7
CRANK NICHLSON 0.05568 Delta t = 300 seg Delta Z = 10 cm Beta = 0.08352 CONDICION LIMITE X( z, 0 ) = 0 X( 0, t ) = 0.01375 X( L, t ) = 0 i 0 1 2 3 4 5 j TIEMPO DISTANCIA cm 1.16704 seg 0 10 20 30 40 50 -0.08352 0 0 0.01375 0 0 0 0 0 0 1 300 0.01375 0.001978 0.000142 0.000010 0.000001 0 0 2 600 0.01375 0.003425 0.000493 0.000053 0.000005 0 3 900 0.01375 0.004515 0.000934 0.000142 0.000018 0 j = 0 4 1200 0.01375 0.005358 0.001403 0.000273 0.000042 0 T(i,j) 5 1500 0.01375 0.006026 0.001867 0.000437 0.000081 0 I = 0 0.01375 6 1800 0.01375 0.006568 0.002310 0.000626 0.000134 0 I = 1 0 7 2100 0.01375 0.007016 0.002725 0.000831 0.000200 0 I = 2 0 8 2400 0.01375 0.007393 0.003111 0.001045 0.000277 0 I = 3 0 9 2700 0.01375 0.007716 0.003467 0.001262 0.000363 0 I = 4 0 10 3000 0.01375 0.007995 0.003795 0.001479 0.000455 0 I = 5 0 11 3300 0.01375 0.008239 0.004097 0.001693 0.000552 0 T(0,J+1) 0.01375 12 3600 0.01375 0.008455 0.004376 0.001901 0.000651 0 T(5,J+1) 0 13 3900 0.01375 0.008647 0.004634 0.002102 0.000751 0 DAB = cm 2 /seg PROBLEMA 9.2 Se tiene n-octano líq evapora y difunde a t octano se mantiene co en la interfase líqui siendo la presión de Asumir que la solubil despreciable, que la constantes y que los Graficar el perfil de 0 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 XA

Crank Nicholson

Embed Size (px)

Citation preview

Page 1: Crank Nicholson

CRANK NICHLSON

0.05568

Delta t = 300 seg

Delta Z = 10 cm

Beta = 0.08352

CONDICIO LIMITE

X( z, 0 ) = 0

X( 0, t ) = 0.01375

X( L, t ) = 0

i 0 1 2 3 4 5 MATRIZ Aj TIEMPO DISTANCIA cm 1.16704 -0.08352

seg 0 10 20 30 40 50 -0.08352 1.167040 0 0.01375 0 0 0 0 0 0 -0.083521 300 0.01375 0.001978 0.000142 0.000010 0.000001 0 0 02 600 0.01375 0.003425 0.000493 0.000053 0.000005 0

3 900 0.01375 0.004515 0.000934 0.000142 0.000018 0 j = 04 1200 0.01375 0.005358 0.001403 0.000273 0.000042 0 T(i,j) C5 1500 0.01375 0.006026 0.001867 0.000437 0.000081 0 I = 0 0.013756 1800 0.01375 0.006568 0.002310 0.000626 0.000134 0 I = 1 0 0.00229687 2100 0.01375 0.007016 0.002725 0.000831 0.000200 0 I = 2 0 08 2400 0.01375 0.007393 0.003111 0.001045 0.000277 0 I = 3 0 09 2700 0.01375 0.007716 0.003467 0.001262 0.000363 0 I = 4 0 0

10 3000 0.01375 0.007995 0.003795 0.001479 0.000455 0 I = 5 011 3300 0.01375 0.008239 0.004097 0.001693 0.000552 0 T(0,J+1) 0.0137512 3600 0.01375 0.008455 0.004376 0.001901 0.000651 0 T(5,J+1) 013 3900 0.01375 0.008647 0.004634 0.002102 0.000751 0

DAB = cm2/seg

PROBLEMA 9.2

Se tiene n-octano líquido a 20 C y 1 atm. que se evapora y difunde a través de N2. El nivel del n-octano se mantiene constante. La concentración de en la interfase líquido-gas es xA0 = PAvap/P, siendo la presión de vapor a 20 C 10.45 mm Hg.

Asumir que la solubilidad de N2 en n-octano es despreciable, que la temperatura y presión son constantes y que los gases se comportan idealmente.

Graficar el perfil de concentración.

