66
Chapter 6 Applications of the Integral 6.1 Rectilinear Motion Revisited 1. s(t)= 6 dt =6t + c; 5= s(2) = 6(2) + c; c = 7; s(t)=6t 7 2. s(t)= (2t + 1) dt = t 2 + t + c; 0= s(1) = 1 2 +1+ c =2+ c; c = 2; s(t)= t 2 + t 2 3. s(t)= (t 2 4t) dt = 1 3 t 3 2t 2 + c; 6= s(3) = 9+ c; c = 15; s(t)= 1 3 t 3 2t 2 + 15 4. s(t)= 4t +5 dt = 1 6 (4t + 5) 3/2 + c; 2= s(1) = 9 2 + c; c = 5 2 ; s(t)= 1 6 (4t + 5) 2/3 5 2 5. s(t)= 10 cos 4t + π 6 dt = 5 2 sin 4t + π 6 + c; 5 4 = s(0) = 5 2 1 2 + c = 5 4 + c; c = 5 2 ; s(t)= 5 2 sin 4t + π 6 + 5 2 6. s(t)= 2 sin 3t dt = 2 3 cos 3t + c; 0= s(π)= 2 3 + c; c = 2 3 ; s(t)= 2 3 cos 3t 2 3 7. v(t)= 5 dt = 5t + c; 4= v(1) = 5+ c; c = 9; v(t)= 5t + 9; s(t)= (5t + 9) dt = 5 2 t 2 +9t + c; 2= s(1) = 13 2 + c; c = 9 2 ; s(t)= 5 2 t 2 +9t 9 2 335

CSM Chapters6

Embed Size (px)

DESCRIPTION

Dennis Zill solution Manual

Citation preview

  • Chapter 6

    Applications of the Integral

    6.1 Rectilinear Motion Revisited

    1. s(t) =

    6 dt = 6t+ c; 5 = s(2) = 6(2) + c; c = 7; s(t) = 6t 7

    2. s(t) =

    (2t+ 1) dt = t2 + t+ c; 0 = s(1) = 12 + 1 + c = 2 + c; c = 2;

    s(t) = t2 + t 2

    3. s(t) =

    (t2 4t) dt = 1

    3t3 2t2 + c; 6 = s(3) = 9 + c; c = 15; s(t) = 1

    3t3 2t2 + 15

    4. s(t) =

    4t+ 5 dt =

    1

    6(4t+ 5)3/2 + c; 2 = s(1) =

    9

    2+ c; c = 5

    2;

    s(t) =1

    6(4t+ 5)2/3 5

    2

    5. s(t) =

    10 cos

    4t+

    6

    dt =

    5

    2sin

    4t+

    6

    + c;

    5

    4= s(0) = 5

    2

    1

    2

    + c = 5

    4+ c;

    c =5

    2; s(t) = 5

    2sin

    4t+

    6

    +

    5

    2

    6. s(t) =

    2 sin 3t dt = 2

    3cos 3t+ c; 0 = s() =

    2

    3+ c; c = 2

    3; s(t) = 2

    3cos 3t 2

    3

    7. v(t) =

    5 dt = 5t+ c; 4 = v(1) = 5 + c; c = 9; v(t) = 5t+ 9;

    s(t) =

    (5t+ 9) dt = 5

    2t2 + 9t+ c; 2 = s(1) =

    13

    2+ c; c = 9

    2;

    s(t) = 52t2 + 9t 9

    2

    335

  • 336 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    8. v(t) =

    6t dt = 3t2 + c; 0 = v(2) = 12 + c; c = 12; v(t) = 3t2 12;

    s(t) =

    (3t2 12) dt = t3 12t+ c; 5 = s(2) = 16 + c; c = 11;

    s(t) = t3 12t+ 11

    9. v(t) =

    (3t2 4t+ 5) dt = t3 2t2 + 5t+ c; 3 = v(0) = c; v(t) = t3 2t2 + 5t 3;

    s(t) =

    (t3 2t2 + 5t 3) dt = 1

    4t3 2

    3t3 +

    5

    2t2 3t+ c; 10 = s(0) = c;

    s(t) =1

    4t4 2

    3t3 +

    5

    2t2 3t+ 10

    10. v(t) =

    (t 1)2 dt = 1

    3(t 1)3 + c; 4 = v(1) = c; c = 4; v(t) = 1

    3(t 1)3 + 4;

    s(t) =

    1

    3(t 3)3 + 4

    dt =

    1

    12(t 1)4 + 4t+ c; 6 = s(1) = 4 + c; c = 2;

    s(t) =1

    12(t 1)4 + 4t+ 2

    11. v(t) =

    (7t1/3 1) dt = 21

    4t4/3 t+ c; 50 = v(8) = 76 + c; c = 26;

    v(t) =21

    4t4/3 t+ 26;

    s(t) =

    21

    4t4/3 t 26

    dt =

    9

    4t7/3 1

    2t2 26t+ c; 0 = s(8) = 48 + c; c = 48;

    s(t) =9

    4t7/3 1

    2t2 26t 48

    12. v(t) =

    100 cos 5t dt = 20 sin 5t+ c; 20 = v(/2) = 20 + c; c = 40;

    v(t) = 20 sin 5t 40;s(t) =

    (20 sin 5t 40) dt = 4 cos 5t 40t+ c; 15 = s(/2) = 20 + c; c = 15 + 20;

    s(t) = 4 cos 5t 40t+ 15 + 20

    13. v(t) = 2t 2 = 2(t 1)

    dist. =

    50

    |2(t 1)| dt = 2 10(t 1) dt+ 2

    51(t 1) dt

    = 2

    12t2 + t

    10

    + 2

    1

    2t2 t

    51

    = 2

    1

    2 0

    + 2

    15

    212

    = 17 cm

  • 6.1. RECTILINEAR MOTION REVISITED 337

    14. v(t) = 2t+ 4 = 2(t 2)

    dist. =

    60

    | 2(t 2)| dt = 2 20(t 2) dt+ 2

    62(t 2) dt

    = 2

    12t2 + 2t

    20

    + 2

    1

    2t2 2t

    62

    = 2(2 0) + 2[6 (2)] = 20 cm

    15. v(t) = 3t2 6t 9 = 3(t+ 1)(t 3)

    dist. =

    40

    |13t2 6t 9| dt = 3 30(t2 2t 3) dt+ 3

    43(t2 2t 3) dt

    = 3

    13t3 + t2 + 3t

    30

    + 3

    1

    3t3 t2 3t

    43

    = 3(9 0) + 320

    3 (9)

    = 34 cm

    16. v(t) = 4t3 64t = 4t(t+ 4)(t 4)

    dist. =

    51

    |4t3 64t| dt = 4 41(t3 16t) dt+ 4

    54(t3 16t) dt

    = 4

    14t4 + 8t2

    41

    + 4

    1

    4t4 8t2

    54

    = 4

    64 31

    4

    + 4

    175

    4 (64)

    = 306 cm

    17. v(t) = 6 cost

    dist. =

    31

    |6 cost| dt = 6 3/21

    cost dt+ 6 5/23/2

    cost dt+ 6

    35/2 cost dt

    = 6( sint)]3/21 + 6(sint)]5/23/2 + 6( sint)]35/2= 6[(1) 0] + 6[1 (1)] + 6[0 (1)] = 24 cm

    18. v(t) = 2(t 3)

    dist. =

    72

    |2(t 3)| dt = 2 32(t 3) dt+ 2

    73(t 3) dt

    = 2

    12t2 + 3t

    32

    + 2

    1

    2t2 3t

    73

    = 2

    9

    2 4

    + 2

    7

    292

    = 17 cm

    19. We first convert mi/h to mi/s: 60 mi/h = 60/3600 mi/s. Then the distance traveled is 20

    60

    3600dt =

    60

    3600t

    20

    =60

    1800mi =

    1

    30mi 5280 ft/mi = 176 ft.

    20. a(t) = 32; v(0) = 0; s(0) = 144; v(t) =32 dt = 32t+ c; 0 = v(0) = c; v(t) = 32t;

    s(t) =

    32t dt = 16t2 + c; 144 = s(0) = c; s(t) = 16t2 + 144

    To find when the ball hits the ground, we solve s(t) = 16t2 + 144 = 0. This gives t = 3.The ball hits the ground in 3 seconds. Its speed at this time is |v(t)| = | 96| = 96 ft/s.

  • 338 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    21. a(t) = 32; v(0) = 0; s(4) = 0; v(t) =32 dt = 32t+ c; 0 = v(0) = c; v(t) = 32t;

    s(t) =

    32t dt = 16t2 + c; 0 = s(4) = 256 + c; c = 256; s(t) = 16t2 + 256

    The height of the building is s(0) = 256 ft.

    22. Let the depth of the well be h.

    a(t) = 32; v(0) = 0; s(0) = h; v(t) =32 dt = 32t+ c; 0 = v(0) = c; v(t) = 32t;

    s(t) =

    32t dt = 16t2 + c; h = s(0) = c; s(t) = 16t2 + h

    If tr is the time for the rock to hit the water, then 0 = s(tr) = 16t2r + h, and h = 16t2r.Since the speed of sound is 1080 ft/s and the sound is heard after 2 seconds, h = 1080(2 tr).Then 16t2r = 1080(2 tr) or 2t2r + 135tr 270 = 0. Using the quadratic formula to find thepositive root, we obtain

    tr =135 +18, 225 + 2, 160

    4=13520, 385

    4 1.9440 s.

    Then the depth of the well is h = 1080(2 tr) 60.4669 ft.

    23. a(t) = 9.8; v(0) = 24.5; s(0) = 0; v(t) =9.8 dt = 9.8t+ c; 24.5 = v(0) = c;

    v(t) = 9.8t+ 24.5; s(t) =(9.8t+ 24.5) dt = 4.9t2 + 24.5t+ c; 0 = s(0) = c;

    s(t) = 4.9t2 + 24.5tSolving v(t) = 9.8t + 24.5 = 0, we see that the maximum height is attained when t = 2.5seconds. The maximum height is s(2.5) = 30.625 m.

    24. a(t) = 3.7; v(0) = 24.5; s(0) = 0; v(t) =3.7 dt = 3.7t+ c; 24.5 = v(0) = c;

    v(t) = 3.7t+ 24.5; s(t) =(3.7t+ 24.5) dt = 1.85t2 + 24.5t+ c; 0 = s(0) = c;

    s(t) = 1.85t2 + 24.5tSolving v(t) = 3.7t+24.5 = 0 we see that the maximum height is attained when t 6.6216seconds. The maximum height is s(6.6216) 81.1149 m.

    25. a(t) = 32; v(0) = 32; s(0) = 384; v(t) =32 dt = 32t+ c; 32 = v(0) = c;

    v(t) = 32t+ 32; s(t) =(32t+ 32) dt = 16t2 + 32t+ c; 384 = s(0) = c;

    s(t) = 16t2 + 32t+ 384Solving v(t) = 32t + 32 = 0 we see that the maximum height is attained when t = 1second. The maximum height is s(1) = 400 ft. Setting s(t) = 16t2+32t+384 = 0, we havet2 2t 24 = (t 6)(t+ 4) = 0. Thus, the ball hits the ground at 6 seconds.

  • 6.1. RECTILINEAR MOTION REVISITED 339

    26. Setting s(t) = 16t2 + 32t + 384 = 256, we have t2 2t 8 = (t 4)(t + 2) = 0. Thus, theball passes the observer at 4 seconds. At this time v(4) = 96 ft/s.

    27. a(t) = 32; v(0) = 16; s(0) = 102; v(t) =32 dt = 32t+ c; 16 = v(0) = c;

    v(t) = 32t 16; s(t) =(32t 16) dt = 16t2 16t+ c; 102 = s(0) = c;

    s(t) = 16t2 16t+ 102Solving s(t) = 16t2 16t+ 102 = 6, we see that the marshmallow hits the person at t = 2seconds. The impact velocity is v(2) = 80 ft/s.

