20
Young Won Lim 7/6/13 Continuous Time Pulse Function Pairs CT Pulse Function Pairs (1B)

CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

Young Won Lim7/6/13

● Continuous Time Pulse Function Pairs

CT Pulse Function Pairs (1B)

Page 2: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

Young Won Lim7/6/13

Copyright (c) 2009 - 2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 3: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

3 Young Won Lim7/6/13CT.1B Pulse

Fourier Transform Types

Continuous Time Fourier Series

C k = 1T 0

∫−T 0/2

+T 0/2

xT 0(t) e− j kω0 t dt xT 0(t ) = ∑

k=−∞

C k e+ j kω0 t

Continuous Time Fourier Transform

X ( jω) = ∫−∞

+∞

x (t) e− jω t d t x(t) = 12π ∫

−∞

+∞

X ( jω) e+ jω t d ω

CTFS

CTFT

ω = kω0f =

kT 0

T 0→∞ , ω0→d ω (2πT 0 →d ω) , k ω0→ω xT 0→ x(t ) , C kT 0→ X ( jω)

Page 4: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

4 Young Won Lim7/6/13CT.1B Pulse

CTFS and CTFT

T 0Period = T 0

−T 02

+T 02

T 0T

= 21

Ck =1T 0

⋅sin (kω0T /2)kω0/2

C0 = TT 0

CTFS (Continuous Time Fourier Series)

T

X ( jω) =sin (ωT /2)

ω /2

X ( j 0) = T

CTFT (Continuous Time Fourier Transform)

X ( jω) = sin (ωT /2)ω/2

−4πT

T

+2πT +4πT−2πT

2ω0−2ω0 ω0−ω0

TT 0

T

= TT 0

⋅sinc(k TT 0)

= T ⋅ sinc ( f T )

Ck =1T 0

⋅sin (kω0T /2)kω0/2

f = kT 0

ω

ω−T2

+T2

Page 5: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

5 Young Won Lim7/6/13CT.1B Pulse

● Relation between CTFS and CTFT

Page 6: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

6 Young Won Lim7/6/13CT.1B Pulse

CTFS and CTFT

Aperiodic Continuous Time Signal

Periodic Continuous Time Signal

T

T

−T 02 +

T 02

−T2 +T2

C k = 1T 0

⋅sin (k ω0T /2)kω0 /2

X ( jω) =sin (ωT /2)

ω/2

= TT 0

⋅ sinc(k TT 0)

= T ⋅ sinc ( f T )

Continuous Time Fourier Series

Continuous Time Fourier Transform

CTFS

CTFT

T 0

−T2 +T2

C k = 1T 0

∫−T 0/2

+T 0/2

xT 0(t) e− j kω0 t dt xT 0(t ) = ∑

k=−∞

C k e+ j kω0 t

X ( jω) = ∫−∞

+∞

x (t) e− jω t d t x(t) = 12π ∫

−∞

+∞

X ( jω) e+ jω t d ω

Page 7: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

7 Young Won Lim7/6/13CT.1B Pulse

CTFS and CTFT – in the time domain

T

T

−T2 +T2

T 0

−T2 +T2

CTFS (Continuous Time Fourier Series)

CTFT (Continuous Time Fourier Transform)

xT 0( t) = 12π ∑

k=−∞

C k T 0 e+ j kω0 t (2π

T 0 )

T 0→∞ k ω0 → ω

xT 0(t)→ x (t)

xT 0( t) = ∑k=−∞

C k e+ j kω0 t

x(t) =12π ∫

−∞

+∞

X ( jω) e+ jω t d ω1T 0

→0

2πT 0

→ d ωω0→0

−T 02 +

T 02

1T 0

T 0 → ∞

Time Freq

Page 8: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

8 Young Won Lim7/6/13CT.1B Pulse

2ω0−2ω0 ω0−ω0 ω

CTFS and CTFT – in the frequency domain

CTFS (Continuous Time Fourier Series)

CTFT (Continuous Time Fourier Transform)

X ( jω) = sin (ωT /2)ω/2

−4πT

T

+2πT +4πT−2πT

2ω0−2ω0 ω0−ω0

TT 0 Ck =

1T 0

⋅sin (kω0T /2)kω0/2

f = kT 0

ω

ω

ω0 =2πT 0

ckT 0

Area = 2π C k

C k = 1T 0

∫−T 0/2

+T 0/2

xT 0(t ) e− j kω0 t dt

X ( jω) = ∫−∞

+∞

x( t ) e− jω t d t

C k T 0 = ∫−T 0 /2

+T 0 /2

xT 0( t) e− j k ω0 t dt

T 0→∞

k ω0 → ω

xT 0(t)→ x (t)

