ct5_class_A

Embed Size (px)

Citation preview

  • 8/3/2019 ct5_class_A

    1/15

    Ear t hquake Induced Damage

    Mi t igat ion f rom Soi l Liquefac t ion

    CLASS A PREDICTION FOR LIQUEFACTION REMEDIATION

    INITIATIVE CENTRIFUGE TEST 5 (LRICT5)

    By:Ahmad Jafari

    Supervisor: Dr. Radu Popescu

    Memorial University of NewfoundlandNovember, 2004

  • 8/3/2019 ct5_class_A

    2/15

    2

    Introduction

    In this report Class A prediction of the 5th LRI (Liquefaction Remediation Initiative)

    centrifuge test (LRICT5) is presented and discussed. The recalibrated soil parameters,

    used in class A prediction of the LRICT4 centrifuge experiment, have been used to

    predict the behavior of soil due to seismic loads.

    LRICT5 geometry and input motion

    General layout and input motion used for class A prediction of LRICT5 are shown in

    Figures1 and 2. The slope has an inclined silt layer with a slope of 1:5.7 and the

    mitigation strategy includes three drainage dykes as shown in Figure 1. The input

    acceleration time history used in this test is A2475 with a magnification factor of 2, i.e.

    2A2475 as shown in Figure 2. The FE model for this prediction is shown in Figure 3.

    The model consists of 588 nodes and 542 elements.

    Figure 1. Geometry and instrumentation layout of LRICT5 given by C-CORE

  • 8/3/2019 ct5_class_A

    3/15

    3

    Figure 2. Input acceleration time history used for LRICT5

    Figure 3. FE mesh used in class A prediction of LRICT5

    Soil properties

    Regarding loose sand and drainage dyke the same material properties, previously used in

    class A prediction of LRICT4, have been used in class A prediction of LRICT5. It is

    mentioned that there has been no relevant information on the silt and only general test

    results have been made available for the gravel; therefore, the required constitutive

    parameters have been estimated based on engineering judgment and previous experience

  • 8/3/2019 ct5_class_A

    4/15

    4

    with similar materials. Table 1 includes the assumed set of soil properties of silt used in

    this class A prediction. Hydraulic conductivity of silt is considered to be 1/100 of the

    hydraulic conductivity of loose sand, as used by UBC in their class A predictions for

    COSTA-B. The material properties of sand and drainage dyke were reported in class A

    prediction of LRICT4.

    Table 1. Assumed set of silt constitutive parameters

    Results of Class A prediction of LRICT5

    Results of class A prediction of the 5th

    centrifuge test are discussed hereafter. Figure 4

    shows vertical displacement contours at the end of analysis (t = 42.56s). The predicted

    settlement at upslope free field is larger than 0.4m. The predicted maximum shear strain

    contours are shown in Figure 5 along with the deformed shape of the model. The

    predicted excess pore water pressure contours at different instants are shown in Figures 6

    to 10. Due to the presence of dykes considerable reduction in excess pore pressure is

    predicted in regions close to the dykes; however, in the free field, U/S of the drainage

    dykes, significant pore water pressure generation is predicted. The large values predicted

    near the lateral boundaries are due to boundary effects. As it can be seen in Figures 9 and

    10, after the end of the strong shaking at about t=20s, the maximum pore water pressure

    Constitutive parameters Symbol

    Assumed

    Values Type

    Mass density (kg/m3)

    Porosity

    Hydraulic conductivity (permeability) (cm/s)

    swn

    k

    2670

    0.448

    0.000084

    State

    Parameters

    Low-strain shear modulus (Mpa)

    Reference effective mean normal stress

    Powe exponent

    Poisson ratio

    0G 0p

    n

    2

    100

    0.8

    0.4

    Elastic

    Parameters

    Friction angle at failure

    Coefficient of lateral earth pressure at rest

    Soil cohesion

    Maximum deviatoric strain

    (C= compression, E=extension)

    0k

    cmaxdev

    22o

    1

    0

    0.10 (C),

    0.10 (E)

    Yield

    Parameters

    Dilation angle (phase transformation angle)

    Dilation parameter

    PPX

    17o

    0.04

    Dilation

    Parameters

  • 8/3/2019 ct5_class_A

    5/15

    5

    values below the U/S region move upwards towards the silt layer. In the D/S region pore

    pressures are predicted to dissipate after the end of shaking (t >20 s). Figures 11 to 33

    show the predicted responses at different transducers. It is mentioned that LVDT2

    measures displacement time history in a direction parallel to the silt layer. Up to about

    0.25 m heave is predicted at LVDT4 location (Figure 14). As discussed earlier in the free

    field, U/S of the drainage dykes, e.g. EPP5, remarkably large excess pore water pressure

    generation is predicted after the end of shaking, and it results in occurring of liquefaction

    in that area as shown in Figure 19. The numerical model predicts significant dilation (i.e.

    large negative excess pore water pressures) between t= 12 s and t= 17s, especially at very

    shallow locations (EPP4, EPP5, EPP8 and EPP9).