    28. a(t) = 32; v(0) = 96; s(0) = 22; v(t) =32 dt = 32t+ c; 96 = v(0) = c;

    v(t) = 32t+ 96; s(t) =(32t+ 96) dt = 16t2 + 96t+ c; 22 = s(0) = c;

    s(t) = 16t2 + 96t+ 22Solving s(t) = 16t2 + 96t+ 22 = 102, we see that the stone hits the culprit at t = 1 second(or t = 5 seconds if it misses on the way up and hits on its way back down). The impactvelocity is v(1) = 64 ft/s.

    29. We measure upward from the top of the volcano, so that s(0) = 0. From a(t) = g = 1.8 weobtain v(t) = 1.8t+ v0 and s(t) = 0.9t2 + v0t. If the rock attains its maximum height attime t1, then v(t1) = 0 = 1.8t+ v0 and t1 = v0/1.8. Solving

    200, 000 = 0.9t21 + v0t1 = 0.9 v01.8

    2+ v0

    v01.8

    = 0.9

    v01.8

    2=

    v203.6

    gives v03.6(200, 000) 848.5 m/s.

    30. (a) Taking a(t) = 32, v(0) = 2, and s(0) = 25, we have v(t) = 32t2and s(t) = 16t2 2t + 25. Using similar triangles, we obtain 25

    s=

    x

    x 30 , 25(x 30) = sx and x =750

    25 s . Then

    dx

    dt=

    750

    (25 s)2ds

    dt=

    750

    (25 s)2 v(t) =750

    (25 s)2 (32t 2)

    = 1500(16t+ 1)(25 s)2 =

    1500(16t+ 1)

    (16t2 + 2t)2= 375(16t+ 1)

    t2(8t+ 1)2.

    s30

    xx 30

    (b) When t = 1/2,dx

    dt= 375(8 + 1)1

    4 (4 + 1)2= 540 ft/s.

    31. From the hint, a =dv

    dt=dv

    dsv, and integrating with respect to s gives

    a ds =

    vdv

    ds

    ds.

    Then as =1

    2v2 + c, and solving for v we have v2 = 2as 2c. Since v = v0 when s = 0,

    v20 = 2c and v2 = 2as+ v20 .

  • 340 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    32. Let a be the acceleration due to gravity, v(0) = v0, and s(0) = 0.

    v(t) =

    a dt = at+ c; v0 = v(0) = c; v(t) = at+ v0;

    s(t) =

    (at+ v0) dt =

    1

    2at2 + v0t+ c; 0 = s(0) = c; s(t) =

    1

    2at2 + v0t

    Solving s(t) =1

    2at2 + v0t = 0, we obtain t = 0 and t = 2v0

    a. Then v(2v0/a) = v0, and

    the speed at impact with the ground is the initial velocity v0.

    33. Let a be the acceleration of gravity on the earth, v(0) = v0, and s(0) = 0.

    v(t) =

    a dt = at+ c; v0 = v(0) = c; v(t) = at+ v0;

    s(t) =

    (at+ v0) dt =

    1

    2at2 + v0t+ c 0 = s(0) = c; s(t) =

    1

    2at2 + v0t

    To find the maximum height reached on earth, we solve v(t) = at + v0 = 0. The maximumheight is reached when t = v0/a and is s(v0/a) = v20/2a v20/a = v20/2a. On theplanet, the acceleration of gravity is a/2. Proceeding as on the earth, we obtain v(t) =1

    2at + v0, and s(t) =

    1

    4at2 + v0t. To find the maximum height reached on the planet, we

    solve v(t) =1

    2at + v0 = 0. The maximum height is reached when t = 2v0/a and is

    s(2v0/a) = v20/a 2v20/a = v20/a. Thus, the maximum height reached on the planet istwice that reached on earth.

    34. Let a be the acceleration due to gravity on earth. Then, with initial velocity 2v0, we have

    ve(t) = at + 2v0 and se(t) =1

    2at2 + 2v0t. On the planet, with acceleration due to gravity

    a/2 and initial velocity v0, we have vp(t) =1

    2at + v0 and sp(t) =

    1

    4at2 + v0t. To find the

    maximum height reached on earth, we solve ve(t) = at+ 2v0 = 0 and obtain t = 2v0a

    . The

    maximum height is se(2v0/a) = 2v20

    a 4v

    20

    a= 2v

    20

    a. To find the maximum height reached

    on the planet, we solve vp(t) =1

    2at + v0 = 0 and obtain t = 2v0

    a. The maximum height

    is sp(2v0/a) = v20

    a 2v

    20

    a= v

    20

    a. Thus, the maximum height reached on earth is twice

    that reached on the planet. We want to find the initial velocity 0 on the earth so that the

    maximum height reached on earth is v20

    a, the maximum height reached on the planet. With

    initial velocity 0, we have ve(t) = at+0 and se(t) =1

    2at2+0t. Solving ve(t) = at+0 = 0

    we obtain t = 0a. Then, we want s(0/a) =

    20

    2a

    20

    a=

    20

    2ato be equal to v

    20

    a. Solving

    for 0 we see that the initial velocity on earth must be2v0.

    6.2 Area Revisited

  • 6.2. AREA REVISITED 341

    -2 -1 1 2

    -2

    -1

    1

    2

    1. A =

    11(x2 1) dx =

    13x3 + x

    11

    =2

    323

    =

    4

    3

    -1 1 2 3

    -1

    1

    2

    3

    2. A =

    10(x2 1) dx+

    21(x2 1) dx =

    13x3 + x

    10

    +

    1

    3x3 x

    21

    =

    2

    3 0

    +

    2

    323

    = 2

    -3 -2 -1 1 2

    -30

    -20

    -10

    10

    3. A =

    03x3 dx = 1

    4x403

    = 081

    4

    =

    81

    4

    -1 1 2

    -5

    4. A =

    10(1 x3) dx+

    21(1 x3) dx =

    x 1

    4x41

    0

    +

    x+ 1

    4x42

    1

    =

    3

    4 0

    +

    2

    34

    =

    7

    2

    -3

    3

    3

    5. A =

    30(x2 3x) dx =

    13x3 3

    2x23

    0

    =9

    2 0 = 9

    2

    -3

    -2 -1 1

    6. A =

    01

    (x+ 1)2 dx =1

    3(x+ 1)3

    01

    =1

    3 0 = 1

    3

    -6

    -3

    3

    6

    -2 -1 1 2

    7. A =

    01

    (x3 6x) dx+ 10(x3 6x) dx

    =

    1

    4x4 3x2

    01

    +

    14x4 3x2

    10

    =

    0

    11

    4

    +

    11

    4 0

    =

    11

    2

    -1 1 2

    -5

    8. A =

    10(x3 3x2 + 2) dx+

    21(x3 3x2 + 2) dx

    =

    1

    4x4 x3 + 2x

    10

    +

    14x4 + x3 2x

    21

    =

    5

    4 0

    +

    0

    54

    =

    5

    2

  • 342 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    -6

    -4

    -2

    2 49. A =

    10(x3 6x2 + 11x 6) dx+

    21(x3 6x2 + 11x 6) dx

    +

    32(x3 6x2 + 11x 6) dx

    =

    14x4 + 2x3 11

    2x2 + 6x

    10

    +

    1

    4x4 2x3 + 11

    2x2 6x

    21

    +

    14x4 + 2x3 11

    2x2 + 6x

    32

    =

    9

    4 0

    +

    (2)

    94

    +

    9

    4 2

    =

    11

    4

    -1

    1

    -1 1

    10. A =

    01

    (x3 x) dx+ 10(x3 x) dx

    =

    1

    4x4 1

    2x20

    1+

    14x4 +

    1

    2x21

    0

    =

    0

    14

    +

    1

    4 0

    =

    1

    2

    -2

    211. A =

    11/2(1 x2) dx+

    31(1 x2) dx =

    x 1

    x

    11/2

    +

    x+

    1

    x

    31

    =

    2

    52

    +

    10

    3 2

    =

    11

    6

    -2

    212. A =

    21(1 x2) dx =

    x+

    1

    x

    21

    =5

    2 2 = 1

    2

    -2

    2

    2 4

    13. A =

    10(x1/2 1) dx+

    41(x1/2 1) dx

    =

    23x3/2 + x

    10

    +

    2

    3x3/2 x

    41

    =

    1

    3 0

    +

    4

    313

    = 2

    -2

    2

    4 8

    14. A =

    40(2 x1/2) dx+

    94(2 x1/2) dx

    =

    2x 2

    3x3/2

    40

    +

    2x+ 2

    3x3/2

    94

    =

    8

    3 0

    +

    0

    83

    =

    16

    3

  • 6.2. AREA REVISITED 343

    -2

    2

    3

    15. A =

    02x1/3 dx+

    30x1/3 dx = 3

    4x4/3

    02

    +3

    4x4/3

    30

    =

    0 +

    3

    4(24/3)

    +

    3

    4(34/3) 0

    =

    3

    4(24/3 + 34/3)

    3

    4 8

    16. A =

    81

    (2 x1/3) dx =2x 3

    4x4/3

    81

    = 411

    4

    =

    27

    4

    -1

    1

    -! !

    17. A =

    0 sinx dx+

    0

    sinx dx = cosx]0 cosx]0= [1 (1)] (1 1) = 4

    -1

    1

    2

    3

    ! 2! 3!

    18. A =

    30

    (1 + cosx) dx = (x+ sinx)]30 = 3 0 = 3

    -2

    2

    19. A =

    /23/2

    (1 + sinx) dx = (x+ cosx)]/23/2 =

    23

    2

    = 2

    2

    4

    -! !

    20. A =

    /30

    sec2 x dx = tanx]/30 =3 0 = 3

    -2

    2

    -2 2

    21. A =

    02x dx+

    10x2 dx = 1

    2x202

    +1

    3x310

    = (0 2) +1

    3 0

    =

    7

    3

    -2

    2

    -2 2

    22. A =

    23

    (x+ 2) dx+ 02

    (x+ 2) dx+

    20

    (2 x2) dx+ 22(2 x2) dx

    = 1

    2x2 + 2x

    23

    +

    1

    2x2 + 2x

    02

    +

    2x 1

    3x32

    0

    2x 1

    3x32

    2

    = 2 + 3

    2

    + (0 + 2) +

    4

    3

    2 0

    4

    3 4

    3

    2

    =

    7

    6+

    8

    3

    2

  • 344 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    -6

    -3

    3

    -4 4

    23. A =

    30[x (2x)] dx =

    303x dx =

    3

    2x230

    =27

    2

    3

    6

    9

    -4 4

    24. A =

    20(4x x) dx =

    203x dx =

    3

    2x220

    = 6

    3

    6

    -4 4

    25. A =

    22

    (4 x2) dx =4x 1

    3x22

    2=

    16

    316

    3

    =

    32

    3

    1

    2

    -1 1

    26. A =

    10(x x2) dx =

    1

    2x2 1

    3x31

    0

    =1

    6

    5

    -2 2

    27. A =

    21

    (8 x3) dx =8x 1

    4x42

    1= 12

    33

    4

    =

    81

    4

    -1

    1

    -1 1

    28. A =

    10(x1/3 x3) dx =

    3

    4x4/3 1

    4x41

    0

    =1

    2

    2

    4

    -2 2

    29. A =

    11

    [4(1 x2) (1 x2)] dx = 11

    (3 3x2) dx = (3x x3)11= 2 (2) = 4

    3

    -2 2

    30. A =

    11

    [2(1 x2) (x2 1)] dx = 11

    (3 3x2) dx = (3x x3)11= 2 (2) = 4

    3

    3

    31. A =

    31(x x2) dx =

    1

    2x2 +

    1

    x

    31

    =29

    6 3

    2=

    10

    3

  • 6.2. AREA REVISITED 345

    2 4

    3

    6

    9

    32. A =

    91

    y 1

    y

    dy =

    91(y1/2 y1/2) dy =

    2

    3x3/2 2y1/2

    91

    = 1243

    =

    40

    3

    -3 3

    -4

    433. A =

    13

    [(x2 + 6) (x2 + 4x)] dx = 13

    (6 4x 2x2) dx

    =

    6x 2x2 2

    3x31

    3=

    10

    3 (18) = 64

    3

    -1 1 2

    -1

    1

    2

    34. A =

    3/20

    [(x2 + 3x) x2] dx = 3/20

    (3x 2x2) dx

    =

    3

    2x2 2

    3x33/2

    0

    =9

    8

    -8 8

    435. A =

    88

    (4 x2/3) dx =4x 3

    5x5/3

    88

    =64

    564

    5

    =

    128

    5

    -2 2

    -2

    2

    36. A =

    11

    [(1 x2/3) (x2/3 1)] dx = 11

    (2 2x2/3) dx

    =

    2x 6

    5x5/3

    11

    =4

    545

    =

    8

    5

    -2 2 4 6

    5

    10

    15

    20

    37. A =

    51

    [(2x+ 2) (x2 2x 3)] dx+ 65[(x2 2x 3) (2x+ 2)] dx

    =

    51

    (5 + 4x x2) dx+ 65(x2 4x 5) dx

    =

    5x+ 2x2 +

    1

    3x35

    1+

    1

    3x3 2x2 5x

    65

    =100

    383

    + (30)