Page 9: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

9 Young Won Lim7/6/13CT.1B Pulse

Impulse Train Weights (1)

ω ωω

ω ωω

kω0 kω0 kω0

kω0T 0 kω0T 0 kω0T 0

Ck⋅T 0

Height

C k

Area

Ck⋅T 0

Height

C k

Area

Ck⋅T 0

Height

C k

Area

Ck⋅T 0

Height Area

Ck⋅T 0

Height Area

Ck⋅T 0

Height Area

Ck⋅T 0 Ck⋅T 0 Ck⋅T 0

T 0 copies T 0 copies T 0 copies

Page 10: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

10 Young Won Lim7/6/13CT.1B Pulse

Impulse Train Weights (2)

ω ωω

ω ωω

kω0 kω0 kω0

kω0 kω0 kω0

Ck⋅T 0

Height

C k

Area

Ck⋅T 0

Height

C k

Area

Ck⋅T 0

Height

C k

Area

C k⋅T 02

Height Area

Ck⋅T 02

Height Area

Ck⋅T 02

Height Area

Ck⋅T 0 Ck⋅T 0 Ck⋅T 0

T 0 copies stacked up T 0 copies stacked up T 0 copies stacked up

Page 11: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

11 Young Won Lim7/6/13CT.1B Pulse

Impulse Train Weights (3)

1T 0

= 1a

Ck⋅T 0

Height

C k

Ck⋅T 0

Height Area x no

Ck⋅T 0

Area

kω0 kω0

kω0T 0 kω0T 0

1T 0

= 12a

Ck⋅T 0

Height

C k

Area

1T 0

= 1a

1T 0

= 12a

Ck⋅T 0

Height Area x no

Ck⋅T 0

C k

Weight

C k

Weight

Ck⋅T 02

Height Area x 1

Ck⋅T 0 Ck⋅T 02

Height Area x 1

Ck⋅T 0 C k⋅T 0

Weight

1T 0

= 1a

1T 0

= 12akω0 kω0

Page 12: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

12 Young Won Lim7/6/13CT.1B Pulse

Impulse Train’s Sampling Property

X ( jωk ) = ∫−∞

+∞

X ( jω) δ(ω − ωk )d ω

Sampling Property

X ( jω ' ) ≠ C k⋅T 0⋅1T 0

= C k

X ( jωk )⋅T 0

X ( jωk )⋅T 0

1T 0

= 1a

1T 0

= 12a

1T 0

→ 0 1T 0

= 1a

1T 0

= 12a

1T 0

→ 0

X ( jωk ) δ(ω − ωk )

Ck⋅T 0Ck⋅T 0

Ck δ(ω − kω0)Unit AreaWeight

C k C k C k

Page 13: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

13 Young Won Lim7/6/13CT.1B Pulse

CTFS and CTFT Frequency Components

kω0

2ω0−2ω0 ω0−ω0

TT 0 Ck =

1T 0

⋅sin (kω0T /2)kω0/2

f = kT 0Ck =

1T 0

⋅sin (kω0T /2)kω0/2

C0 = TT 0

= TT 0

⋅sinc(k TT 0)ω

f

δ( f )T 0 → ∞

X ( jω) =sin (ωT /2)

ω /2

X ( j 0) = T

X ( jω) = sin (ωT /2)ω/2

−4πT

T

+2πT +4πT−2πT

= T ⋅ sinc ( f T )

ω

T 0C k → X ( jω)

Time Freq

t

T 0

Page 14: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

14 Young Won Lim7/6/13CT.1B Pulse

CTFS and CTFT Frequency Components

kω0

2ω0−2ω0 ω0−ω0

TT 0 Ck =

1T 0

⋅sin (kω0T /2)kω0/2

f = kT 0

Ck =1T 0

⋅sin (kω0T /2)kω0/2

C0 = TT 0

= TT 0

⋅sinc(k TT 0)

ω

f1T 0

f

δ( f )Unit Area

T 0 → ∞

X ( jω) =sin (ωT /2)

