12
Cengrs Geotechnica Pvt Ltd A 100, Sector 63, Noida, UP 201309 Tel:+01204206771 Fax:+01204206775 11/23/2013 By Mr.Sorabh Gupta Workshop cum Demo Session CROSSHOLE/ DOWNHOLE SEISMIC TEST

CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

  • Upload
    vothu

  • View
    221

  • Download
    2

Embed Size (px)

Citation preview

Page 1: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

 

 

C e n g r s   G e o t e c h n i c a   P v t  L t d

A ‐ 1 0 0 ,   S e c t o r   6 3 ,   N o i d a ,  U P ‐ 2 0 1 3 0 9

T e l : + 0 1 2 0 4 2 0 6 7 7 1

F a x : + 0 1 2 0 4 2 0 6 7 7 5

1 1 / 2 3 / 2 0 1 3

By Mr.Sorabh GuptaWorkshop cum Demo Session 

 

CROSSHOLE/ DOWNHOLE SEISMIC TEST 

Page 2: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

 

 C R O S S H O L E / D O W N H O L E S E I S M I C 

WELCOME NOTE 

On behalf of IGS Delhi Chapter and CENGRS, we have great pleasure in welcoming you to our Workshop on the use of latest seismic techniques in in‐situ ground characterization.  

The  Indian  Geotechnical  Society  (IGS),  Delhi  Chapter  is  an  active  association  of  academicians  and professions interested in, or involved with, Geotechnical Engineering.  One of the main objectives of the Society  is  to promote healthy  technical‐social  interaction between  the members, catalyze  information exchange, and contribute to the growth of Geotechnical Engineering in the country.  For those of us who are not yet members of  IGS Delhi Chapter, we urge you  to sign up  for  the same by downloading  the membership form from the following website: http://igsdelhichapter.com/  

The  current  elected Executive Committee,  led by Dr. A.K. Nanda, has decided  to  conduct a  series of Practical Workshops / Demonstrations in the term 2013‐14, aimed at encouraging hands‐on engineering and fun interactions.  We are proud to be associated with the first such activity.  

The Workshop  is being conducted by  the  team at CENGRS, which  is a  leading consultancy  firm  in  the field  of  Geotechnical  Engineering,  based  in Delhi NCR.    CENGRS has  vast  experience  in  the  field  of Geotechnical Engineering, with a  repertoire of more  than  4000 projects  successfully executed across India and abroad since 1990.  The team at CENGRS has conducted over 150 cross‐hole / down‐hole tests at various project locations up to a maximum depth of 100 m.   

We hope that you shall enjoy the Workshop.   Please feel free to ask questions and initiate discussions during the course of the presentations.  

In case you require any further technical clarifications on the subject even after the Workshop, you may contact the undersigned at the contact details given below.   

Warm Regards,  Sorabh Gupta Sr. Project Engineer, CENGRS Executive Committee Member (2013‐14), IGS Delhi Chapter Cengrs House, A‐100, Sector‐63, Noida (U.P.)‐201309   t: +91 120 420 6771 | f: +91 120 420 6775 | m: +91 99108 61118  |  [email protected]  

 

 

Page 3: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

 

 C R O S S H O L E / D O W N H O L E S E I S M I C 

TECHNICAL NOTE ON DOWN‐HOLE SEISMIC TESTING (DST) 

1.0 Introduction 

Construction of  foundation  systems  for civil structures often  requires detailed  information of  the  site soil  properties.  Bore  logs  provide  soil  samples  for  soil  type  classification  and  laboratory  testing  to determine  strength and  consolidation parameters  (among other properties) with  respect  to depth. A number of soil‐boring  related  in‐situ  tests have also been correlated with  soil  strength  (e.g. standard penetration  test,  cone  penetration  test),  etc.  However,  in  the  interest  of  accuracy,  it  is  certainly advantageous to measure an  in‐situ soil property directly related to soil modulus. Shear wave velocity (Vs) has become the standard property from which in‐situ soil modulus is determined, due to its direct relationship with modulus via  the  soil mass density  (which  can be assumed with  little error or  easily measured from soil samples), as well as its relative ease of measurement, due to the advancement of seismic techniques. 