0 10 20 30 40 50 600

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016 300 seg

600 seg

900 seg

1200 seg

1500 seg

2100 seg

2400 seg

2700 seg

3000

3300 seg

3600 seg

3900 seg

4200 segZ (cm)

XA

Page 2: Crank Nicholson

0 10 20 30 40 50 600

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016 300 seg

600 seg

900 seg

1200 seg

1500 seg

2100 seg

2400 seg

2700 seg

3000

3300 seg

3600 seg

3900 seg

4200 segZ (cm)

XA

Page 3: Crank Nicholson

MATRIZ A INVERSA DE A0 0 0.861302773 0.06195867 0.00445694 0.000319

-0.08352 0 0.061958674 0.86575971 0.06227764 0.00445691.16704 -0.08352 0.004456941 0.06227764 0.86575971 0.0619587

-0.08352 1.16704 0.000318964 0.00445694 0.06195867 0.8613028

J = 1 J=2 J =3 J=4T(i,j) C T(i,j) C T(i,j) C T(i,j) C0.01375 0.01375 0.01375 0.01375

0.00197824 0.0039565 0.0034255 0.005191227 0.00451504 0.00613565 0.0053578 0.006876830.00014231 0.0002846 0.0004928 0.00070104 0.00093396 0.00116688 0.0014028 0.001638741.0237E-05 2.047E-05 5.3175E-05 8.5876E-05 0.00014168 0.00019748 0.0002726 0.00034778

7.326E-07 1.465E-06 5.061E-06 8.65673E-06 1.7557E-05 2.6458E-05 4.218E-05 5.7906E-050 0 0 0

0.01375 0.01375 0.01375 0.013750 0 0 0

PROBLEMA 9.2

Se tiene n-octano líquido a 20 C y 1 atm. que se evapora y difunde a través de N2. El nivel del n-octano se mantiene constante. La concentración de en la interfase líquido-gas es xA0 = PAvap/P, siendo la presión de vapor a 20 C 10.45 mm Hg.

Asumir que la solubilidad de N2 en n-octano es despreciable, que la temperatura y presión son constantes y que los gases se comportan idealmente.

Graficar el perfil de concentración.

0 10 20 30 40 50 600

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016 300 seg

600 seg

900 seg

1200 seg

1500 seg

2100 seg

2400 seg

2700 seg

3000

3300 seg

3600 seg

3900 seg

4200 segZ (cm)

XA

Page 4: Crank Nicholson

0 10 20 30 40 50 600

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016 300 seg

600 seg

900 seg

1200 seg

1500 seg

2100 seg

2400 seg

2700 seg

3000

3300 seg

3600 seg

3900 seg

4200 segZ (cm)

XA

Page 5: Crank Nicholson

J=5 J=6 J=7 J=8T(i,j) C T(i,j) C T(i,j) C T(i,j)

0.01375 0.01375 0.01375 0.013750.0060261352 0.00747224 0.0065680326 0.00796062 0.0070162328 0.00836864 0.00739343360.0018667539 0.00209476 0.002309816 0.00252487 0.0027250963 0.00292533 0.00311052940.0004373851 0.00052699 0.00062645 0.00072591 0.0008313347 0.00093676 0.00104511098.091933E-05 0.00010393 0.0001338892 0.00016385 0.0001998891 0.00023593 0.0002769574

0 0 0 00.01375 0.01375 0.01375 0.01375

0 0 0 0

Page 6: Crank Nicholson

J=9 J=10 J=11 J=12C T(i,j) C T(i,j) C T(i,j) C T(i,j)

0.01375 0.01375 0.01375 0.013750.00871503 0.00771572 0.00901321 0.00799471 0.00927301 0.00823897 0.00950173 0.008454920.00329573 0.00346654 0.00363734 0.00379473 0.00395212 0.00409721 0.0042423 0.004376190.00115346 0.00126241 0.00137137 0.00147923 0.00158709 0.00169264 0.00179819 0.001900590.00031798 0.00036281 0.00040765 0.00045516 0.00050268 0.00055186 0.00060105 0.00065104

0 0 0 00.01375 0.01375 0.01375 0.01375

0 0 0 0

Page 7: Crank Nicholson

J=13C T(i,j)

0.013750.00970491 0.00864745690.00451009 0.00463382180.00200299 0.00210167580.00070103 0.0007510943

00.01375

0