    100

    3

    =

    118

    3

    -2 2 4

    -2

    2

    4

    38. A =

    5/20

    (x2 + 4x) 3

    2x

    dx =

    5/20

    5

    2x x2

    dx

    =

    5

    4x2 1

    3x35/2

    0

    =125

    48

    -4 -2 2 4

    2

    4

    6

    8

    39. A =

    04

    x+ 6 +

    1

    2x

    dx+

    20(x+ 6 x3) dx

    =

    3

    4x2 + 6x

    04

    +

    1

    2x2 + 6x 1

    4x42

    0

    = (0 + 12) + (10 0) = 22

  • 346 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    -1 1 2

    -1

    1

    2

    40. A =

    10y2 dy =

    1

    3y310

    =1

    3

    -2 -1 1 2

    -2

    -1

    1

    2

    41. A =

    21

    [(2 y2) (y)] dy = 21

    (2 + y y2) dy

    =

    2y +

    1

    2y2 1

    3y32

    1=

    10

    376

    =

    9

    2

    3 6

    -3

    3

    42. A =

    33

    [(6 y2) y2] dy = 33

    (6 2y2) dy =6y 2

    3y33

    3= 43 (43) = 83

    2 4

    -2

    43. A =

    02

    [(y2 2y + 2) (y2 + 2y + 2)] dy = 02

    (2y2 4y) dy

    =

    23y3 2y2

    02

    = 083

    =

    8

    3

    -8 -4

    -4

    444. A =

    40[(y2 + 2y + 1) (y2 6y + 1)] dy =

    40(8y 2y2) dy

    =

    4y2 2

    3y34

    0

    =64

    3

    -2 2

    2

    445. A =

    11

    [(x+ 4) (x3 x)] dx = 11

    (4 + 2x x3) dx

    =

    4x x2 1

    4x41

    1=

    19

    413

    4

    = 8

    -2 2

    -2

    2

    46. A =

    01

    (y3 y) dy + 10(y3 y) dy

    =

    1

    4y4 1

    2y20

    1+

    14y4 +

    1

    2y21

    0

    = 014

    +

    1

    4 0 = 1

    2

    !

    -2

    2

    47. A =

    /40

    (cosx sinx) dx+ /2/4

    (sinx cosx) dx

    = (sinx+ cosx)]/40 + ( cosx sinx)]/2/4=2 1 + (1) (2) = 22 2

  • 6.2. AREA REVISITED 347

    !

    -2

    2

    48. A =

    /20

    [2 sinx (x)] dx = /20

    (2 sinx+ x) dx =

    2 cosx+ 1

    2x2/2

    0

    =2

    8 (2) = 16 +

    2

    8

    !

    2

    4

    49. A =

    5/6/6

    (4 sinx 2) dx = (4 cosx 2x)]5/6/6

    = 23 5

    323

    3

    =

    123 43

    -! !

    -2

    2

    50. A =

    /2/2

    [2 cosx ( cosx)] dx = /2/2

    3 cosx dx

    = 3 sinx]/2/2 = 3 (3) = 6

    -2 2 4 6

    -4

    4

    51. Region 1: y =x, y = x, x = 0, x = 4

    -2 2 4 6

    -4

    4Region 2: y = x, y = x, x = 0, x = 4

    -2 2 4 6

    -4

    4

    52. Region 1: y =1

    2x2, y = x 3, x = 1, x = 2

    -2 2 4 6

    -4

    4Region 2: y = 3 x, y = 12x2, x = 1, x = 2

    -2 2

    2

    4

    6

    53.

    20

    3x+ 1 4x dx = 1/2

    0

    3

    x+ 1 4x

    dx+

    21/2

    4x 3

    x+ 1

    dx

    =3 ln |x+ 1| 2x21/2

    0+2x2 3 ln |x+ 1|2

    1/2

    = 3 ln3

    2 1

    2+ 8 3 ln 3 1

    2+ 3 ln

    3

    2

    = 7 + 3 ln3

    4 6.1370

  • 348 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    -2 2

    4

    54.

    11

    ex 2ex dx = ln21

    2ex ex dx+ 1

    ln2

    ex 2ex dx

    =2ex exln21 + ex + 2ex1ln2

    = 22 + 2e+ e1 + e+ 2e1 22= 3e+ 3e1 42

    -3 3

    4

    55.

    30

    9 x2 dx = 1

    4(3)2 =

    9

    4

    -5 5

    6

    56.

    55

    25 x2 dx = 1

    2(5)2 =

    25

    2

    -2 2

    2

    4

    57.

    22

    (1 +4 x2) dx =

    22

    1 dx+

    22

    4 x2 dx = 4 + 1

    2(2)2 = 4 + 2

    -2 2

    4

    58.

    11

    (2x+ 31 x2) dx =

    11

    (2x+ 3) dx 11

    1 x2 dx

    =x2 + 3x

    11

    1

    2(1)2

    = 1 + 3 1 3(1) 2= 6

    2

    59. The area of the ellipse is four times the area in the first quadrant portion ofthe ellipse. Thus,

    A = 4

    a0

    b2 b2x2/a2 dx = 4b

    a

    a0

    a2 x2 dx = 4b

    a

    1

    4a2

    = ab.

    b

    a

  • 6.2. AREA REVISITED 349

    60. A =

    21

    (3x 2)

    1

    2x+

    1

    2

    dx+

    32

    (2x+ 8)

    1

    2x+

    1

    2

    dx

    =

    21

    5

    2x 5

    2

    dx+

    32

    52x+

    15

    2

    dx

    =

    5

    4x2 5

    2x

    21

    +

    54x2 +

    15

    2

    32

    = 054

    +

    45

    4 10 = 5

    22 4

    2

    4 (2, 4)

    (1, 1)

    (3, 2)

    61. A =

    26

    (2x 2) dx+ 26

    [x 2 (2)] dx

    +

    02

    [2 (2)] dx+ 20[2 (2x 2)] dx

    = 2

    26

    (2x 2) dx+ 02

    4 dx+

    20(4 2x) dx

    = 2

    2x+

    2

    3(x 2)3/2

    26

    + 4x ]02 + (4x x2)20

    = 2

    4

    20

    3

    + 8 + 4 0 = 52

    3

    -6

    -4

    4

    62. A =

    22

    1

    2y + 1

    (y2 2)

    dy =

    22

    y2 +

    1

    2y + 3

    dy =

    1

    3y3 +

    1

    4y2 + 3y

    22

    =29

    323

    3

    =

    52

    3

    63. The area with respect to x is Ax =

    ln 3/20

    (ex 1) dx+ ln 2ln 3/2

    (2 ex) dx.

    The area with respect to y is Ay =

    21

    ln y ln y + 1

    2

    dy.

    If integration with respect to x is chosen, we get

    Ax =

    ln 3/20

    (ex 1) dx+ ln 2ln 3/2

    (2 ex) dx = (ex x)]ln 3/20 + (2x ex)]ln 2ln 3/2

    =3

    2 ln 3

    2 1 + 2 ln 2 2 2 ln 3

    2+

    3

    2= 3 ln 3 + 5 ln 2 0.1699.

    If integration with respect to y is chosen, we get

    Ay =

    21

    ln y ln y + 1

    2

    dy =

    y ln y y (y + 1) ln y + 1

    2+ (y + 1)

    21

    =

    y ln y (y + 1) ln y + 1

    2+ 1

    21

    = 2 ln 2 3 ln 32+ 1 ln 1 + 2 ln 1 1

    = 3 ln 3 + 5 ln 2 0.1699

  • 350 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    (see Problem 5.1.39 for the antiderivative of lnx)

    64. Using Mathematica the numbers at which the curves intersect are approximately

    0.4077767094044803 and 0.7148059123627778.The area is then

    A =

    0.71480591236277780.4077767094044803

    (ex 4x2) dx 0.801284.

    65. At P (x0, 1/x0) the slope of the line segment is 1/x20. The equation of the line through Qand R is then y = x/x20 + 2/x0. Setting y = 0 we see that the x-intercept is 2x0. The areais

    A =

    2x00

    1x20x+

    2

    x0

    dx =

    12x20

    x2 +2

    x0x

    2x00

    = 2 + 4 = 2,

    which does not depend on x0.

    66. A =

    ba(Ax+B) dx =

    1

    2Ax2 +Bx

    ba

    =1

    2Ab2 +Bb

    1

    2Aa2 +Ba

    =A

    2(b2 a2) +B(b a) =

    A

    2(b+ a) +B

    (b a)

    =Aa+B +Ab+B

    2(b a) = f(a) + f(b)

    2(b a)

    a b

    f (a)f (b)

    67. By symmetry with respect to the line y = x,

    A = 2

    a0(cosx x) dx = 2

    sinx 1

    2x2a

    0

    = 2 sin a a2

    (Using Mathematica it is easily shown that a 0.739085.)68. The areas are the same. In Figure 6.2.16(b), the area of the straight swath of paint is k(ba).

    Now, if y = f(x) describes the lower edge of the swath in Figure 6.2.16(a), then an equationfor the upper edge is y = f(x) + k. The area between the two graphs is then b

    a{[f(x) + k] f(x)} dx =

    bak dx = k(b a).

    69. The areas are the same. Let w be the length of the line segments AB and CD, and without lossof generality, let AB reside on y = 0, with CD residing on y = h. Thus, in Figure 6.2.17(a),the area of the rectangle is wh. Since Figure 6.2.17(b) describes a parallelogram, the linedefined by AD can be written as x = f(y). Thus, the line defined by BC is x = f(y) + w.The area of the parallelogram is therefore h

    0{[f(y) + w] f(y)} dy =

    h0w dy = wh.

    70. This project involves a research report, and thus a preset solution is not applicable. It is noted,however, that Cavalieris Principle relates directly to the situations presented in Problems 68and 69.