A number of  in‐situ  test methods have been developed to measure Vs with  respect  to depth; such as Cross‐hole Seismic  (CS), Down‐hole Seismic  (DS), Spectral Analysis of Surface Waves  (SASW), Multiple Impact of Surface Waves (MISW), etc.  Traditionally, CS testing has been considered the most accurate method  in determining Vs, because  it  is a direct measurement of  the wave  speed.   SASW and MISW however, can be employed much more  rapidly and economically because the methods are performed on the ground surface (unlike CS where at least two boreholes are required to perform the testing).  

2.0 Benefits of DST in Geotechnical Engineering 

The utilization of DST in estimating in‐situ wave velocities and the corresponding elastic soil parameters is of considerable benefit to the Geotechnical Engineer.  

Some of the  important geotechnical design problems which  require  the  input of the elastic constants and absorption properties are:  

• Static and dynamic soil analysis 

• Pile and Footing Foundation Design for Vibrating Loads 

o Calculate Constrained Modulus (M), Shear Modulus (G), and Poisson’s Ratio from local seismic velocities 

o Calculate dynamic spring constants 

• Liquefaction assessment 

• Input for near‐surface seismological models 

• Evaluation of soil improvement from blasting 

• Assessment of the regulatory requirements such as those included in the Uniform Building Code.  

 

 

Page 4: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

 

 C R O S S H O L E / D O W N H O L E S E I S M I C 

3.0 Choice between CS and DS Seismic Testing 

Crosshole Method  Downhole Method 

 Constant Travel Paths   Negligible Borehole Effects   Receivers Properly Aligned for SV‐Waves   High Signal‐to‐Noise Ratio at All Depths  Detailed Profile  Workable in Limited Space  Accuracy Independent on the Measurement Depth 

 Two or More Boreholes  Simple Borehole Source  Predominantly P‐ and SV‐ Waves, but SH‐waves Also Possible  Reversible Source   Measure Borehole Verticality  Detect Low‐Velocity Layers  Possible Refraction Problems 

 Useable in Noisy Areas   More Expensive 

One Borehole  No Verticality Measurements  Simple Surface Source  Minimum Refraction Problems  Less Expensive 

 Generate P‐ and SH‐Waves   Reversible Source  Travel Path Increases with Depth 

 Possible Borehole Effects   Control of Receiver Alignment  Preferable  Signal‐to‐Noise Ratio Decreases with Depth  Detect Low‐Velocity Layers 

 More Average Profile    Useable in Noisy Areas   Workable in Limited Space   Accuracy dependent on the measurement depth 

 

4.0 Calculation of Dynamic Soil Parameters 

The  calculations of dynamic soil parameters are based on  the  relationships given  in  IS: 5249‐1992. 

The Poisson’s Ratio is determined directly from the compression (P) wave and shear (S) wave data. It is expressed by the ratio of transverse strain to longitudinal strain.  

 Young’s Modulus E is the uniaxial stress‐strain ratio. Its dynamic value is expressed by the 

following equation: 

μμμ

ρ−

−+=

1)21()1(2VpE  

where: ρ  =  mass density of soil  = (γ/g) γ  =  bulk density of soil Vp  =  P‐wave velocity 

μ   =  Poisson’s ratio 

Page 5: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

 

 C R O S S H O L E / D O W N H O L E S E I S M I C 

 The shear modulus G is the stress‐strain ratio for simple shear. Its dynamic value is 

obtained by the following:  

2

)1(2VsEG ρ

μ=

+=  

Coefficients of elastic uniform compression (cu), elastic uniform shear (cτ), elastic non‐

uniform compression (cφ) and the coefficient of elastic non‐uniform shear (cΨ) are given by the following relationships:  

 

cu =  1.13 A1

1E

2 ×μ−

  [A = Standard foundation area, taken as 10 m2] 

cτ = 0.67 to 0.5 cu (for design purpose, cτ may be taken equal to 0.6 cu) cφ = 3.46 cτ cΨ = 1.5  cτ

 5.0 Selection of Dynamic Parameters for Design 

Since the cross‐hole seismic tests completed on site are low‐strain methods, the dynamic soil parameters computed here correspond to very low strains.  However, actual design strains on the site are usually much higher (often in the range of 2~3%); particularly for earthquake conditions.  Hence, the design dynamic parameters should be selected carefully as per the anticipated strain  levels(1).  