ω /2

X ( j 0) = T

X ( jω) = sin (ωT /2)ω/2

−4πT

T

+2πT +4πT−2πT

= T ⋅ sinc ( f T )

ω

T 0C k → X ( jω)T 0

Unit Area

Page 15: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

15 Young Won Lim7/6/13CT.1B Pulse

x(t )

xT 0(t) = ∑n=−∞

+∞

x(t − nT 0)

ω0 → 0T 0 → ∞

Period = T 0

−T2 +T2

T

−T 02 +

T 02

−T2 +T2

CTFS CTFT

T

ω0 =2πT 0

C k = 1T 0

⋅sin (k ω0T /2)kω0 /2

X ( jω) =sin (ωT /2)

ω/2

= TT 0

⋅ sinc(k TT 0)

= T ⋅ sinc ( f T )

CTFS

CTFT

ω = kω0f =

kT 0

Page 16: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

16 Young Won Lim7/6/13CT.1B Pulse

CTFT and CTFS as (1)

−T2 +

T2 +

T 02

+T 0−T 02

−T 0 +2T 0−2T0

−T2 +

T2 +

T 02

+T 0−T 02

−T 0

−T2 +

T2 +

T 02

−T 02

T 0 = 2T

T 0 = 4T

T 0 = 8T

2ω0−2ω0

4ω0−4ω0

8ω0−8ω0

∣C kT 0∣

∣C kT 0∣

∣C kT 0∣

T 0 → ∞

T = T 0/2

T = T 0/4

T = T 0/8

sin (kω0T 0/4)kω0/2

sin(kω0T 0/8)k ω0/2

sin (kω0T 0/16)kω0/2

sin (kω0T /2)kω0/2

sin (kω0T /2)kω0/2

sin (kω0T /2)kω0/2

ω0 = 2πT 0

T

T

T

(k π/2)

(k π/4)

(k π/8)

T kω0T2 = k π( TT 0) k = ( TT 0)

−1

the first zero

ω

ω

ω

Page 17: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

17 Young Won Lim7/6/13CT.1B Pulse

CTFT and CTFS as (2) T 0 → ∞

−T2 +

T2 +

T 02

+T 0−T 02

−T 0

T 0 = 4T

−4ω0

∣C kT 0∣T = T 0/4 sin(kω0T 0/8)k ω0/2

+4ω0

+2πT +4πT +8πT−2πT−4πT−8πTω0 = 2π

T 0= 2π4T

T

ω

TT 0

ω0 = 2πT 0

T = T 0/2

T 0

T

−T 02 +

T 02

k = ( TT 0)−1

the first zero

ω

Page 18: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

18 Young Won Lim7/6/13CT.1B Pulse

( TT 0)−1

ω0

2πT =

CTFT of a Rect(t/T) function (3)

+2πT

X ( jω) = sin (ωT /2)ω/2

+4πT

−2πT

−4πT

T

T k 2πT

T 0 → ∞kω0 → ω

−T2 +

T2 +

T 02

+T 0−T 02

−T 0

T 0 = 4T

C k =1T 0sin (kω0T /2)kω0/ 2

T 0

X ( jω) = sin (ωT /2)ω/2

C kT 0 =sin (k ω0T /2)kω0/2

T

−4ω0 +4ω0

+2πT +4πT +8πT−2πT−4πT−8πT

2πT 0

1T 0

⋅T

2πT

−T2 +T2

ω

ω

= T sinc( f T )

= TT 0sinc(k TT 0)

Page 19: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

19 Young Won Lim7/6/13CT.1B Pulse

CTFT of a Rect(t/T) function (4)

ω =2πT

cosω t

sinω t

T

T 0 TT 0

=12

T

ω =2πT

cosω t

sinω t

ω0 =2πT 0

cosω0 t

sinω0 t

T

T 0 TT 0

=12

ω = kω0 = ( TT 0)−1

ω0 = 2ω0

Page 20: CT Pulse Function Pairs (1B) · 2013. 7. 6. · 8 Young Won Lim CT.1B Pulse 7/6/13 −2ω0 −ω0 ω0 2ω0 ω CTFS and CTFT – in the frequency domain CTFS (Continuous Time Fourier

Young Won Lim7/6/13

References

[1] http://en.wikipedia.org/[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003[3] M. J. Roberts, Fundamentals of Signals and Systems[4] S. Haykin, An Introduction to Analog & Digital Communications