  • 8/3/2019 ct5_class_A

    6/15

    6

    Figure 4. Predicted vertical displacement contours at t=42.56 s

    Figure 5. Predicted maximum shear strain contours at t=42.56 s

    (Deformed shape magnification factor= 1)

    Figure 6. Predicted excess pore water pressure ratio contours at t=12 s

  • 8/3/2019 ct5_class_A

    7/15

    7

    Figure 7. Predicted excess pore water pressure ratio contours at t=16 s

    Figure 8. Predicted excess pore water pressure ratio contours at t=20 s

    Figure 9. Predicted excess pore water pressure ratio contours at t=30 s

  • 8/3/2019 ct5_class_A

    8/15

    8

    Figure 10. Predicted excess pore water pressure ratio contours at t=42.56 s

    0 1 0 2 0 3 0 4 0 5 0- 0 . 3 5

    - 0 . 3

    - 0 . 2 5

    - 0 . 2

    - 0 . 1 5

    - 0 . 1

    - 0 . 0 5

    0

    0 . 0 5L V D T 1 t im e h i s t o r y

    T i m e ( s )

    Displacement(m)

    Figure 11. Predicted vertical displacement time history at LVDT1

    0 1 0 2 0 3 0 4 0 5 0- 0 . 2

    0

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1

    1 . 2L V D T 2 t im e h i s t o r y

    T im e ( s )

    Displacement(m)

    Figure 12. Predicted total displacement time history at LVDT2 along the silt layer

  • 8/3/2019 ct5_class_A

    9/15

    9

    0 1 0 2 0 3 0 4 0 5 0- 0 . 4

    - 0 . 3 5

    - 0 . 3

    - 0 . 2 5

    - 0 . 2

    - 0 . 1 5

    - 0 . 1

    - 0 . 0 5

    0

    0 . 0 5L V D T 3 t im e h i s to r y

    T im e ( s )

    Displacement(m)

    Figure 13. Predicted vertical displacement time history at LVDT3

    0 1 0 2 0 3 0 4 0 5 0- 0 . 0 5

    0

    0 . 0 5

    0 . 1

    0 . 1 5

    0 . 2

    0 . 2 5

    0 . 3L V D T 4 t i m e h i s t o r y

    T i m e ( s )

    Displacement(m)

    Figure 14. Predicted vertical displacement time history at LVDT4

    0 1 0 2 0 3 0 4 0 5 0- 0 . 7

    - 0 . 6

    - 0 . 5

    - 0 . 4

    - 0 . 3

    - 0 . 2

    - 0 . 1

    0

    0 . 1

    0 . 2P o r e P r e s s u r e R a t i o t im e h i s t o r y a t E P P 1

    T i m e ( s )

    RU

    Figure 15. Predicted excess pore water pressure ratio time history at EPP1

    IEVS=50 KPa

  • 8/3/2019 ct5_class_A

    10/15

    10

    0 1 0 2 0 3 0 4 0 5 0- 0 . 1

    0

    0 . 1

    0 . 2

    0 . 3

    0 . 4

    0 . 5

    0 . 6

    0 . 7P o r e P r e s s u r e R a t i o t im e h i s t o r y a t E P P 2

    T i m e ( s )

    RU

    Figure 16. Predicted excess pore water pressure ratio time history at EPP2

    0 1 0 2 0 3 0 4 0 5 0- 0 . 2

    - 0 . 1

    0

    0 . 1

    0 . 2

    0 . 3

    0 . 4

    0 . 5

    0 . 6

    0 . 7

    P o r e P r e s s u r e R a t io t im e h i s to r y a t E P P 3

    T i m e ( s )

    RU

    Figure 17. Predicted excess pore water pressure ratio time history at EPP3

    0 1 0 2 0 3 0 4 0 5 0- 1 0

    - 8

    - 6

    - 4

    - 2

    0

    2P o r e P r e s s u r e R a t i o t im e h i s t o r y a t E P P 4

    T i m e ( s )

    RU

    Figure 18. Predicted excess pore water pressure ratio time history at EPP4

    IEVS=121 KPa

    IEVS=12 KPa

    IEVS=88.5 KPa

  • 8/3/2019 ct5_class_A

    11/15

    11

    0 1 0 2 0 3 0 4 0 5 0- 1 . 5

    - 1

    - 0 . 5

    0

    0 . 5

    1P o r e P r e s s u r e R a t i o t im e h i s t o r y a t E P P 5

    T i m e ( s )

