - Sturman

Mocap Overview

Page 10: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Another example

Page 11: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Allow animators to trace cartoon character over photographed frames of live performances

• invented by Max Fleischer in 1915

• 2D manual capture

• the first cartoon character to be rotoscoped -- “Koko the clown”

• the human character animation -- snow white and her prince (Walt Disney, 1937)

Rotoscope

Page 12: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

“3D Rotoscoping”: measuring 3D positions, orientations, velocities or accelerations

Current motion capture systems

• Electromagnetic

• Electromechanical

• Fiber optic

• Optical

Current Motion Capture Technologies

Page 13: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Each sensor record 3D position and orientation

Each sensor placed on joints of moving object

Full-body motion capture needs at least 15 sensors

Popular system:

http://www.ascension-tech.com/

Electromagnetic Mocap

Page 14: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

See video demo!

Electromagnetic Mocap

Page 15: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Pros

• measure 3D position and orientation

• no occlusion problems

• can capture multiple subjects simultaneously

Cons

• magnetic perturbations (metal)

• small capture volume

• cannot capture deformation (facial expression)

• hard to capture small bone movement (finger motion)

• not as accurate as optical mocap system

Electromagnetic Mocap

Page 16: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Each sensor measures 3D orientation

Electromechanical Mocap

Page 17: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Each sensor measures 3D orientation

Each sensor placed on joints of moving object

Full-body motion capture needs at least 15 sensors

Popular systems:

http://www.xsens.com/

Electromechanical Mocap

Page 18: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

See video demo!

Electromechanical Mocap

Page 19: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Pros

• measure 3D orientation

• no occlusion problems

• can capture multiple subjects simultaneously

• large capture volume

• Outdoors capture (e.g. skiing)

Cons

• getting 3D position info is not easy

• cannot capture deformation (facial expression)

• hard to capture small bone movement (finger motion)

• not as accurate as optical mocap system

Electromechanical Mocap

Page 20: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Measures 3D position and orientation of entire tape

Binding the tape to the body

Popular systems: http://www.measurand.com/

Fiber Optic Mocap

Page 21: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

See video demo!

Fiber Optic Mocap

Page 22: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Pros

• measure 3D orientation and position

• no occlusion problems

• can capture multiple subjects simultaneously

• go anywhere mocap system

• can capture hand/finger motion

Cons

• intrusive capture

• cannot capture deformation (facial expression)

• not as accurate as optical mocap system

Fiber Optic Mocap

Page 23: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Multiple calibrated cameras (>=8) digitize different views of performance

Wears retro-reflective markers

Accurately measures 3D positions of markers

Optical Mocap

Page 24: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

See video demo!

Optical Mocap

Vicon mocap system: http://www.vicon.com

Page 25: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Pros

• measure 3D position data also orientation

• the most accurate capture method

• very high frame rate

• can capture very detailed motion (body, finger, facial deformation, etc.)

Cons

• has occlusion problems

• hard to capture interactions among multiple ppl

• limited capture volume

Optical Mocap

Page 26: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Mocap Pipeline

Optical Mocap pipeline

• Planning

• Calibration

• Data processing

Page 27: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Planning

• Motion capture requires serious planning• Anticipate how the data will be used• Garbage in garbage out• Shot list• Games

– motions need to be able to blend into one an another– capture base motions and transitions– which motions transition into which other transitions– cycles/loops

Page 28: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Movement Flowchart for Games

•Planning and Directing Motion Capture For GamesBy Melianthe Kines GamasutraJanuary 19, 2000URL: http://www.gamasutra.com/features/20000119/kines_01.htm

Page 29: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Planning

Character/prop set up

- character skeleton topology (bones/joints number, Dofs for each bone)

- location and size of props

Marker Setup

- the number of markers

- where to place markers

Page 30: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Calibration

Camera Calibration:

determine the location and orientation of each camera

determine camera parameters (e.g. focal length)