  • 6.3. VOLUMES OF SOLIDS: SLICING METHOD 351

    6.3 Volumes of Solids: Slicing Method

    yx

    (x, y)4

    y

    yy31. x2 + y2 = 16; y =

    16 x2; A(x) = 3y2 = 3(16 x2)

    V =

    44

    3(16 x2) dx = 3

    16x 1

    3x34

    4

    =3

    128

    3128

    3

    =

    2563

    3ft3

    yx

    (x, y)4

    yy

    2. x2 + y2 = 16; y =16 x2; A(x) = 1

    2y2 =

    8 1

    2x2

    V =

    44

    8 1

    2x2dx =

    8x 1

    6x34

    4

    =

    64

    364

    3

    =

    128

    3ft3

    4

    -2

    2 (x, y)y

    3. x = y2; A(x) = 2y(8y) = 16y2 = 16x; V =

    4016x dx = 8x2

    40= 128

    4. y = 4 x2; A(x) =3y2

    4=

    3

    4(4 x2)2 = 3

    4 2x2 + 1

    4x4

    V =

    22

    3

    4 2x2 + 1

    4x4dx =

    3

    4x 2

    3x3 +

    1

    20x52

    2

    =3

    64

    156415

    =

    1283

    15-2 2

    4 (x, y)

    yy/2

    3y/2

    5

    -2

    2

    yx

    5. y = 25x+ 2; A(x) =

    1

    2y2 =

    2

    25(x 5)2

    V =

    50

    2

    25(x 5)2 dx = 2

    75(x 5)2

    50

    =10

    3ft3

    -3 3

    -3

    3

    y1

    3

    1x

    2

    6. y =4 x2; A(x) = y2 (12) = (3 x2)

    V =

    33

    (3 x2) dx = 3x 1

    3x33

    3= [2

    3 (23)] = 43 ft3

  • 352 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    3

    3

    x(x, y)

    7. x = y + 3; A(y) = x2 = (y 3)2

    V =

    30(y 3)2 dy = 1

    3(y 3)3

    30

    = 9

    8. Let b denote the length of one side of the square base. Thus, B = b2.

    Using similar triangles, we haveh

    b=

    h y2x

    and x =b(h y)

    2h. Thus,

    A(y) = (2x)2 =b2(h y)2

    h2, and

    V =

    h0

    b2(h y)2h2

    dy =

    h0

    b2 2b

    2

    hy +

    b2

    h2y2dy

    =

    b2y b

    2

    hy2 +

    b2

    3h2y3h

    0

    = b2h b2h+ b2h

    3=

    1

    3hB.

    b

    hx

    (x, y)y

    h y

    C

    O A

    B(1, 1)

    x

    9. x =y

    V =

    10[12 (y)2] dy =

    10(1 y) dy =

    y 1

    2y21

    0

    =

    2

    C

    O A

    B(1, 1)

    y

    10. y = x2

    V =

    10(x2)2 dx =

    10x4 dx =

    5x510=

    5

    C

    O A

    B(1, 1)

    y

    11. y = x2

    V =

    10(12 x4) dx =

    x 1

    5x51

    0

    =4

    5

    C

    O A

    B(1, 1)

    x

    12. x =y

    V =

    10(y)2 dy =

    10y dy =

    2y210=

    2

  • 6.3. VOLUMES OF SOLIDS: SLICING METHOD 353

    B(1, 1)

    x

    C

    O A

    13. x =y

    V =

    10(1y)2 dy =

    10(1 2y + y) dy

    =

    y 4

    3y3/2 +

    1

    2y21

    0

    =

    6

    C

    O A

    B(1, 1)

    x

    14. x =y

    V =

    10[12 (1y)2] dy =

    10(2y y) dy

    =

    4

    3y3/2 1

    2y21

    0

    =5

    6

    -3 3

    9

    y

    15. y = 9 x2

    V =

    33

    (9 x2)2 dx = 2 30(81 18x2 + x4) dx

    = 2

    81x 6x3 + 1

    5x53

    0

    =1296

    5

    2

    5

    x

    16. x =y 1

    V =

    51(y 1)2 dy =

    51(y 1) dy

    =

    1

    2y2 y

    51

    =

    15

    212

    = 8

    2

    1

    2

    6.3.17

    x

    17. x =1

    y

    V =

    11/2

    1

    y

    2 12

    dy =

    11/2

    (y2 1) dy

    =

    1y y

    11/2

    =

    2

    52

    =

    2

    1 2 3

    1

    2

    3

    y

    18. y =1

    x

    V =

    31/2

    1

    x

    2dx =

    1x

    31/2

    =

    13 (2)

    =

    5

    3

  • 354 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    2 4

    2

    4

    y

    19. y = (x 2)2

    V =

    20(x 2)4 dx =

    5(x 2)5

    20=

    32

    5

    -1

    1

    x

    20. x =y 1

    V =

    10(y 1)2 dy =

    10(y 2y + 1) dy

    =

    1

    2y2 4

    3y3/2 + y

    10

    =

    6

    -2 2

    4

    y1

    y2

    21. y1 = 4 x2; y2 = 1 14x2

    V = 2

    20

    (4 x2)2

    1 1

    4x22

    dx = 2

    20

    15 15

    2x2 +

    15

    16x4dx

    = 2

    15x 5

    2x3 +

    3

    16x52

    0

    = 32

    2

    2

    x

    22. x =1 y

    V =

    10(1 y)2 dy =

    10(1 y) dy =

    y 1

    2y21

    0

    =

    2

    1 2

    1

    2

    x1 x1 x2

    23. x1 = y; x2 = y 1

    V =

    10y2 dy +

    21[y2 (y 1)2] dy

    =

    1

    3y31

    0

    + (y2 y)21=

    1

    3+ 2

    =

    7

    3

    1 2

    1

    2

    y1 y2

    24. y1 = 1; y2 = 2 x

    V =

    1012 dx+

    21(2 x)2 dx =

    10dx+

    21(4 4x+ x2) dx

    = x]10 +

    4x 2x2 + 1

    3x32

    1

    = +

    8

    3 7

    3

    =

    4

    3

  • 6.3. VOLUMES OF SOLIDS: SLICING METHOD 355

    5

    2

    4

    5 x

    25. x = y2 + 1

    V =

    20[5 (y2 + 1)]2 dy =

    20(4 y2)2 dy

    =

    20(16 8y2 + y4) dy =

    16y 8

    3y3 +

    1

    5y52

    0

    =256

    15

    1

    -1

    1

    1 x

    26. x = y2

    V =

    11

    (1 y2)2 dy = 11

    (1 2y2 + y4) dy

    =

    y 2

    3y3 +

    1

    5y51

    1=

    8

    15 815

    =

    16

    15

    1 2

    1

    2

    1 2 y27. y = x1/3

    V =

    10[(2 x1/3)2 12] dx =

    10(3 4x1/3 + x2/3) dx

    =

    3x 3x4/3 + 3

    5x5/3

    10

    =3

    5

    1 2

    1

    2 2 x28. x = y2 + 2y

    V =

    20

    22 2 (y2 + 2y)2 dy = 2

    0(8y 8y2 + 4y3 y4) dy

    =

    4y2 8

    3y3 + y4 1

    5y52

    0

    =64

    15

    3

    -3

    3

    x

    29. x =y2 + 16

    V =

    33

    52

    y2 + 16

    2dy =

    33

    (9 y2) dy

    =

    9y 1

    3y33

    3= [18 (18)] = 36

    3 6 9

    3

    6

    9

    y1

    y2

    30. y1 = 9 12x2; y2 = x2 6x+ 9 = (x 3)2

    V =

    40

    9 1

    2x22 (x 3)4

    dx

    =

    40

    108x 63x2 + 12x3 3

    4x4dx

    =

    54x2 21x3 + 3x4 3

    20x54

    0

    =672

    5

  • 356 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    6

    -5

    5 x1x2

    31. x1 = y + 6; x2 = y2

    V =

    32

    [(y + 6)2 y4] dy = 32

    (36 + 12y + y2 y4) dy

    =

    36y + 6y2 +

    1

    3y3 1

    5y53

    2=

    612

    5664

    15

    =

    500

    3

    -4 -2 2 4

    5

    x32. x = (y 1)1/3

    V =

    91(y 1)2/3 dy = 3

    5(y 1)5/3

    91

    =96

    5

    -1 1

    1

    y

    33. y = x3 xV =

    11

    (x3 x)2 dx = 11

    (x6 2x4 + x2) dx

    =

    1

    7x7 2

    5x5 +

    1

    3x31

    1=

    8

    105 8105

    =

    16

    105

    -2 2

    2

    y

    34. y = x3 + 1

    V =

    11

    (x3 + 1)2 dx =

    11

    (x6 + 2x3 + 1) dx

    =

    1

    7x7 +

    1

    2x4 + x

    11

    =

    23

    14 914

    =

    16

    7

    2

    2

    2 y1

    35. y = ex

    V =

    10[(2 ex)2 12] dx =

    10(3 4ex + e2x) dx

    =

    3x+ 4ex 1

    2e2x

    10

    =

    4e1 1

    2e2 1

    2

    3

    2

    4

    6

    8

    y

    1

    36. y = ex

    V =

    20[(ex)2 12] dx =

    20(e2x 1) dx

    =

    1

    2e2x x

    20

    =

    1

    2e4 5

    2

  • 6.3. VOLUMES OF SOLIDS: SLICING METHOD 357

    ! 2!

    -1

    1

    y

    37. y = | cosx|

    V =

    20

    | cosx|2 dx = 20

    1 + cos 2x

    2dx

    =

    2

    20

    (1 + cos 2x) dx =

    2

    x+

    1

    2sin 2x

    20

    = 2

    1

    2

    y

    ! /4 ! /4

    38. y = secx

    V =

    /4/4

    sec2 x dx = tanx]/4/4 = [1 (1)] = 2

    1

    y! /4

    39. y = tanx

    V =

    /40

    tan2 x dx =

    /40

    (sec2 x 1) dx = (tanx x)]/40

    = 1

    4 0

    =

    4 24

    1

    ! /4

    y1y2

    40. y1 = cosx; y2 = sinx

    V =

    /40

    (cos2 x sin2 x) dx = /40

    cos 2x dx =

    2sin 2x

    /40

    =

    2

    41. The volume of the right circular cylinder is r2h. Placing the center of the red circularcylinders base in Figure 6.3.19 on the origin, we see that A = r2 for every slice from y = 0to h. Thus, the volume V of the cylinder is

    V =

    h0

    r2 dy = r2yh0= r2h.

    yx

    (x, y)a

    y

    42. Take the cross-sections to be rectangles perpendicular to the base ofthe cylinder and parallel to the diameter.

    x2 + y2 = a2; y =a2 x2

    z

    2yz = xx

    z(a) A(x) = 2yz = (2

    a2 x2)x = 2xa2 x2

    V =

    a0

    2xa2 x2 dx u = a2 x2, du = 2x dx

    =

    0a2u1/2 du = 2

    3u3/2

    0a2

    = 23(0 a3) = 2

    3a3

  • 358 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    z = 3x

    z

    2yx

    z(b) A(x) = 2yz = (2

    a2 x2)3x = 23xa2 x2

    V =

    a0

    23xa2 x2 dx u = a2 x2, du = 2x dx

    =

    0a23u1/2 du = 2

    3

    3u3/2

    0a2

    = 23

    3(0 a3) = 2

    3

    3a3

    43. (a) Using Mathematica, we obtain with the disk method

    V =

    11

    [P (x)]2(1 x2) dx = 4315

    (5a2 + 9b2 + 21c2 + 105d2 + 18ac+ 42bd).

    (b) Setting a = 0.07, b = 0.02, c = 0.2, and d = 0.56 we obtain V 1.32 cubic units.(c)

    -1 1

    1

    (d) Setting a = 0.06, b = 0.04, c = 0.1, and d = 0.54 we obtain V 1.26 cubic units.

    x

    r r

    r

    (0, h r)

    h

    44. (a) Using x =r2 y2 and the disk method, we obtain

    V =

    hrr

    r2 y2

    2dy

    =

    hrr

    (r2 y2) dy = r2y 1

    3y3hr

    r

    =

    r2(h r) 1

    3(h r)2

    r3 + 1

    3r3

    = r2h 13h3.

    (b) The weight of the ball is4

    3r3ball and the weight of water displaced is

    3(3rh2h3)water.

    Using Archimedes principle andballwater

    = 0.4 we have4

    3(3)2(0.4) =

    3(9h2 h3) or

    h3 9h2 + 43.2 = 0. Solving for h we obtain h 2.5976 in.45. (a) Each eighth of the bicylinder can be sliced into squares whose sides follow the perimeter

    of a quadrant of the cylinders base; that is, x2 + y2 = r2, one side of the square isy =

    r2 x2, and its area is y2 = r2 x2. Using symmetry, the volume common to the

    cylinders is thus

    V = 8

    r0(r2 x2) dx = 8

    r2x x

    3

    3

    r0

    =16r3

    3.

    (b) This item involves a research report, and thus a preset solution is not applicable.