The selection of dynamic parameters must be done based on the project specifications, as well as the general guideline given in IS 5249:1992.   

 As per IS 5249:1992 (Clause 9.0), the value of dynamic shear modulus, G, is affected by 

a number of parameters; out of which confining pressure, shear strain amplitude, and relative density are most important. In the range of strains associated with properly designed machine foundations, the effect of variation in strain on shear modulus is small and the values of G for design purposes may be determined from the in‐situ test values using the relation given below:  

 

 G1G

= (σ 01σ 0

)m 

  

                                                             (1) Steven L. Kramer (1996), “Geotechnical Earthquake Engineering”, Pearson Education, Inc.,

Section 6.4, pp. 232-238.

Page 6: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

 

 C R O S S H O L E / D O W N H O L E S E I S M I C 

 where:  G1 and G  =  Dynamic shear modulus for the prototype and from field test, respectively 

σ01 and σ0  =  Mean effective confining pressure, associated with the prototype foundation and 

the in‐situ test, respectively, and   m    =  Constant depending upon the type of soil, shape of grains, etc.  Their value has 

been found to vary from 0.3 to 0.7 and may on the average be taken as 0.5.  

 IS: 5249 states that in situations where high strain levels are associated (as in the case of 

analysis for earthquake conditions), the effect of strain level shall be considered along with that of  confining pressure.    In  such a  case,  the values of G  from different  field  tests may  first be reduced  to  the same confining pressure (expected below the footing) and  their variation with strain  levels may be studied  to arrive at an appropriate value corresponding  to  the expected strain level.   

 

The four parameters (Cu, Cτ , Cφ and CΨ) are highly dependent on strain levels.  Keeping this in view, we suggest that a range of ± 20 percent of the above values be used for design.  The higher values of  these coefficients may be used  for machines having an operating  frequency higher  than  that  of  the machine‐foundation‐soil  system.    Similarly,  the  lower  values  of  the coefficients may be used  for machines operating at  frequency  that  is  lower  than  that of  the system. 

 

Page 7: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

 

                                 C R O S S H O L E / D O W N H O L E S E I S M I C 

 

D O W N H O L E S E I S M I C T E S T

  APPL I C AT I O N   

The DOWNHOLE SEISMIC (DS) investigations are similar to CS investigations, but require only one borehole to provide shear and compressional velocity wave profiles. The DS method uses a hammer source at the surface to impact a wood plank and generate shear and compressional waves. This is typically accomplished by coupling a plank to the ground near the borehole and then impacting the plank in the vertical and horizontal directions. The energy from these impacts is then received by a pair of matching three component geophone receivers, which have been lowered downhole and are spaced 5 to 10 ft (1.5 to 3 m) apart.

 

 

 Features:   

■  DS method is cheaper than CS, since only one borehole is required for testing. ■ Real-time waveform display while testing ■ Thin layers, which are often invisible to surface methods, can be detected with CS/DS

investigations ■ Accuracy and resolution for CS/DS methods are constant for all test depths, whereas the

accuracy and resolution of the surface methods decreases with depth ■ Acquisition and processing software are easy to use yielding fast and accurate results ■ Triaxial geophones (receivers) can be oriented with inclinometer casing dummy probes 

STANDARDS  (1)  IS: 13372 (Part 1): 1992, “Seismic Testing of Rock Mass‐ Code of Practice‐ Part 1: Within A Borehole”, 

Bureau of Indian Standards, Delhi. (2)  ASTM D7400‐ 08, “Standard Test Methods for Downhole Seismic Testing,” American Society for 

Testing and Materials. 

Page 8: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

A  customized  P‐SV source  provides  the  user with  the  most  accurate and  rapid  method  of generating impacts.  

     

                                 C R O S S H O L E / D O W N H O L E S E I S M I C 

 

C R O S S H O L E S E I S M I C T E S T

  APPL I C AT I O N    CROSSHOLE SEISMIC (CS)

investigations are performed to provide information on dynamic soil and rock properties for earthquake design analyses for structures, liquefaction potential studies, site development, and dynamic machine foundation design. The investigation determines shear and compressional wave depth versus velocity profiles. Other parameters, such as Poisson's ratios and moduli, can be easily determined from the measured shear and compressional wave velocities. In addition, the material damping can be deter-mined from CS tests. The CS method is a downhole method for the determination of material properties of soil and rock. A source capable of generating shear and compressional waves is lowered in one of the boreholes, and a pair of matching three component geophone receivers are lowered to the same depth in two additional boreholes set at evenly spaced increments (typically10 and 20 feet from the source borehole) in a line, as shown in the figure above. The receivers are positioned on the side of the borehole casing to allow detection of the passage of shear and compressional waves.   