Subject calibration

- determine the skeleton size of actors/actresses (.asf file)

- relative marker positions in terms of bones

- determine the size and location of props

Page 31: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Processing Markers

• Each camera records capture session• Extraction: markers need to be

identified in the image– determines 2d position– problem: occlusion, marker is not seen

• use more cameras

• Markers need to be labeled– which marker is which?– problem: crossover, markers exchange

labels• may require user intervention

• Compute 3d position: if a marker is seen by at least 2 cameras then its position in 3d space can be determined

http://www.xbox.com/NR/rdonlyres/3164D1BE-C1C4-46A1-90F0-26507CF2C9BD/0/ilmnflfever2003lightscam001.jpg

Page 32: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Data Process

3D marker positions (.c3d file)

Complete 3D marker trajectories

(.c3d file)

Fill in missing data

Filter mocap data

Page 33: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Data Process

3D marker positions (.c3d file)

Inverse Kinematics

Joint angle data (.amc file)

Complete 3D marker trajectories

(.c3d file)

Fill in missing data

Filter mocap data

Page 34: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Data Process

3D marker positions (.c3d file)

Inverse Kinematics

Joint angle data (.amc file)

Complete 3D marker trajectories

(.c3d file)

Fill in missing data

Filter mocap data

How to represent motion data in joint angle space?

Page 35: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Motion Capture Data Files

Each sequence of human motion data contains two files:– Skeleton file (.asf): Specify

the skeleton model of character

– Motion data file (.amc): Specify the joint angle values over the frame/time

– Both files are generated by Vicon software

Page 36: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Human skeletal file

Described in a default pose

Page 37: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Human skeletal model

This is still a tree!

Page 38: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Human skeletal model

This is still a tree!

• How to describe the skeletal model?

• What should you know about each bone?

Page 39: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Human skeletal file (.asf)

• individual bone information - length of the bone

- direction of the bone

- local coordinate frame

- number of Dofs

- joint limits

• bone hierarchy/connections

Page 40: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone informationbegin

id bone_id                  /* Unique id for each bone */name bone_name        /* Unique name for each bone */direction dX dY dZ    /* Vector describing direction of the bone in world */ coor. system length 7.01722           /* Length of the bone*/ axis 0 0 20 XYZ         /* Rotation of local coordinate system for                                    this bone relative to the world coordinate                                    system. In .AMC file the rotation angles                                     for this bone for each time frame will be                                    defined relative to this local coordinate                                     system**/ dof rx ry rz                /* Degrees of freedom for this bone. limits (-160.0 20.0) /* joint limits*/            (-70.0 70.0)             (-60.0 70.0) end

Page 41: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone information

begin id 2                 name lfemur        direction 0.34 -0.93 0    length 7.01722           axis 0 0 20 XYZ         dof rx ry rz                limits (-160.0 20.0)             (-70.0 70.0)             (-60.0 70.0) end

xw

yw

zw

Page 42: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone information

begin id 2                 name lfemur        direction 0.34 -0.93 0    length 7.01722           axis 0 0 20 XYZ         dof rx ry rz                limits (-160.0 20.0)             (-70.0 70.0)             (-60.0 70.0) end

xw

yw

zw

Page 43: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone information

begin id 2                 name lfemur        direction 0.34 -0.93 0    length 7.01722           axis 0 0 20 XYZ         dof rx ry rz                limits (-160.0 20.0)             (-70.0 70.0)             (-60.0 70.0) end

xw

yw

zw

Page 44: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone information

begin id 2                 name lfemur        direction 0.34 -0.93 0    length 7.01722           axis 0 0 20 XYZ         dof rx ry rz                limits (-160.0 20.0)             (-70.0 70.0)             (-60.0 70.0) end

xw

yw

zw

xk

yk

zk

Euler angle representation: Rk=Rz(γ)Ry(β)Rx(α)