  • 6.4. VOLUMES OF SOLIDS: SHELL METHOD 359

    6.4 Volumes of Solids: Shell Method

    C

    O A

    B(1, 1)

    y

    1. y =x

    V = 2

    10xx dx =

    4

    5x5/2

    10

    =4

    5

    C

    O A

    B(1, 1)

    x

    2. x = y2

    V = 2

    10y(1 y2) dy = 2

    1

    2y2 1

    4y41

    0

    =

    2

    C

    O A

    B(1, 1)

    x3. x = y2

    V = 2

    10(1 y)y2 dy = 2

    1

    3y3 1

    4y41

    0

    =

    6

    C

    O A

    B(1, 1)

    x4. x = y2

    V = 2

    10y y2 dy =

    2y410=

    2

    C

    O A

    B(1, 1)

    y

    5. y =x

    V = 2

    10(1 x)x dx = 2

    2

    3x3/2 2

    5x5/2

    10

    =8

    15

    C

    O A

    B(1, 1)

    y

    6. y =x

    V = 2

    10(1 x)(1x) dx = 2

    10(1x x+ x3/2) dx

    = 2

    x 2

    3x3/2 1

    2x2 +

    2

    5x5/2

    10

    =7

    15

  • 360 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    5

    5

    x

    7. x = y

    V = 2

    50y y dy = 2

    3y350

    =250

    3

    1

    -2

    -1

    1

    x

    8. x = 1 y

    V = 2

    10(y + 2)(1 y) dy = 2

    10(2 y y2) dy

    = 2

    2y 1

    2y2 1

    3y31

    0

    =7

    3

    -1 1 2

    1

    2

    3

    x

    9. x =y

    V = 2

    30yy dy =

    4

    5y5/2

    30

    =363

    5

    2 4

    4

    y

    10. y = x2

    V = 2

    20x x2 dx =

    2x420= 8

    1 2 3

    1

    y

    11. y = x2

    V = 2

    10(3 x)x2 dx = 2

    x3 1

    4x41

    0

    =3

    2

  • 6.4. VOLUMES OF SOLIDS: SHELL METHOD 361

    -3 3

    5

    x1 x212. x1 =

    y; x2 = y

    V = 2

    90y[y (y)] dy = 2

    902y3/2 dy =

    8

    5y5/2

    90

    =1944

    5

    3

    5

    y

    13. y = x2 + 4

    V = 2

    20x(x2 + 4 2) dx = 2

    20(x3 + 2x) dx

    = 2

    1

    4x4 + x2

    20

    = 16

    2 4

    -2

    2

    y

    14. y = x2 5x+ 4

    V = 2

    41x(x2 + 5x 4) dx = 2

    41(x3 + 5x2 4x) dx

    = 2

    14x4 +

    5

    3x3 2x2

    41

    = 2

    32

    3+

    7

    12

    =

    135

    6

    1 2

    2

    x1

    x2

    15. x1 = 1 +y; x2 = 1y

    V = 2

    10y[1 +

    y (1y)] dy = 2

    102y3/2 dy

    =8

    5y5/2

    10

    =8

    5

    2 4

    2

    4

    y

    16. y = (x 2)2

    V = 2

    40(4 x)[4 (x 2)2] dx = 2

    40(x3 8x2 + 16x) dx

    = 2

    1

    4x4 8

    3x3 + 8x2

    40

    =128

    3

  • 362 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    2

    -1

    1x17. x = y3

    V = 2

    10(y + 1)(1 y3) dy = 2

    10(1 + y y3 y4) dy

    = 2

    y +

    1

    2y2 1

    4y4 1

    5y51

    0

    =21

    10

    2

    1

    2

    y1y2

    18. y1 = x1/3 + 1; y2 = x+ 1

    V = 2

    10(1 x)[x1/3 + 1 (x+ 1)] dx

    = 2

    10(x1/3 + x x4/3 x2) dx

    = 2

    3

    4x4/3 +

    1

    2x2 3

    7x7/3 1

    3x31

    0

    =41

    42

    1

    1

    y1y2

    19. y1 = x; y2 = x2

    V = 2

    10x(x x2) dx = 2

    1

    3x3 1

    4x41

    0

    =

    6

    1 2 3

    1

    y1y2

    20. y1 = x; y2 = x2

    V = 2

    10(2 x)(x x2) dx

    = 2

    10(2x 3x2 + x3) dx

    = 2

    x2 x3 + 1

    4x41

    0

    =

    2

    2 4

    2

    4

    y

    21. y = x3 + 3x2

    V = 2

    30x(x3 + 3x2) dx = 2

    30(x4 + 3x3) dx

    = 2

    15x5 +

    3

    4x43

    0

    =243

    10

  • 6.4. VOLUMES OF SOLIDS: SHELL METHOD 363

    -1

    1

    y

    22. y = x3 x

    V = 2

    01x(x3 x) dx = 2

    15x5 +

    1

    3x30

    1=

    4

    15

    -2 2

    -2

    2

    y1y2

    23. y1 = 2 x2; y2 = x2 2

    V = 2

    02

    x[2 x2 (x2 2)] dx = 2 02

    (2x3 4x) dx

    = 2

    1

    2x4 2x2

    02

    = 4

    3 6

    -3

    3

    y1y2

    24. y1 = 4x x2; y2 = x2 4x

    V = 2

    40(x+ 1)[4x x2 (x2 4x)] dx = 2

    40(8x+ 6x2 2x3) dx

    = 2

    4x2 + 2x3 1

    2x44

    0

    = 128

    -5

    5

    x

    25. x = y2 5y

    V = 2

    50y(y2 + 5y) dy = 2

    14y4 +

    5

    3y35

    0

    =625

    6

    2 4 6

    2

    x1x2

    26. x1 = y + 4; x2 = y2 + 2

    V = 2

    21y[y + 4 (y2 + 2)] dy = 2

    21(2y + y2 y3) dy

    = 2

    y2 +

    1

    3y3 1

    4y42

    1

    = 2

    8

    3 13

    12

    =

    19

    6

  • 364 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    2

    6

    y1

    y2

    27. y1 = x+ 6; y2 = x3

    V = 2

    20x(x+ 6 x3) dx = 2

    1

    3x3 + 3x2 1

    5x52

    0

    =248

    15

    1

    1x1

    x2 2/2

    28. x1 = 1 y2; x2 = y2

    V = 2

    2/20

    y(1 y2 y2) dy = 2 2/20

    (y 2y3) dy

    = 2

    1

    2y2 1

    2y42/2

    0

    =

    4

    1

    y!" /2

    29. y = sinx2

    V = 2

    /20

    x(1 sinx2) dx = 2 /20

    (x x sinx2) dx

    = 2

    1

    2x2 +

    1

    2cosx2

    /20

    = 2

    4 1

    2

    =

    2 22

    2

    2

    y

    30. y = ex2

    V = 2

    10x(ex

    2

    ) dx = 2

    1

    2ex

    2

    10

    = e

    31. We use the shell method.

    V = 2

    r0(r x)

    h

    rx

    dx = 2

    r0

    hx h

    rx2dx = 2

    1

    2hx2 h

    3rx3r

    0

    =1

    3r2h

    32. The equation of the line through (r1, h) and (r2, 0) is x =1

    h(r1 r2)y + r2. We use the disk

  • 6.4. VOLUMES OF SOLIDS: SHELL METHOD 365

    method.

    V =

    h0

    1

    h(r1 r2)y + r2

    2dy =

    h0

    1

    h2(r1 r2)2y2 + 2

    hr2(r1 r2)y + r22

    dy

    =

    1

    3h2(r1 r2)2y3 + 1

    hr2(r1 r2)y2 + r22y

    h0

    = h

    1

    3(r21 2r1r2 + r22) + r2(r1 r2) + r22

    =

    h

    3(r21 + r1r2 + r

    22)

    33. We use the disk method.

    V =

    rr(r2 y2)2 dy =

    rr(r2 y2) dy

    =

    r2y 1

    3y3r

    r=

    2

    3r3

    23r3

    =4

    3r3

    34. The equation of the line is y =1

    a

    r2 a2x and the equation of the circle is y = r2 x2.

    We use the disk method.

    V =

    ba

    r2 a2a

    x

    2dx+

    ba

    r2 x2

    2dx

    = r2 a2a2

    a0x2 dx+

    ba(r2 x2) dx =

    r2 a2a2

    1

    3x3a0

    +

    r2x 1

    3x3b

    a

    =

    3(r2 a2)a+

    br2 1

    3b3ar2 1

    3a3

    =

    3(3br2 2ar2 b3)

    35. The equation of the ellipse is y = b

    1 x

    2

    a2. We use the disk method.

    V =

    aa

    b

    1 x

    2

    a2

    2dx = b2

    aa

    1 x

    2

    a2

    dx = b2

    x 1

    3a2x3a

    a

    = b22a

    32a

    3

    =

    4ab2

    3

    36. The equation of the ellipse is y = b

    1 x

    2

    a2. Since the solid is symmetric with respect to

    the x-axis, we will find the volume of the upper hemispheroid and multiply by 2. We use theshell method.

    V = 2

    2

    a0x

    b2 b

    2

    a2x2 dx

    = 4

    a

    2

    3b2

    b2 b

    2

    a2x23/2a

    0

    =a2b

    3

  • 366 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    y1

    y2

    h

    r

    6.5. LENGTH OF A GRAPH 365

    37. y1 =2x2

    2g. The depth of the liquid below the x-axis is y2 = h

    2r2

    2g. So the volume is

    V = 2

    r0

    x

    2x2

    2g+ h

    2r2

    2g

    dx = 2

    r0

    2

    2gx3 +

    2hg 2r22g

    x

    dx

    = 2

    2

    8gx4 +

    2hg 2r24g

    x2r

    0

    =2r4

    4g+

    4hgr2 22r44g

    = r2h 2r4

    4g

    38. The liquid will touch the bottom of the bucket when y2 = h 2r2

    2g= 0, or =

    2hg

    r. The

    volume of the liquid is then

    V = r2h 2r4

    4g= r2h (2hg/r

    2)r4

    4g= r2h 1

    2r2h =

    1

    2r2h

    6.5 Length of a Graph

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    37. y1 =2x2

    2g. The depth of the liquid below the x-axis is y2 = h

    2r2

    2g.

    So the volume is

    V = 2

    r0x

    2x2

    2g+ h

    2r2

    2g

    dx

    = 2

    r0

    2

    2gx3 +

    2hg 2r22g

    x

    dx

    = 2

    2

    8gx4 +

    2hg 2r24g

    x2r

    0

    =2r4

    4g+

    4hgr2 22r44g

    = r2h 2r4

    4g.