    RU

    Figure 19. Predicted excess pore water pressure ratio time history at EPP5

    0 1 0 2 0 3 0 4 0 5 0- 0 . 5

    - 0 . 4

    - 0 . 3

    - 0 . 2

    - 0 . 1

    0

    0 . 1

    0 . 2

    0 . 3

    0 . 4P o r e P r e s s u r e R a t io t i m e h i s t o r y a t E P P 6

    T i m e ( s )

    RU

    Figure 20. Predicted excess pore water pressure ratio time history at EPP6

    0 1 0 2 0 3 0 4 0 5 0- 1

    - 0 . 8

    - 0 . 6

    - 0 . 4

    - 0 . 2

    0

    0 . 2

    0 . 4P o r e P r e s s u r e R a t i o t i m e h i s t o r y a t E P P 7

    T i m e ( s )

    RU

    Figure 21. Predicted excess pore water pressure ratio time history at EPP7

    IEVS=31 KPa

    IEVS=47 KPa

    IEVS=44 KPa

  • 8/3/2019 ct5_class_A

    12/15

    12

    0 1 0 2 0 3 0 4 0 5 0- 4

    - 3 . 5

    - 3

    - 2 . 5

    - 2

    - 1 . 5

    - 1

    - 0 . 5

    0

    0 . 5P o r e P r e s s u r e R a t i o t im e h i s t o r y a t E P P 8

    T i m e ( s )

    RU

    Figure 22. Predicted excess pore water pressure ratio time history at EPP8

    0 1 0 2 0 3 0 4 0 5 0- 2

    - 1 . 5

    - 1

    - 0 . 5

    0

    0 . 5

    1P o r e P r e s s u r e R a t io t i m e h i s t o r y a t E P P 9

    T i m e ( s )

    RU

    Figure 23. Predicted excess pore water pressure ratio time history at EPP9

    0 1 0 2 0 3 0 4 0 5 0- 4

    - 3

    - 2

    - 1

    0

    1

    2

    3

    4A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 1

    T i m e ( s )

    Accele

    ration(m/

    s2)

    Figure 24. Predicted acceleration time history at ACC01

    IEVS=15 KPa

    IEVS=15 KPa

  • 8/3/2019 ct5_class_A

    13/15

    13

    0 1 0 2 0 3 0 4 0 5 0- 3

    - 2

    - 1

    0

    1

    2

    3A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 2

    T i m e ( s )

    Acceleration(m/

    s2)

    Figure 25. Predicted acceleration time history at ACC02

    0 1 0 2 0 3 0 4 0 5 0- 4

    - 3

    - 2

    - 1

    0

    1

    2

    3

    4A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 3

    T i m e ( s )

    Acceleration(m/

    s2)

    Figure 26. Predicted acceleration time history at ACC03

    0 1 0 2 0 3 0 4 0 5 0- 4

    - 3

    - 2

    - 1

    0

    1

    2

    3

    4A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 4

    T i m e ( s )

    Acceleration(m/

    s2)

    Figure 27. Predicted acceleration time history at ACC04

  • 8/3/2019 ct5_class_A

    14/15

    14

    0 1 0 2 0 3 0 4 0 5 0- 3

    - 2

    - 1

    0

    1

    2

    3

    4

    5A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 5

    T i m e ( s )

    Acceleration(m/

    s2)

    Figure 28. Predicted acceleration time history at ACC05

    0 1 0 2 0 3 0 4 0 5 0- 5

    0

    5

    A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 6

    T i m e ( s )

    Acceleration(m/

    s2)

    Figure 29. Predicted acceleration time history at ACC06

    0 1 0 2 0 3 0 4 0 5 0- 4

    - 3

    - 2

    - 1

    0

    1

    2

    3

    4A c c e l e r a t io n t i m e h i s t o r y a t A C C 0 7

    T i m e ( s )

    Acce

    leration(m/

    s2)

    Figure 30. Predicted acceleration time history at ACC07

  • 8/3/2019 ct5_class_A

    15/15

    15

    0 1 0 2 0 3 0 4 0 5 0- 4

    - 3

    - 2

    - 1

    0

    1

    2

    3

    4

    5A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 8

    T i m e ( s )

    Acceleration(m/

    s2)

    Figure 31. Predicted acceleration time history at ACC08

    0 1 0 2 0 3 0 4 0 5 0- 5

    0

    5A c c e l e r a t i o n t i m e h i s t o r y a t A C C 0 9

    T i m e ( s )

    Acceleration(m/

    s2)

    Figure 32. Predicted acceleration time history at ACC09

    0 1 0 2 0 3 0 4 0 5 0- 4

    - 3

    - 2

    - 1

    0

    1

    2

    3

    4

    5A c c e l e r a t i o n t i m e h i s t o r y a t A C C 1 0

    T i m e ( s )

    Accelera

    tion(m/

    s2)

    Figure 33. Predicted acceleration time history at ACC010