1
MAS251/PHY202/MAS651 Handout 5 Grad, Div and Curl in Cylindrical and Spherical Coordinates In applications, we often use coordinates other than Cartesian coordinates. It is important to remember that expressions for the operations of vector analysis are different in different coordinates. Here we give explicit formulae for cylindrical and spherical coordinates. 1 Cylindrical Coordinates In cylindrical coordinates, x = r cos φ, y = r sin φ, z = z, we have f = r ∂f ∂r + φ 1 r ∂f ∂φ + z ∂f ∂z , ∇· u = 1 r (ru r ) ∂r + 1 r ∂u φ ∂φ + ∂u z ∂z , ∇× u = r 1 r ∂u z ∂φ - ∂u φ ∂z + φ ∂u r ∂z - ∂u z ∂r + z 1 r (ru φ ) ∂r - ∂u r ∂φ . 2 Spherical Coordinates In spherical coordinates, x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, we have f = r ∂f ∂r + θ 1 r ∂f ∂θ + φ 1 r sin θ ∂f ∂φ , ∇· u = 1 r 2 (r 2 u r ) ∂r + 1 r sin θ (u θ sin θ) ∂θ + 1 r sin θ ∂u φ ∂φ , ∇× u = r 1 r sin θ ∂θ (u φ sin θ) - ∂u θ ∂φ + θ 1 r 1 sin θ ∂u r ∂φ - ∂r (ru φ ) + φ 1 r ∂r (ru θ ) - ∂u r ∂θ .

Curl in Spherical And Cylindrical Coordinates

  • Upload
    ilg1

  • View
    199

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Curl in Spherical And Cylindrical Coordinates

MAS251/PHY202/MAS651 Handout 5

Grad, Div and Curl in Cylindrical and Spherical Coordinates

In applications, we often use coordinates other than Cartesian coordinates. It is important to rememberthat expressions for the operations of vector analysis are different in different coordinates. Here wegive explicit formulae for cylindrical and spherical coordinates.

1 Cylindrical Coordinates

In cylindrical coordinates,x = r cos φ , y = r sin φ , z = z ,

we have

∇f = r∂f

∂r+ φ

1

r

∂f

∂φ+ z

∂f

∂z,

∇ · u =1

r

∂(rur)

∂r+

1

r

∂uφ

∂φ+

∂uz

∂z,

∇× u = r

(1

r

∂uz

∂φ− ∂uφ

∂z

)+ φ

(∂ur

∂z− ∂uz

∂r

)+ z

1

r

[∂(ruφ)

∂r− ∂ur

∂φ

].

2 Spherical Coordinates

In spherical coordinates,

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ ,

we have

∇f = r∂f

∂r+ θ

1

r

∂f

∂θ+ φ

1

r sin θ

∂f

∂φ,

∇ · u =1

r2

∂(r2ur)

∂r+

1

r sin θ

∂(uθ sin θ)

∂θ+

1

r sin θ

∂uφ

∂φ,

∇× u = r1

r sin θ

[∂

∂θ(uφ sin θ)− ∂uθ

∂φ

]+ θ

1

r

[1

sin θ

∂ur

∂φ− ∂

∂r(ruφ)

]+ φ

1

r

[∂

∂r(ruθ)−

∂ur

∂θ

].