    38. The liquid will touch the bottom of the bucket when y2 = h 2r2

    2g= 0, or =

    2hg

    r. The

    volume of the liquid is then

    V = r2h 2r4

    4g= r2h (2hg/r

    2)r4

    4g= r2h 1

    2r2h =

    1

    2r2h

    6.5 Length of a Graph

    1. y = 1; s = 11

    1 + 12 dx = 2

    2

    2. y = 2; s = 30

    1 + 22 dx = 3

    5

    3. y =3

    2x1/2

    s =

    10

    1 +

    9

    4x dx =

    8

    27

    1 +

    9

    4x

    3/210

    =8

    27

    13

    4

    3/2 1

    =

    133/2 827

    1.4397

    4. y = 2x1/3

    s =

    81

    1 + 4x2/3 dx =

    81

    x2/3 + 4

    x2/3dx =

    81x1/3

    x2/3 + 4 dx

    u = x2/3 + 4, du =2

    3x1/3 dx

    =

    85u1/2

    3

    2du

    = u3/2

    85= 83/2 53/2 11.4471

  • 6.5. LENGTH OF A GRAPH 367

    5. y = 2x(x2 + 1)1/2

    s =

    41

    1 + 4x2(x2 + 1) dx =

    41

    (2x2 + 1)2 dx =

    41(2x2 + 1) dx

    =

    2

    3x3 + x

    41

    =140

    3 5

    3= 45

    6. y = 2(x+ 1)3/2 1; y = 3(x+ 1)1/2

    s =

    01

    1 + 9(x+ 1) dx =

    01

    9x+ 10 dx =

    2

    27(9x+ 10)3/2

    01

    =2

    27(103/2 1) 2.2684

    7. y =1

    2x1/2 1

    2x1/2 =

    x 12x1/2

    s =

    41

    1 +

    (x 1)24x

    dx =

    41

    4x+ x2 2x+ 1

    4xdx =

    41

    (x+ 1)2

    4xdx

    =1

    2

    41

    x+ 1

    x1/2dx =

    1

    2

    41(x1/2 + x1/2) dx =

    1

    2

    2

    3x3/2 + 2x1/2

    41

    =1

    2

    28

    3 8

    3

    =

    10

    3

    8. y =1

    2x2 1

    2x2=x4 12x2

    s =

    42

    1 +

    (x4 1)24x4

    dx =

    42

    4x4 + x8 2x4 + 1

    4x4dx

    =

    42

    (x4 + 1)2

    4x4dx =

    1

    2

    42(x2 + x2) dx =

    1

    2

    1

    3x3 1

    x

    42

    =1

    2

    253

    12 13

    6

    =

    227

    24

    9. y = x3 14x3

    =4x6 14x3

    s =

    32

    1 +

    (4x6 1)216x6

    dx =

    32

    16x6 + 16x12 8x6 + 1

    16x6dx =

    32

    (4x6 + 1)2

    16x6dx

    =

    32

    4x6 + 1

    4x3dx =

    1

    4

    32(4x3 + x3) dx =

    1

    4

    x4 1

    2x2

    32

    =1

    4

    1457

    18 127

    8

    =

    4685

    288 16.2674

  • 368 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    10. y = x4 14x4

    =4x8 14x4

    s =

    21

    1 +

    (4x8 1)216x8

    dx =

    21

    16x8 + 16x16 8x8 + 1

    16x8dx =

    21

    (4x8 + 1)2

    16x8dx

    =1

    4

    21

    4x8 + 1

    x4dx =

    1

    4

    21(4x4 + x4) dx =

    1

    4

    4

    5x5 +

    1

    3x3

    21

    =1

    4

    3067

    120 56

    120

    =

    3011

    480 6.2729

    11. y = (4 x2/3)1/2

    x1/3; s =

    81

    1 +

    4 x2/3x2/3

    dx =

    81

    2

    x1/3dx = 3x2/3

    81= 9

    12. y =

    1, 2 < x < 3

    2

    3(x 2)1/3, 3 < x < 103

    4(x 6)1/2, 10 < x < 15

    s =

    32

    1 + 1 dx+

    103

    1 +

    4

    9(x 2)2/3 dx+

    1510

    1 +

    9

    16(x 6) dx

    =2 +

    103

    (x 2)2/3 + 4

    9(x 2)1/3 dx+ 1

    4

    1510

    9x 38 dx

    =2 +

    (x 2)2/3 + 4

    9

    3/210

    3

    +1

    4

    1

    9

    2

    3

    (9x 38)3/2

    1510

    =2 +

    40

    9

    3/213

    9

    3/2+

    1

    54(973/2 523/2) 19.7954

    13. y = 2x; s = 31

    1 + 4x2 dx

    14. y = (x+ 1)1/2; s = 31

    1 + (x+ 1)1 dx =

    31

    x+ 2

    x+ 1dx

    15. y = cosx; s = 0

    1 + cos2 x dx

    16. y = sec2 x; s = /4/4

    1 + sec4 x dx

    17.dx

    dy= 2

    3y1/3

  • 6.5. LENGTH OF A GRAPH 369

    s =

    80

    1 +

    4

    9y2/3 dy =

    80

    9y2/3 + 4

    9y2/3dy =

    1

    3

    80y1/3

    9y2/3 + 4 dy

    u = 9y2/3 + 4, du = 6y1/3 dy

    =1

    18

    404

    u1/2 du =1

    27u3/2

    404

    =1

    27(403/2 8) 9.0734

    18.dx

    dy=

    1

    2y3/2 1

    2y3/2 =

    y3 12y3/2

    s =

    94

    1 +

    (y3 1)24y3

    dy =

    94

    4y3 + y6 2y3 + 1

    4y3dy =

    94

    (y3 + 1)2

    4y3dy

    =1

    2

    94

    y3 + 1

    y3/2dy =

    1

    2

    94(y3/2 + y3/2) dy =

    1

    2

    2

    5y5/2 2y1/2

    94

    =1

    2

    1448

    15 59

    5

    =

    1271

    30 42.3667

    19. (a) y = (1 x2/3)3/2; y = 32(1 x2/3)1/2

    23x1/3

    = (1 x

    2/3)1/2

    x1/3

    s =

    10

    1 +

    1 x2/3x2/3

    dx =

    10

    1

    x2/3dx =

    10

    1

    x1/3dx

    At x = 0,1

    x1/3is discontinuous.

    (b) The graph is symmetric with respect to both coordinate axes, so

    s = 4

    10

    1

    x1/3dx = 4

    3

    2x2/3

    10

    = 6.

    20. y = b

    1 x

    2

    a2

    1/2; y = bx

    a2

    1 x

    2

    a2

    1/2

    s = 4

    a0

    1 +

    b2x2

    a4

    1 x

    2

    a2

    1dx = 4

    a0

    1 +

    b2x2

    a4

    a2

    a2 x2dx

    = 4

    a0

    1 +

    b2x2

    a2(a2 x2) dx =4

    a

    a0

    a4 a2x2 + b2x2

    a2 x2 dx

    21. y =r2 x2; y = x(r2 x2)1/2

    2r = s = 4

    r0

    1 + x2(r2 x2)1 dr = 4r

    r0

    1

    r2 x2 dxdr

    Letting r = 1 we have 2 = 4

    10

    11 x2 dx or

    10

    11 x2 dx =

    2.

  • 370 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    22. y = x3. Let s(x) = x2

    1 + t6 dt. We want s(2.1) or s(2 + 0.1). Using approximation by

    dierentials, we have 2.12

    1 + x6 dx = s(2 + 0.1) s(2) + s(2) dx = 0 +

    1 + 26(0.1) = 0.1

    65 0.8062.

    6.6 Area of a Surface of Revolution

    1. y = x1/2

    S = 2

    802x1 + x1 dx = 4

    80

    x+ 1 dx =

    8

    3(x+ 1)3/2

    80

    =8

    3(27 1) = 208

    3

    2. y =1

    2(x+ 1)1/2

    S = 2

    51

    x+ 1

    1 +

    1

    4(x+ 1)1 dx = 2

    51

    x+ 1 +

    1

    4dx =

    4

    3

    x+

    5

    4

    3/251

    =4

    3

    25

    4

    3/29

    4

    3/2=

    6(253/2 93/2) 51.3127

    3. y = 3x2

    S = 2

    10x31 + 9x4 dx u = 1 + 9x4, du = 36x3 dx

    = 2

    101

    u

    1

    36du

    =

    27u3/2

    101

    =

    27(103/2 1) 3.5631

    4. y =1

    3x2/3

    S = 2

    81x

    1 +

    x4/3

    9dx = 2

    81

    x1/3

    3

    9x4/3 + 1 dx u = 9x4/3 + 1, du = 12x1/3 dx

    =2

    3

    14510

    u

    1

    12du

    =

    27u3/2

    14510

    =

    27(1453/2 103/2) 199.4805

    5. y = 2x; S = 2 30x1 + 4x2 dx =

    6(1 + 4x2)3/2

    30=

    6(373/2 1) 117.3187

    6. y = 2x; S = 2 20x1 + 4x2 dx =

    6(1 + 4x2)3/2

    20=

    6(173/2 1) 36.1769

    7. y = 2

    S = 2

    72(2x+ 1)

    1 + 4 dx = 2

    5

    72(2x+ 1) dx = 2

    5x2 + x

    72

    = 25(56 6) = 1005

  • 6.6. AREA OF A SURFACE OF REVOLUTION 371

    8. y = x(16 x2)1/2

    S = 2

    70

    x1 + x2(16 x2)1 dx = 2

    70

    x

    16

    16 x2 dx = 8 70

    x(16 x2)1/2 dx

    u = 16 x2, du = 2x dx

    = 8

    916u1/2

    12du

    = 4

    169

    u1/2 du = 4(2u)169

    = 4(8 6) = 8

    9. y = x3 14x3 =

    4x6 14x3

    S = 2

    21x

    1 +

    16x12 8x6 + 116x6

    dx = 2

    21x

    16x6 + 16x12 8x6 + 1

    16x6dx

    =

    2

    21

    (4x6 + 1)2

    x2dx =

    2

    21(4x4 + x2) dx =

    2

    4

    5x5 1

    x

    21

    =

    2

    251

    1015

    =

    253

    20

    10. y = x2 14x2 =

    4x4 14x2

    S = 2

    21

    1

    3x3 +

    1

    4x

    1 +

    16x8 8x4 + 116x4

    dx =

    6

    21

    4x4 + 3

    x

    (4x4 + 1)2

    16x4dx

    =

    6

    21

    (4x4 + 3)(4x4 + 1)

    4x3dx =

    6

    21

    4x5 + 4x+

    3

    4x3

    dx

    =

    6

    2

    3x6 + 2x2 3

    8x2

    21

    =

    6

    4855

    96 55

    24

    =

    4635

    576

    11. (a) f (x) = r2h

    1 x

    h

    1/2; 1 + [f (x)]2 =

    4h2 4hx+ r24h2(1 x/h)

    f(x)1 + [f (x)]2 = r

    1 x/h

    4h2 2hx+ r22h1 x2 =

    r

    2h

    4h2 4hx+ r2

    S = 2

    h0

    r

    2h

    r2 + 4h2 4hx dx = r

    h

    2

    3

    14h

    (r2 + 4h2 4hx)3/2

    h0

    =r

    6h2[(r2 + 4h2)3/2 r3]

    (b) With h = 0.1r we have

    S =r

    6(0.01)r2[r3(1.04)3/2 r3] r2

    1.043/2 1

    0.06

    r2 0.060596

    0.06 r2.

    The approximate percentage error is(0.060596/0.06)r2 r2

    r2=

    0.060596

    0.061 0.0099,

    or approximately 1%.

  • 372 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    12. y =r2 x2; y = x(r2 x2)1/2

    S = 2

    ba

    r2 x2

    1 + x2(r2 x2)1 dx = 2

    ba

    r2 x2

    r2

    r2 x2 dx

    = 2r

    badx = 2r(b a)

    13. For x < 2, y = x 2 and y = 1. For x > 2, y = x+ 2 and y = 1.

    S = 2

    24

    (x 2)1 + 1 dx+ 2 22

    (x+ 2)1 + 1 dx

    = 22

    24

    (x 2) dx+ 22 22

    (x+ 2) dx

    = 22

    12x2 2x

    24

    + 22

    1

    2x2 + 2x

    22

    = 22[(2 + 4) (8 + 8)] + 22[(2 + 4) (2 4)] = 202

    14. Since the graph is symmetric with respect to the y-axis, we will find the area on [0, a] andmultiply by 2.

    y = (a2/3 x2/3)3/2; y = (a2/3 x2/3)1/2

    x1/3

    S = 4

    a0(a2/3 x2/3)3/2

    1 +

    (a2/3 x2/3)x2/3

    dx = 4

    a0(a2/3 x2/3)3/2

    a2/3

    x2/3dx

    = 4a1/3 a0x1/3(a2/3 x2/3)3/2 dx u = a2/3 x2/3, du = 2

    3x1/3 dx

    = 4a1/3 0a2/3

    u3/232du

    = 4a1/3

    35u5/2

    0a2/3

    = 12a1/3

    5(0 a5/3) = 12a

    2

    5

    15. Let be the angle formed when the cone is cut and flattened out. The lengthof the arc of the sector is 2r, the circumference of the base of the cone. Then/2r = 2/2L (the angle subtended by the sector is to the length of the sectoras 2 radians is to the circumference of the circle of radius L), and = 2r/L.

    Using the hint in the text, the lateral surface area is1

    2L22r

    L

    = rL.

