22
Critical-State Soil Mechanics Paul W. Mayne, PhD, P.E. Civil & Environmental Engineering Georgia Institute of Technology

Critical-State Soil Mechanics

  • Upload
    lesa

  • View
    136

  • Download
    9

Embed Size (px)

DESCRIPTION

Critical-State Soil Mechanics. Paul W. Mayne, PhD, P.E. Civil & Environmental Engineering Georgia Institute of Technology. PROLOGUE. Critical-state soil mechanics is an effective stress framework describing mechanical soil response - PowerPoint PPT Presentation

Citation preview

Page 1: Critical-State Soil Mechanics

Critical-State Soil Mechanics

Paul W. Mayne, PhD, P.E.

Civil & Environmental EngineeringGeorgia Institute of Technology

Page 2: Critical-State Soil Mechanics

PROLOGUE Critical-state soil mechanics is an effective stress

framework describing mechanical soil response

In its simplest form here, we consider only shear-induced loading.

We merely tie together two well-known concepts: (1) one-dimensional consolidation behavior, represented by e-logv’ curves; and (2) shear stress-vs. normal stress (v’)

from direct shear box or simple shearing.

Herein, only the bare essence of CSSM concepts are presented, sufficient to describe strength & compressibility response.

Page 3: Critical-State Soil Mechanics

Critical State Soil Mechanics (CSSM)

Experimental evidence provided by Hvorslev (1936; 1960, ASCE); Henkel (1960, ASCE Boulder) Henkel & Sowa (1961, ASTM STP 361)

Mathematics presented elsewhere, including: Schofield & Wroth (1968); Burland (1968); Wood (1990).

In basic form: 3 material constants (', Cc, Cs) plus initial state (e0,

vo', OCR)

Constitutive Models, include: Original Cam-Clay, Modified Cam Clay, NorSand, Bounding Surface, MIT-E3 (Whittle, 1993) & MIT-S1 (Pestana) and others (Adachi, Oka, Ohta, Dafalias)

"Undrained" is just one specific stress path

Yet !!! CSSM is missing from most textbooks and undergrad & grad curricula in the USA.

Page 4: Critical-State Soil Mechanics

One-Dimensional Consolidation Sandy Clay (CL), Surry, VA: Depth = 27 m

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Eff ective Vertical Stress, svo' (kPa)

Void

Rati

o,

e

Cc = 0.38

Cr = 0.04

vo'=300 kPa

p'=900

kPa

Overconsolidation Ratio, OCR = 3

Cs = swelling index (= Cr)

cv = coef. of consolidation

D' = constrained modulus

Ce = coef. secondary compression

k ≈ hydraulic conductivity

v’

Page 5: Critical-State Soil Mechanics

Direct Shear Test Results

v’

Direct Shear Box (DSB)

v’

Direct Simple Shear (DSS)

s

Slow Direct Shear Tests on Triassic Clay,NC

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Displacement, (mm)

She

ar S

tres

s,

(k

Pa) n'

(kPa)= 214.5

135.0

45.1

Slow Direct Shear Tests on Triassic Clay, Raleigh, NC

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Eff ective Normal Stress, n' (kPa)

She

ar S

tres

s,

(k

Pa)

0.491 = tan '

Strength Parameters:

c' = 0; ' = 26.1 oPeak

Peak

Peak

Page 6: Critical-State Soil Mechanics

CSSM

Log v'

Effective stress v'

She

ar s

tres

s

Voi

d R

atio

, e

NC

CC

tan'

CSLEffective stress v'

Voi

d R

atio

, e

NC

CSL

CSSM Premise:

“All stress paths

fail on the critical

state line (CSL)”

CSL

c=0

Page 7: Critical-State Soil Mechanics

CSSM

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

Vo

id R

atio

, e

NCNC

CC

tan'