Page 45: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone information

begin id 2                 name lfemur        direction 0.34 -0.93 0    length 7.01722           axis 0 0 20 XYZ         dof rx ry rz                limits (-160.0 20.0)             (-70.0 70.0)             (-60.0 70.0) end

xw

yw

zw

xk

yk

zk

- The number of dof for this joint

- The minimal and maximum joint angle for each dof

Page 46: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone information

begin id 2                 name lfemur        direction 0.34 -0.93 0    length 7.01722           axis 0 0 20 XYZ         dof rx ry rz                limits (-160.0 20.0)             (-70.0 70.0)             (-60.0 70.0) end

xw

yw

zw

yk

xk

zk

1-dof joint 2-dof joint 3-dof joint

Page 47: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Individual bone information

begin id 2                 name lfemur        direction 0.34 -0.93 0    length 7.01722           axis 0 0 20 XYZ         dof rx ry rz                limits (-160.0 20.0)             (-70.0 70.0)             (-60.0 70.0) end begin id 3                 name ltibia        direction 0.34 -0.93 0    length 7.2138           axis 0 0 20 XYZ         dof rx            limits (-10.0 170.0) end

xk

zk Xk+1

zk+1

yk

yk+1

Page 48: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Root representation

:root

order TX TY TZ RX RY RZ

axis XYZ

position 0 0 0

orientation 0 0 0 xw

yw

zw

Page 49: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Root representation

:root

order TX TY TZ RX RY RZ

axis XYZ

position 0 0 0

orientation 0 0 0 xw

yw

zw

How to compute the coordinate of a joint in the world coordinate frame?

Page 50: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Root representation

:root

order TX TY TZ RX RY RZ

axis XYZ

position 0 0 0

orientation 0 0 0 xw

yw

zw

How to compute the coordinate of a joint in the world coordinate frame?

Page 51: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

:hierarchy begin root lhipjoint rhipjoint lowerback lhipjoint lfemur lfemur ltibia ltibia lfoot lfoot ltoes rhipjoint rfemur rfemur rtibia rtibia rfoot rfoot rtoes lowerback upperback upperback thorax thorax lowerneck lclavicle rclavicle … end

Hierarchy/Bone Connections

Page 52: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

:hierarchy begin root lhipjoint rhipjoint lowerback lhipjoint lfemur lfemur ltibia ltibia lfoot lfoot ltoes rhipjoint rfemur rfemur rtibia rtibia rfoot rfoot rtoes lowerback upperback upperback thorax thorax lowerneck lclavicle rclavicle … end

root rhipjoint

lowerback

Hierarchy/Bone Connections

Page 53: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

:hierarchy begin root lhipjoint rhipjoint lowerback lhipjoint lfemur lfemur ltibia ltibia lfoot lfoot ltoes rhipjoint rfemur rfemur rtibia rtibia rfoot rfoot rtoes lowerback upperback upperback thorax thorax lowerneck lclavicle rclavicle … end

root rhipjoint lhipjoint

lowerback

lfemur

Hierarchy/Bone Connections

Page 54: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

:hierarchy begin root lhipjoint rhipjoint lowerback lhipjoint lfemur lfemur ltibia ltibia lfoot lfoot ltoes rhipjoint rfemur rfemur rtibia rtibia rfoot rfoot rtoes lowerback upperback upperback thorax thorax lowerneck lclavicle rclavicle … end

root rhipjoint lhipjoint

lowerback

lfemur

Hierarchy/Bone Connections

ltibia

Page 55: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

:hierarchy begin root lhipjoint rhipjoint lowerback lhipjoint lfemur lfemur ltibia ltibia lfoot lfoot ltoes rhipjoint rfemur rfemur rtibia rtibia rfoot rfoot rtoes lowerback upperback upperback thorax thorax lowerneck lclavicle rclavicle … end

root rhipjoint lhipjoint

lowerback

lfemur

Hierarchy/Bone Connections

ltibia

lfoot

Page 56: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

:hierarchy begin root lhipjoint rhipjoint lowerback lhipjoint lfemur lfemur ltibia ltibia lfoot lfoot ltoes rhipjoint rfemur rfemur rtibia rtibia rfoot rfoot rtoes lowerback upperback upperback thorax thorax lowerneck lclavicle rclavicle … end

root rhipjoint lhipjoint

lowerback

lfemur

Hierarchy/Bone Connections

ltibia

lfoot

ltoe

Page 57: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

What can we do with .asf file?