    L

    2r

    16. If L is the slant height, then L2 = r2 + h2 and the surface area is rL =

    rr2 + h2. The surface can also be obtained by revolving the line y =

    r

    hx

    about the x-axis:

    S = 2

    h0

    r

    hx

    1 +

    rh

    2dx =

    2r

    h

    h0x

    r2 + h2

    h2dx

    =2rr2 + h2

    h2

    1

    2x2h

    0

    = rr2 + h2

    L r

    h

  • 6.6. AREA OF A SURFACE OF REVOLUTION 373

    17. By similar triangles,r1L1

    =r2L2

    , r1L2 = r2L1, and r1L2 r2L1 = 0.From Problem 15, the lateral surface area of the frustum is

    S = r2L2 r1L1 = (r2L2 r1L1) = [r2L2 + (0

    r1L2 r2L1) r1L1]= [(r2 + r1)L2 (r2 + r1)L1] = (r1 + r2)(L2 L1) = (r1 + r2)L.

    r1r2

    LL1

    L2

    18. By the Pythagorean Theorem, L2 = h2 + (r2 r1)2 or L =h2 + (r2 r1)2. From (1) in

    Section 6.6,

    r1

    r2 r1LhS = (r1 + r2)L = (r1 + r2)

    h2 + (r2 r1)2.

    19. We need to extend (3) in Section 6.6 to include functions which are not necessarily non-

    negative. In this case we have S = 2

    ba

    |f(x)|1 + [f (x)]2 dx. Next, we require the fact

    that the surface area obtained by revolving f around y = L is the same as that obtained byrevolving F (x) = f(x) L around the x-axis. Then F (x) = f (x) and

    S = 2

    ba

    |F (x)|1 + [F (x)]2 dx = 2

    ba

    |f(x) L|1 + [f (x)]2 dx.

    20. y =2

    3x1/3; S = 2

    81

    |x2/3 4|1 +

    4

    9x2/3 dx =

    2

    3

    81

    4 x2/3x1/3

    9x2/3 + 4 dx

    21. (a) Since BCT is similar to TCS we have CB/TC = CT/CS or yBR

    =R

    R+ h, which

    gives yB =R2

    R+ h. Now, revolving x =

    R2 y2 for yB y R around the y-axis, we

    obtain the surface area

    AS = 2

    RyB

    R2 y2

    1 + yR2 y2

    2dy = 2

    RR2R+h

    Rdy

    = 2R

    R R

    2

    R+ h

    =

    2R2h

    R+ h.

    Since AE = 4R2, we haveASAE

    =h

    2(R+ h).

    (b) With h = 2000 and R = 6380,ASAE

    =2000

    2(6380 + 2000) 0.119332 11.9%.

    (c) Settingh

    2(R+ h)=

    1

    4we obtain 2h = R+ h or h = R = 6380 km.

  • 374 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    (d) limh

    ASAE

    = limh

    h

    2R+ 2h=

    1

    2From a large distance we would expect to see half of the earths surface.

    (e)ASAE

    =3.76 105

    2(6380 + 3.76 105) 0.4917 = 49.17%

    6.7 Average Value of a Function

    1. fave =1

    1 (3) 13

    4x dx =1

    4(2x2)

    13

    =1

    4(2 18) = 4

    2. fave =1

    5 (2) 52

    (2x+ 3) dx =1

    7(x2 + 3x)

    52

    =1

    7[40 (2)] = 42

    7

    3. fave =1

    2 0 20(x2 + 10) dx =

    1

    2

    1

    3x3 + 10x

    20

    =1

    2

    68

    3 0

    =

    34

    3

    4. fave =1

    1 (1) 11

    (2x3 3x2 + 4x 1) dx = 12

    1

    2x4 x3 + 2x2 x

    11

    =1

    2

    1

    2 9

    2

    = 2

    5. fave =1

    3 (1) 31

    (3x2 4x) dx = 14(x3 2x2)

    31

    =1

    4[9 (3)] = 3

    6. fave =1

    2 0 20(x+ 1)2 dx =

    1

    2 13(x+ 1)3

    20

    =1

    2

    9 1

    3

    =

    13

    3

    7. fave =1

    2 (2) 22

    x3 dx =1

    4

    1

    4x42

    2=

    1

    4(4 4) = 0

    8. fave =1

    1 0 10x(3x 1)2 dx =

    10(9x3 6x2 + x) dx =

    9

    4x4 2x3 + 1

    2x21

    0

    =3

    4

    9. fave =1

    9 0 90x1/2 dx =

    1

    9

    2

    3x3/2

    90

    = 2

    10. fave =1

    3 0 30(5x+ 1)1/2 dx =

    1

    3 215

    (5x+ 1)3/230

    =2

    45(64 1) = 14

    5

    11. fave =1

    3 0 30xx2 + 16 dx =

    1

    3 13(x2 + 16)3/2

    30

    =1

    9(125 64) = 61

    9

  • 6.7. AVERAGE VALUE OF A FUNCTION 375

    12. fave =1

    1 1/2 11/2

    1 +

    1

    x

    1/3 1x2

    dx u = 1 +1

    x, du = 1

    x2dx

    = 2

    23u1/3 du = 2 3

    4(u4/3)

    23

    = 32(24/3 34/3) 2.7104

    13. fave =1

    1/2 1/4 1/21/4

    x3 dx = 412x2

    1/21/4

    = 2

    1

    x2

    1/21/4

    = 2(4 16) = 24

    14. fave =1

    4 1 41(x2/3 x2/3) dx = 1

    3

    3

    5x5/3 3x1/3

    41

    =1

    3

    3

    545/3 3 41/3

    12

    5

    =

    1

    545/3 41/3 + 4

    5 1.2285

    15. fave =1

    5 3 532(x+ 1)2 dx =

    1

    2[2(x+ 1)1]

    53

    = 1x+ 1

    53

    = 1

    6 1

    4

    =

    1

    12

    16. fave =1

    9 4 94

    (x 1)3x

    dx u =x 1, du = 1

    2xdx

    =1

    5

    212u3 du =

    1

    5 12u421

    =1

    10(16 1) = 3

    2

    17. fave =1

    ()

    sinx dx =1

    2( cosx)

    = 12

    [1 (1)] = 0

    18. fave =1

    /4 0 /40

    cos 2x dx =4

    12sin 2x

    /40

    =2

    (1 0) = 2

    19. fave =1

    /2 /6 /2/6

    csc2 x dx =3

    ( cotx)

    /2/6

    = 3(03) = 3

    3

    20. fave =1

    1/3 (1/3) 1/31/3

    sinx

    cos2 xdx u = cosx, du = sinx dx

    =3

    2

    1/21/2

    1u2

    du = 0

    21. fave =1

    1 (1) 11

    (x2 + 2x) dx =1

    2

    1

    3x3 + x2

    11

    =1

    2

    4

    3 2

    3

    =

    1

    3

    Setting f(c) = c2+c =1

    3, we obtain 3c2+6c1 = 0. Then c = 6

    36 + 12

    6= 1 2

    3

    3.

    The only solution on [1, 1] is 1 + 23

    3.

    22. fave =1

    6 1 61(x+ 3)1/2 dx =

    1

    5 23(x+ 3)3/2

    61

    =2

    15(27 8) = 38

    15

    Setting f(c) =c+ 3 = 38/15, we obtain c+ 3 = 1444/225. Thus, c = 769/225.

  • 376 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    23. We are given1

    5 1 51f(x) dx = 3. The area under the graph is

    51f(x) dx = 12.

    24. Solving1

    b

    b0(1x) dx = 1

    b

    x 2

    3x3/2

    b0

    = 1 23

    b = 0 gives b = 9/4. At b = 9/4 the

    area bounded by the graph above the x-axis is the same as the area below the x-axis.

    25. Tave =1

    6 0 60

    100 + 3t 1

    2t2dt =

    1

    6

    100t+

    3

    2t2 1

    6t36

    0

    = 103

    26. Rave =1

    5 1 51(50 + 4x+ 3x2) dx =

    1

    4(50x+ 2x2 + x3)

    51

    =1

    4(425 53) = 93

    1

    5

    5k=1

    R(k) =1

    5(57 + 70 + 89 + 114 + 145) = 95

    27. Using s(t) = v(t) we have

    vave =1

    t2 t1 t2t1

    v(t) dt =1

    t2 t1 s(t)t2t1

    =s(t2) s(t1)

    t2 t1 = v.

    28. Uave =1

    2/ 0 2/0

    1

    2kx2 dt =

    k

    4

    2/0

    A2 cos2(t+ ) dt

    =kA2

    4

    2/0

    1

    2[1 + cos 2(t+ )] dt =

    kA2

    8

    t+

    1

    2sin(2t+ 2)

    2/0

    =kA2

    8

    2

    +

    1

    2sin(4 + 2) 1

    2sin 2

    =kA2

    4

    Kave =1

    2/ 0 2/0

    1

    2mv2 dt =

    m

    4

    2/0

    [x(t)]2 dt =m

    4

    2/0

    2A2 sin2(t+ ) dt

    =A2(m2)

    4

    2/0

    1

    2[1 cos 2(t+ )] dt = A

    2k

    8

    t 1

    2sin(2t+ 2)

    2/0

    =kA2

    8

    2

    1

    2sin(4 + 2)

    12

    sin 2

    =kA2

    4

    29. mv1 mv0 = (t1 0)F = t1t1 0

    t10

    k

    1

    2t

    t1 1

    2dt = k

    t10

    1 4

    t21t2 +

    4

    t1t 1

    dt

    = k

    43t21

    t3 +2

    t1t2t1

    0

    = k

    43t1 + 2t1

    =

    2kt13

    30. vave =1

    R 0 R0

    P

    4vl(R2 r2) dr = P

    4vlR

    R2r 1

    3r3R

    0

    =P

    4vlR

    2

    3R3=PR2

    6vl

    31. 0, since

    aa

    f(x) dx = 0.

  • 6.7. AVERAGE VALUE OF A FUNCTION 377

    32. Intuitively, the average value of the linear function f(x) = ax + b on [x1, x2] should be the

    value of f at the midpoint of that interval, or X =x1 + x2

    2. This can be proven as follows:

    fave =1

    x2 x1 x2x1

    (ax+ b) dx =1

    x2 x1a2x2 + bx

    x2x1

    =1

    x2 x1ax222

    + bx2 ax21

    2 bx1

    =

    1

    x2 x1a(x22 x21)

    2+ b(x2 x1)

    = a

    x2 + x1

    2

    + b = aX + b

    33. f ave =1

    h

    x+hx

    f (x) dx =1

    hf(x)

    x+hx

    =f(x+ h) f(x)

    h

    34. fave =1

    a 1 a1(n+ 1)xn dx =

    1

    a 1xn+1

    a1

    =an+1 1a 1 = a

    n + an1 + + a+ 1

    35. If

    ba[f(x) fave] dx = 0, then

    baf(x) dx =

    bafave dx. Thus,

    baf(x) dx = fave(b a)

    and therefore fave =1

    b a baf(x) dx.

    36. The average of f on [0, 1] is 0. On [0, 2], it is 1/2. On [0, 3], it is 1, and on [0, 4], it is 3/2.

    The average value of f on the interval [0, n] appears to be1

    2(n 1), which can be proven as

    follows:

    fave =1

    n 0 n0f(x) dx =

    1

    n

    100 dx+

    211 dx+ +

    nn1

    (n 1) dx

    =1

    n[0 + 1 + + (n 1)] = 1

    n

    n1k=1

    k =1

    n

    (n 1)n

    2

    =

    1

    2(n 1)

    37. There is no unique answer to this question; among several possible approaches, here is prob-ably the simplest. Suppose the circle is centered at the origin and that one of the points onthe circle is (1, 0). If (x, y) is any other point on the circle, then the length of the chordsbetween (1, 0) and (x, y) is the distance between the points:

    (x+ 1)2 + y2 =x2 + y2 + 2x+ 1 =

    2x+ 2.

    The average chord length Lave is then

    Lave =1

    1 (1) 11

    2x+ 2 dx =

    1

    2 12 (2x+ 2)

    3/2

    3/2

    11

    =1

    6 43/2 = 8

    6=

    4

    3.

  • 378 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    38. (a) The surface area is S = 2

    baf(x)

    1 + [f (x)]2 dx. If f (x) = 0, then S = 2

    baf(x) dx.

    If 0 |f (x)| < for a x b, then

    2

    baf(x) dx S 2

    baf(x)

    1 + 2 dx = 2

    1 + 2

    baf(x) dx.