CSL

CSLCSL

STRESS PATH No.1

NC Drained Soil

Given: e0, vo’, NC

(OCR=1)

e0

vo

vo

Drained Path: u = 0

max = c + tan

ef

e

Volume Change is

Contractive: vol =

e/(1+e0) < 0

Effective stress v'

c’=0

Page 8: Critical-State Soil Mechanics

CSSM

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

Vo

id R

atio

, e

NCNC

CC

tan'

CSL

CSLCSL

STRESS PATH No.2

NC Undrained Soil

Given: e0, vo’, NC

(OCR=1)

e0

vo

vo

Undrained Path: V/V0 = 0

+u = Positive Excess Porewater Pressures

vf

vf

umaxcu=su

Effective stress v'

Page 9: Critical-State Soil Mechanics

CSSM

Log v'

Effective stress v'

She

ar s

tres

s

Voi

d R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

Note: All NC undrained

stress paths are

parallel

to each other, thus:

su/vo’ = constant

Effective stress v'

DSS: su/vo’NC = ½sin’

Voi

d R

atio

, e

Page 10: Critical-State Soil Mechanics

CSSM

Log v'Effective stress v'

Effective stress v'

Sh

ear

stre

ss

Voi

d R

atio

, e

Vo

id R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

CS

p'

p'

OC

Overconsolidated States:

e0, vo’, and OCR = p’/vo’

where p’ = vmax’ = Pc’ =

preconsolidation stress;

OCR = overconsolidation ratio

Page 11: Critical-State Soil Mechanics

CSSM

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

CS

OC

Stress Path No. 3

Undrained OC Soil:

e0, vo’, and OCR

vo'

e0

vo'

Stress Path: V/V0 = 0

Negative Excess u

Effective stress v'vf'

Vo

id R

atio

, eu

Page 12: Critical-State Soil Mechanics

CSSM

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

Vo

id R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

CS

OC

Stress Path No. 4

Drained OC Soil:

e0, vo’, and OCR

Stress Path: u =

0 Dilatancy: V/V0 > 0

vo'

e0

vo'

Effective stress v'

Page 13: Critical-State Soil Mechanics

Critical state soil mechanics

• Initial state: e0, vo’, and OCR = p’/vo’

• Soil constants: ’, Cc, and Cs ( = 1-Cs/Cc)

• For NC soil (OCR =1): Undrained (vol = 0): +u and max = su = cu

Drained (u = 0) and contractive (decrease vol)

• For OC soil:

Undrained (vol = 0): -u and max = su = cu

Drained (u = 0) and dilative (Increase vol)

There’s more ! There’s more ! Semi-drained, Partly undrained, Cyclic….. Semi-drained, Partly undrained, Cyclic…..

Page 14: Critical-State Soil Mechanics

Equivalent Stress Concept

Log v'

Stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e NC

NC

CC

tan'

CSL

CSLCSL

CS

OC

1. OC State (eo, vo’, p’)

vo'

2. Project OC state to NC

line for equivalent stress,

e’

3. e’ = vo’ OCR[1-Cs/Cc]

vo'

e0

Effective stress v'

Vo

id R

atio

, e

p' p'

e'

e'

su

vf'

ep

e = Cs log(p’/vo’)

e = Cc log(e’/p’)

e

at e’suOC = suNC

Page 15: Critical-State Soil Mechanics

Critical state soil mechanics

• Previously: su/vo’ = constant for NC soil

• On the virgin compression line: vo’ = e’

• Thus: su/e’ = constant for all soil (NC &

OC)

• For simple shear: su/e’ = ½sin ’

• Equivalent stress: Normalized Undrained Shear

Strength:

su/vo’ = ½ sin’ OCR

where = (1-Cs/Cc)

e’ = vo’ OCR[1-Cs/Cc]

Page 16: Critical-State Soil Mechanics

Undrained Shear Strength from CSSM

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sin'

s u/

vo' N

C

(DS

S)