We can visualize the default pose

We can compute various transforms in the default pose

- between world coordinate frame and local coordinate

- between parent coordinate frame and child coordinate frame

Page 58: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

From local coordinate to world coordinate

xw

yw

zwyk

xk

zk

kkkw TXRX

Page 59: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

From local coordinate to world coordinate

xw

yw

zwyk

xk

zk

kkkw TXRX ? ?

Page 60: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

From local coordinate to world coordinate

xw

yw

zwyk

kkkw TXRX

Page 61: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

From local coordinate to world coordinate

xw

yw

zwyk

xk

zk

kkkw TXRX

Page 62: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

From child to parent nodeHow to Compute the transformation Tk

k-1 from a child local coordinate frame to its parent local coordinate frame

x

Tkk-1

Page 63: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Bone transform

111 kkkw TXRX

kkkw TXRX

world

parent

child

Tkk-1?

Page 64: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Bone transform

111 kkkw TXRX

kkkw TXRX

111 kkkkkkw TXRTXRX

world

parent

child

Tkk-1?

Page 65: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Bone transform

111 kkkw TXRX

kkkw TXRX

111 kkkkkkw TXRTXRX

world

parent

child

Tkk-1?

)( 111

111

kkkkkkk TTRXRRX

10

)( 111

111 kkkkkk

k

TTRRRT

Page 66: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Motion data file (.amc)i // frame numberroot 2.36756 16.4521 12.3335 -165.118 31.188 -179.889 // root position and orientationlowerback -17.2981 -0.243065 -1.41128 // joint angles for lowerback jointupperback 0.421503 -0.161394 2.20925 // joint angles for thorax jointthorax 10.2185 -0.176777 3.1832lowerneck -15.0172 -5.84786 -7.55529upperneck 30.0554 -3.19622 -4.68899head 12.6247 -2.35554 -0.876544rclavicle 4.77083e-014 -3.02153e-014rhumerus -23.3927 30.8588 -91.7324rradius 108.098rwrist -35.4375rhand -5.30059 11.2226rfingers 7.12502rthumb 20.5046 -17.7147lclavicle 4.77083e-014 -3.02153e-014lhumerus -35.2156 -19.5059 100.612

Page 67: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Motion data file (.amc)i

// frame numberroot 2.36756 16.4521 12.3335 -165.118 31.188 -

179.889 // root position and orientationlowerback -17.2981 -0.243065 -1.41128

// joint angles for lowerback jointupperback 0.421503 -0.161394 2.20925

// joint angles for thorax jointthorax 10.2185 -0.176777 3.1832lowerneck -15.0172 -5.84786 -7.55529upperneck 30.0554 -3.19622 -4.68899head 12.6247 -2.35554 -0.876544rclavicle 4.77083e-014 -3.02153e-014rhumerus -23.3927 30.8588 -91.7324rradius 108.098rwrist -35.4375rhand -5.30059 11.2226rfingers 7.12502rthumb 20.5046 -17.7147lclavicle 4.77083e-014 -3.02153e-014lhumerus -35.2156 -19.5059 100.612