    (b) At any x in [a, b] the circumference of a circular cross-section is 2f(x). The average

    circumference is then C =1

    b a ba2f(x) dx. Letting L = b a be the length of the

    limb, we have CL = 2

    baf(x) dx. Thus, from part (a), CL S 1 + 2 CL.

    6.8 Work

    1. W = 55 20 = 1100 yd-lb = 3300 ft-lb

    3050 100

    6.8. WORK 377

    38. (a) The surface area is S = 2

    baf(x)

    1 + [f (x)]2 dx. If f (x) = 0, then S = 2

    baf(x) dx.

    If 0 |f (x)| < for a x b, then

    2

    baf(x) dx S 2

    baf(x)

    1 + 2 dx = 2

    1 + 2

    baf(x) dx.

    (b) At any x in [a, b] the circumference of a circular cross-section is 2f(x). The average

    circumference is then C =1

    b a ba

    2f(x) dx. Letting L = b a be the length of the

    limb, we have CL = 2

    baf(x) dx. Thus, from part (a), CL S 1 + 2 CL.

    6.8 Work

    1. W = 55 20 = 1100 yd-lb = 3300 ft-lb2. The horizontal component of force is 50

    3 N. W = 50

    3 8 = 4003 joules.

    3. Since 10 = k

    1

    2

    , k = 20 and F = 20x. Solving 8 = 20x we obtain x =

    2

    5ft.

    4. (a) Since 50 = k(0.1), k = 500 and F = 500x.

    (b) When x = 0.5, F = 250 N.

    (c) Solving 200 = 500x, we obtain x = 0.4 m. The length of the spring is 0.5+ 0.4 = 0.9 m.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    2. The horizontal component of force is 503 N.

    W = 503 8 = 4003 joules.

    3. Since 10 = k

    1

    2

    , k = 20 and F = 20x. Solving 8 = 20x we obtain x =

    2

    5ft.

    4. (a) Since 50 = k(0.1), k = 500 and F = 500x.

    (b) When x = 0.5, F = 250 N.

    (c) Solving 200 = 500x, we obtain x = 0.4 m. The length of the spring is 0.5+ 0.4 = 0.9 m.

    5. (a) W =

    0.20

    500x dx = 250x20.20

    = 10 joules

    (b) W =

    0.60.5

    500x dx = 250x20.60.5

    = 27.5 joules

    6. (a) W =

    60

    3

    2x dx =

    3

    4x260

    = 27 in-lb =27

    12ft-lb =

    9

    4ft-lb

    (b) W =

    160

    3

    2x dx =

    3

    4x2160

    = 192 in-lb = 16 ft-lb

    7. Since 10 = k

    2

    3

    , k = 15 and F = 15x.

    (a) W =

    1015x dx =

    15

    2x210

    =15

    2ft-lb

    (b) W =

    3215x dx =

    15

    2x232

    =75

    2ft-lb

  • 6.8. WORK 379

    8. Since 50 = k3, k = 503

    and F =50

    3x. W =

    100

    50

    3x dx =

    25

    3x2100

    =2500

    3in-lb =

    625

    9ft-lb

    9. We use 500 km = 0.5 106 m.W = (6.67 1011)(6.0 1024)(104)

    1

    6.4 106 1

    6.9 106 4.531 1010

    = 453.1 108 joules10. We use 200 km = 0.2 106 m.

    W = (6.67 1011)(7.3 1022)(5 104)

    1

    1.7 106 1

    1.9 106 1.507 1010

    = 150.7 108 joules

    x

    y12 3

    11. W =

    120

    62.4(3)2x dx = 9(62.4)1

    2x2120

    = 9(62.4)(72) 127, 030.9 ft-lb

    x

    y

    20 10

    4

    y

    12. y =1

    5x

    W =

    100

    62.4y2(20 x) dx = 62.4 100

    1

    25x2(20 x) dx

    = 62.4

    100

    4

    5x2 1

    25x3dx = 62.4

    4

    15x3 1

    100x410

    0

    = 62.4

    500

    3

    32, 672.6 ft-lb

    13. W =

    100

    62.4

    1

    25x2(25 x) dx = 62.4

    100

    x2 1

    25x3dx

    = 62.4

    1

    3x3 1

    100x410

    0

    = 62.4

    700

    3

    45, 741.6 ft-lb

    x

    y

    3

    y

    214. x2 + y2 = 9; y =

    9 x2

    W =

    33

    62.4(2y 12)(5 x) dx = 1497.6 33

    9 x2(5 x) dx

    = 1497.6

    5

    33

    9 x2 dx

    33

    x9 x2 dx

    The first integral represents the area of the semicircle and is thus

    1

    2(3)2. The second integral

    has an odd integrand and is thus 0. Therefore W = 1497.6

    5 1

    2(3)2

    = 33, 696 ft-lb.

  • 380 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    x

    y

    3

    4y

    5

    15. y =3

    4x

    W =

    4062.4(2y 10)(x+ 5) dx = 62.4(20)

    40

    3

    4x(x+ 5) dx

    = 936

    40(x2 + 5x) dx = 936

    1

    3x3 +

    5

    2x24

    0

    = 936

    184

    3

    = 57, 408 ft-lb

    x

    y5

    3 y16. x2 + y2 = 25; y =

    25 x2

    W =

    5280(2y 25)x dx = 4000

    52x25 x2 dx

    = 4000

    13(25 x2)3/2

    52

    = 40003

    (25 x2)3/252

    = 40003

    (0 213/2) 128, 312.1 ft-lb

    17. The weight of the chain is F (x) = 20(100 x) lb when x feet of chain have been pulled up.

    W =

    400

    20(100 x) dx = 20100x 1

    2x240

    0

    = 64, 000 ft-lb

    18. The weight of the system is F (x) = 3000 + 40(200 x) lb when x feet of chain have beenpulled up.

    W =

    1000

    [3000 + 40(200 x)] dx =3000x+ 40

    200x 1

    2x2100

    0

    = 900, 000 ft-lb

    19. (a) W = 80 65 = 5200 ft-lb(b) The weight of the system is F (x) = 80 +

    1

    2(65 x) when the bucket has been lifted x

    feet.

    W =

    650

    80 +

    1

    2(65 x)

    dx =

    80x+

    1

    2

    65x 1

    2x265

    0

    = 6256.25 ft-lb

    20. The weight of the bucket after it has been lifted x feet is 62.4(20 x/2) lb. The bucket willbecome empty when it has been lifted 40 feet.

    W =

    400

    62.420 x

    2

    dx = 62.4

    20x 1

    4x240

    0

    24, 960 ft-lb

    21. If x is the distance separating the electron and the nucleus, then the force is F (x) = k/x2.

    W =

    41

    k

    x2dx = k

    x

    41

    = k1

    4 1

    =

    3k

    4

    22. (a) If x is the distance above the earth, then the weight of the system is F (x) = 2, 700, 000100x.

  • 6.8. WORK 381

    (b) W =

    10000

    (2, 700, 000 100x) dx = 2, 700, 000x 50x210000

    = 2, 650, 000, 000 ft-lb

    23. Since p = kv ,

    W =

    v2v1

    p dv =

    v2v1

    kv dv =k

    1 v1

    v2v1

    =k

    1 (v12 v11 )

    =1

    1 (kv2 v2 kv1 v1) =

    1

    1 (p2v2 p1v1),

    where p1 and p2 are the pressures corresponding to volumes v1 and v2, respectively.

    24. Using Newtons second law F = ma = mg, we have

    W =

    y2y1

    F (y) dy =

    y2y1

    mg dy = mgy]y2y1 = mgy2 mgy1.

    25. Since the distance moved is 0, no work is done.

    26. The force is F (x) =

    2x, 0 x 12, 1 x 2

    x+ 4, 2 x 40, 4 x 5

    x 5, 5 x 6

    .

    The work is W =

    102x dx+

    212 dx+

    42(x+ 4) dx+ 0 +

    65(x 5) dx

    = x210+ 2x]21 +

    12x2 + 4x

    42

    +

    1

    2x2 5x

    65

    = (1 0) + (4 2) + (8 6) + (12 + 12.5) = 5.5 N-m.27. W = 165 1350 = 222, 750 ft-lb

    x

    y10

    180 2028. Since the water leaks out of the bucket at a constant rate and the weight

    of the rope is negligible, it is reasonable to approximate that the overalllifted weight is the midpoint or average of the buckets starting and endingweights of 200 and 180, respectively, or (200 + 180)/2 = 190 lb. Movingthis average weight by 10 ft yields 1900 ft-lb of work done.

    Without integration, it can be seen from the figure that the overall work done is the sum ofthe areas of a 180 10 rectangle and a right triangle of width 20 and height 10, or (180 10) + (20 10)/2 = 1800 + 100 = 1900 ft-lb.

    29. Using F = ma = mv and dx = x(t) dt = v dt, we have

    W =

    x2x1

    F (x) dx =

    t2t1

    mvv dt u = v, du = v dt

    =

    v2v1

    mudu =1

    2mu2

    v2v1

    =1

    2mv22

    1

    2mv21 .

  • 382 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    8062.4x(30) dx = 62.4(15)x2

    80

    = 59, 904 lb

    end force =

    8062.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    (1, 0)

    x

    y

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    = 124.8[1.20 (0.10)] = 162.12 lb.

    5.

    6.

    7.

    8.

    9.

    10.

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    = 124.8[1.20 (0.10)] = 162.12 lb.

    5.

    6.

    7.

    8.

    9.

    10.

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    = 124.8[1.20 (0.10)] = 162.12 lb.

    5.

    6.

    7.

    8.

    9.

    10.

    3/2

    4. The equation of the line through (1, 0) and (5/2,3/2) is

    y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    124.8[1.20 (0.10)] = 162.12 lb.

    (5/2, 0)

    x

    y

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    = 124.8[1.20 (0.10)] = 162.12 lb.

    5.

    6.

    7.

    8.

    9.

    10.

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    = 124.8[1.20 (0.10)] = 162.12 lb.

    5.

    6.

    7.

    8.

    9.

    10.

    3/2

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280

    = 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    (1, 0)

    x

    y

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    = 124.8[1.20 (0.10)] = 162.12 lb.

    5.

    6.

    7.

    8.

    9.

    10.

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x

    3

    3x

    3

    3

    dx

    = 124.8

    5/21

    3

    3x2

    3

    3x

    dx = 124.8

    3

    9x3

    3

    6x25/2

    1

    = 124.8[1.20 (0.10)] = 162.12 lb.

    5.

    6.

    7.

    8.

    9.

    10.

    6.9. FLUID PRESSURE AND FORCE 381

    30. From the figure in the text, we see that sin = x/30 so that x = 30 sin and dx = 30 cos d.Also, when x = 3, sin = 0.1 and 0.1. Then

    W =

    30mg tan dx = 550(9.8)

    0.10

    sin

    cos (30 cos ) d = 16500(9.8)

    0.10

    sin d

    = 161700( cos )]0.10 = 161700(1 cos 0.1) 807.8 N-m.

    6.9 Fluid Pressure and Force

    1. (a) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(25) = 31200 lb

    (b) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(4) = 4992 lb

    (c) pressure = 62.4(20) = 1248 lb/ft2; F = (1248)(100) = 124800 lb

    2. (a) pressureoil = 55 lb/ft3 96 ft = 5280 lb/ft2

    (b) pressurewater = 62.4 lb/ft3 85 ft = 5304 lb/ft2

    (c) forceoil = 5280 125 350 = 231, 000, 000 lb(d) forcewater = 5304 125 350 = 232, 050, 000 lb

    3. (a) pressure = (62.4)(8) = 499.2 lb/ft2; F = (499.2)(30)(15) = 224, 640 lb

    (b) sidewall force =

    80

    62.4x(30) dx = 62.4(15)x280= 59, 904 lb

    end force =

    80

    62.4x(15) dx = 62.4

    15

    2

    x280

    = 29, 952 lb

    4. The equation of the line through (1, 0) and (5/2,3/2) is y =

    3

    3x

    3

    3. Using symmetry,

    F =

    5/21

    62.4x(2y) dx = 124.8

    5/21

    x