  Features: ■  CS method is the most accurate method for determining material properties of rock and soil

sites ■ Real-time waveform display while testing ■ P-SV source used in CS tests can impact in the vertical, transverse, and radial directions ■ Thin layers, which are often invisible to surface methods, can be detected with CS/DS

investigations ■ Accuracy and resolution for these methods are constant for all test depths, whereas the

accuracy and resolution of the surface methods decreases with depth ■ Correlation between CS and Spectral Analysis of Surface Waves (SASW) tests on soil sites

showed that the values from both tests typically compare within a 10-15% difference ■ Acquisition and processing software are easy to use yielding fast and accurate results ■ Sources and receivers can be oriented with inclinometer casing dummy probes   

STANDARDS  (1)  IS: 13372  (Part  2):  1992,  “Seismic  Testing  of  Rock Mass‐  Code  of  Practice‐  Part  1:  Between  the 

Boreholes”, Bureau of Indian Standards, Delhi. (2)  American Society for Testing and Materials, “Standard Test Methods for Cross‐hole Seismic Testing,” 

ASTM D4428‐D4428M‐00. 

 

Page 9: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

C R O S S H O L E / D O W N H O L E S E I S M I C

C A S E S T U D Y O F P R O P O S E D M A L L

At Noida SCOPE OF WORK

Details of the tests completed on site are summarized and tabulated below:

UTM Co-ordinates, m

(Zone-43 R) Test Easting Northing

Test Depth Interval, m

Maximum Test Depth, m

Cross hole seismic test 737883 3166886 1.5 30 Pressuremeter test 737900 3166848 3.0 30

A satellite image indicating the site location is presented below:

SITE LOCATION

Page 10: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

C R O S S H O L E / D O W N H O L E S E I S M I C

TEST RESULTS AND D E S I G N P R O F I L E S

Page 11: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

C R O S S H O L E / D O W N H O L E S E I S M I C INTERPRETATION BASED ON CROSS HOLE SEISMIC TEST We have the following observations;

a. The strata at the site classifies as very soft soil (SE) to about 1.5 m depth, as per the Uniform

Building Code (1997). Below this, the strata typically classifies as stiff to very dense soil (SD & Sc) to the maximum explored depth of 30 m.

b. The measured shear wave velocity (Vs) at the test location generally ranges from 217-350 m/s (i.e.

SD: stiff soil) to about 28.5 m depth and 380 m/s (i.e Sc.: very dense soil) at final tested depth of 30 m. However topmost layer of 1.5 m shows lower velocity of 152 m/s (i.e. SE: Very soft soil).

c. There is no significant variation in the velocity of shear waves with depth to the maximum tested

depth of 30 m.

d. The measured compression wave velocities (Vp) below about 1.5 m depth are generally in the range of 1764-1875 m/s (in the range of fluid wave velocity, possibly due to the saturation of strata owing to the shallow groundwater table at the site .

UNIFORM BUILDING CODE (1997):CLASSIFICATION SYSTEM

Based on the measured shear wave velocity, the strata may be classified into different categories as per the UBC Code (1997):

Type of Formation Average Shear Wave Velocities (Vs), (m/s) Classification

Hard Rock >1500 SA Rock 760 – 1500 SB

Very Dense Soil and Soft Rock 360 – 760 SC Stiff Soil 180 – 360 SD

Very Soft Soil <180 SE

Page 12: CROSSHOLE/ DOWNHOLE SEISMIC TEST - Welcome to …igsdelhichapter.com/handout.pdf ·  · 2017-08-21Bore logs provide soil samples for soil type classification and laboratory testing

C R O S S H O L E / D O W N H O L E S E I S M I C VS-N CORRELATIONS REPORTED IN LITERATURE VS TEST DATA

CORRELATION OF SHEAR WAVE VELOCITY