AGS Plastic

Amherst

Ariake

Bootlegger

Bothkennar

Boston Blue

Cowden

Hackensack

James Bay

Mexico City

Onsoy

Porto Tolle

Portsmouth

Rissa

San Francisco

Silty Holocene

Wroth (1984)

su/vo'NC (DSS) =½sin'

plasticity index, PI (%)

s u/

vo' N

C

(DS

S)

AGS Plastic AmherstAriake Bootlegger

Bothkennar Boston BlueCowden Hackensack

James Bay Mexico CityOnsoy Porto Tolle

Portsmouth RissaSan Francisco Silty Holocene

Page 17: Critical-State Soil Mechanics

Undrained Shear Strength from CSSM

0.1

1

10

1 10 100

Overconsolidation Ratio, OCR

DS

S U

ndra

ined

Str

engt

h, s

u/

vo' Amherst CVVC

Atchafalaya

Bangkok

Bootlegger Cove

Boston Blue

Cowden

Drammen

Hackensack

Haga

Lower Chek Lok

Maine

McManus

Paria

Portland

Portsmouth

Silty Holocene

Upper Chek Lok

20

30

40

' = 40o

20o 30o

su/vo' = ½ sin' OCR

Note: = 1 - Cs/Cc 0.8

IntactClays

Page 18: Critical-State Soil Mechanics

Porewater Pressure Response from CSSM

-6

-5

-4

-3

-2

-1

0

1

1 10 100Overconsolidation Ratio, OCR

Nor

mal

ized

Por

ewat

er P

ress

ure,

u

/vo

' Amherst CVVC

Atchafalaya

Bangkok

Bootlegger Cove

Boston Blue

Cowden

Drammen

Hackensack

Haga

Lower Chek Lok

Maine

McManus

Paria

Portland

Portsmouth

Silty Holocene

Upper Chek Lok

20

30

40

= 0.9 0.8 0.7

Intact

' = 20o 30o 40o

us/vo' = 1 - ½cos'OCR

Page 19: Critical-State Soil Mechanics

Yield Surfaces

Log v'

Normal stress v'

Sh

ear

stre

ss

Vo

id R

atio

, eNC NC

CSL

CSL

CSL

OC

Normal stress v'

Vo

id R

atio

, e

p'

p'

OC

Yield surface represents 3-d preconsolidation

Quasi-elastic behavior within the yield surface

Page 20: Critical-State Soil Mechanics

Port of Anchorage, Alaska

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Effective Stress, p'* = (1'+2'+

3')/(3p')

Dev

iato

ric

Str

ess

= q

* =

(1-

3)/

p'

Bootlegger

Cove Clay

Mc = (q/p')f = 1.10

Mc = 6sin '/(3-sin ')' = 27.7o

0.1

1

10

1 10 100

Overconsolidation Ratio, OCR

Str

en

gth

Ra

tio

, su/

vo'

DSS Data

CIUC Data

MCC Pred CIUC

MCC Pred DSS

Critical State Soil Mechanics(Modified Cam Clay)

' = 27.7o

= 0.75

Page 21: Critical-State Soil Mechanics

Cavity Expansion – Critical State Model for Evaluating

OCR in Clays from Piezocone Tests

OCRM

q uT b

vo

2

1

1 95 1

1

. '

/

where M = 6 sin’/(3-sin’)

and = 1 – Cs/Cc 0.8

qc

fs

ub

qqTT

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6

Overconsolidation Ratio, OCR

Dep

th (

met

ers)

CPTU

CRS

IL Oed

RF

Bothkennar, UK

Page 22: Critical-State Soil Mechanics

Critical state soil mechanics

• Initial state: e0, vo’, and OCR = p’/vo’

• Soil constants: ’, Cc, and Cs ( = 1-Cs/Cc)

• Using effective stresses, CSSM addresses: NC and OC behavior

Undrained vs. Drained (and other paths)

Positive vs. negative porewater pressures

Volume changes (contractive vs. dilative)

su/vo’ = ½ sin’ OCR where = 1-Cs/Cc

Yield surface represents 3-d preconsolidation