- Rotation described in local coordinate frame

- Euler angle representation x-y-z

)()()( xyz RRR

Page 68: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Composite 3D Transformation

xRRTRTRRRTRRRzyxTp )()()()()()()()()(),,( 332

3212111

01000000

68From .asf file

Page 69: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Composite 3D Transformation

xRRTRTRRRTRRRzyxTp )()()()()()()()()(),,( 332

3212111

01000000

69From .amc file

Page 70: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Composite 3D Transformation

xRRTRTRRRTRRRzyxTp )()()()()()()()()(),,( 332

3212111

01000000

70

Page 71: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Composite 3D Transformation

xRRTRTRRRTRRRzyxTp )()()()()()()()()(),,( 332

3212111

01000000

71

Page 72: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Composite 3D Transformation

xRRTRTRRRTRRRzyxTp )()()()()()()()()(),,( 332

3212111

01000000

72

Page 73: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Composite 3D Transformation

xRRTRTRRRTRRRzyxTp )()()()()()()()()(),,( 332

3212111

01000000

73

Page 74: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Motion capture data

• http://mocap.cs.cmu.edu/

Page 75: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Some character models

Page 76: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

More complex models

Page 77: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Mesh skinning

• Skinning is the process of binding a skeleton to a single mesh object

• Skinning deformation is the process of deforming the mesh as the skeleton is animated or moved.

Page 78: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Mesh skinning

• Cylinder Being Deformed by Two Bones

Page 79: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Skinning basics

N

iii vMwv

1

• For each vertex, compute the position by

Page 80: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Skinning basics

N

iii vMwv

1

• For each vertex, compute the position by

v: undeformed vertex position

Page 81: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Skinning basics

N

iii vMwv

1

• For each vertex, compute the position by

v: undeformed vertex position

v’: deformed vertex position

Page 82: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Skinning basics

N

iii vMwv

1

• For each vertex, compute the position by

v: undeformed vertex position

v’: deformed vertex position

Mi: articulated motion

Page 83: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Skinning basics

N

iii vMwv

1

• For each vertex, compute the position by

v: undeformed vertex position

v’: deformed vertex position

Mi: articulated motion

wi: blending weight

N

iiw

1

1

Page 84: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Skinning basics

N

iii vMwv

1

• For each vertex, compute the position by

v: undeformed vertex position

v’: deformed vertex position

Mi: articulated motion

wi: blending weight

N

iiw

1

1Specified by artists

From mocap data

From mesh model

Page 85: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

The "Bind Pose”

Page 86: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Mesh skinning

• Skeleton causing deformation of a single skin mesh

Page 87: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Approach I: Motion Graphs

Key ideas:- Represent human motion is motion graphs, which represent

allowable transitions between poses or motion segments - Motion graphs transform a motion synthesis problem into a discrete

graph search problem (i.e., selecting sequences of nodes)

Hui Lou

Page 88: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Approach II: Motion Interpolations

Key ideas: - Motion interpolations register a set of structurally similar but

distinctive motion examples and then parameterize them in an

abstract space defined for motion control. - Given new values of the control parameters, the sequences can

be smoothly interpolated

Rhema Linder

Page 89: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Approach III: Statistically Motion Synthesis

Key ideas: - Construct statistical motion models from pre-captured

motion data

- Use the models to create an animation that achieved the goal specified by the user

Jianyuan Min

Page 90: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Physics-based Animation

Key ideas:

- Model the character’s movement with Newtonian dynamics

- Simulate the physics models to create an animation that satisfies the user’s input.

Xiaolin Wei

Page 91: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Controller-based Approach

Key ideas: - design a controller to move a human character

- Similar to control a humanoid robot, but needs to generate realistic motion.

Jianyuan Min

Page 92: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Rigid-body Simulation

Key ideas - create realistic interactions between rigid bodies

- fast and physically correct

- control of rigid body simulation

James Huang

Page 93: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Deformable Objects

Key-ideas: - Changes the object’s shape or volume

while being acted upon by an external force.

- Simulation and control of deformable objects

Billy Clack

Page 94: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Faces

Key ideas: - Capture, Animate and Control realistic facial

expression.

Yen-Lin Chen Rhema Linder

Page 95: CPSC 641 Computer Graphics: Animation with Motion Capture Jinxiang Chai

Video-based Motion Capture

Xiaolin Wei