24
Curriculum Vitæ of Luca Bonaventura Summary of biographical information: Full name: Luca Bonaventura Languages spoken: Italian (native), English (C2), Spanish (C2), German (C1) Address: Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy Tel: 0039-02-23994600, Fax: 0039-02-23994606 , E-mail: [email protected] Main areas of research activity: Numerical methods for numerical weather prediction and other geophysical fluid dynamics applications, Discontinuous Galerkin methods Other research interests: Large Eddy Simulation, numerical methods for Ordinary Dif- ferential Equations, numerical methods for multiphase flows, numerical methods for river hydraulics and sediment transport, computational electromagnetism. Education: 1997: Marie Curie Postdoctoral Fellow for numerical modelling, GKSS Forschungszentrum, Geesthacht, Germany 1994: PhD in Mathematics, University of Trento, Trento, Italy 1994: Meteorological Seminar, ECMWF, Reading, UK 1992-3: Visiting PhD Student, Courant Institute, New York, USA 1989: Degree cum laude in Mathematics, University La Sapienza, Rome, Italy Awards: 2017: Habilitation as Full Professor of Numerical Analysis by the Italian Ministry of Education and Research 2016: European Meteorological Society Young Scientist Award 2016 awarded to Gio- vanni Tumolo, for the co-authored publication: A semi-implicit, semi-Lagrangian dis- continuous Galerkin framework for adaptive numerical weather prediction, G. Tumolo, L. Bonaventura, Quarterly Journal of the Royal Meteorological Society, 141:2582- 2601, 2015 Positions: 2015-present: Associate Professor of Numerical Analysis, Politecnico di Milano, Milano, Italy 2005-15: Assistant Professor of Numerical Analysis, Politecnico di Milano, Milano, Italy 2002-2005: Scientist, Max Planck Institute for Meteorology, Hamburg, Germany 1995-2002: Assistant Professor of Mathematical Analysis and Probability, University of Trento, Trento, Italy

Curriculum Vitˆ of Luca Bonaventura

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Curriculum Vitˆ of Luca Bonaventura

Curriculum Vitæ of Luca Bonaventura

Summary of biographical information:

• Full name: Luca Bonaventura

• Languages spoken: Italian (native), English (C2), Spanish (C2), German (C1)

• Address: Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci

32, 20133, Milano, Italy

• Tel: 0039-02-23994600, Fax: 0039-02-23994606 , E-mail: [email protected]

• Main areas of research activity: Numerical methods for numerical weather prediction and

other geophysical fluid dynamics applications, Discontinuous Galerkin methods

• Other research interests: Large Eddy Simulation, numerical methods for Ordinary Dif-

ferential Equations, numerical methods for multiphase flows, numerical methods for river

hydraulics and sediment transport, computational electromagnetism.

• Education:

– 1997: Marie Curie Postdoctoral Fellow for numerical modelling,

GKSS Forschungszentrum, Geesthacht, Germany

– 1994: PhD in Mathematics, University of Trento, Trento, Italy

– 1994: Meteorological Seminar, ECMWF, Reading, UK

– 1992-3: Visiting PhD Student, Courant Institute, New York, USA

– 1989: Degree cum laude in Mathematics, University La Sapienza, Rome, Italy

• Awards:

– 2017: Habilitation as Full Professor of Numerical Analysis by the Italian Ministry of

Education and Research

– 2016: European Meteorological Society Young Scientist Award 2016 awarded to Gio-

vanni Tumolo, for the co-authored publication: A semi-implicit, semi-Lagrangian dis-

continuous Galerkin framework for adaptive numerical weather prediction, G. Tumolo,

L. Bonaventura, Quarterly Journal of the Royal Meteorological Society, 141:2582-

2601, 2015

• Positions:

– 2015-present: Associate Professor of Numerical Analysis,

Politecnico di Milano, Milano, Italy

– 2005-15: Assistant Professor of Numerical Analysis,

Politecnico di Milano, Milano, Italy

– 2002-2005: Scientist, Max Planck Institute for Meteorology, Hamburg, Germany

– 1995-2002: Assistant Professor of Mathematical Analysis and Probability,

University of Trento, Trento, Italy

Page 2: Curriculum Vitˆ of Luca Bonaventura

Outline of research activity

My research activity has spanned a wide range of topics in computational mathematics,

also covering topics in mathematical physics, river hydraulics, environmental modelling and

geostatistics, but with special focus on innovative and non conventional methods for the space

and time discretization of partial differential equations that constitute mathematical models of

environmental flows. In particular, my activity has been devoted to a great extent to developing

efficient methods for numerical weather prediction, in collaboration with some of the leading

world research institutions in this area.

My original background was in mathematical physics and stochastic processes. Research

work on the theoretical analysis of Monte Carlo methods based on interacting particle systems

was presented in [10], while several Monte Carlo approaches for climate simulation were pro-

posed in [57]. A Bayesian geostatistical method was proposed in [30]. A statistical downscaling

procedure was proposed in [37] and several geostatistical analyses have been developed with my

contribution in non peer reviewed publications.

My first significant contribution to the literature on computational methods for numerical

weather prediction was presented in [11]. This paper, whose research was supported by an

individual TMR - Marie Curie grant hosted by the German research center GKSS Geesthacht,

belonging to the Helmholtz Gesellschaft, represented the first successful attempt to use height

based coordinate models for the numerical simulations of flows over orography.

In [39] is a contribution to the analysis of a key issue in numerical models for environmental

fluid dynamics, namely the consistency between the discretizations of the continuity equation and

the equations modelling the transport of chemical species. The proof that a discrete maximum

principle can only be achieved if this consistency is guaranteed has been widely cited in the

literature on numerical models for environmental fluid dynamics. Also based on the research

presented in this paper, this consistency property is now regarded as one of the distinctive

feature of modern models for environmental fluid dynamics.

The main scientific results produced during my three year period as a scientist of the Max

Planck Institute for Meteorology and coordinator of the numerical methods development for the

ICON project are reported in [24]. This paper presents a mimetic finite difference discretization

of the shallow water equations on a rotating sphere, which allows to preserve potential enstrophy.

The application of the same technique in the framework of a full three-dimensional model is

reported in the paper [58], which documents one of the versions of the official ICON model,

employed by the German Weather Forecasting Service and by the Max Planck Institute for

Meteorology for weather prediction and climate simulations.

During my employment at Politecnico di Milano, first as research assistant and later as

associate professor, I have started a research project focused on improving the efficiency of

Discontinuous Galerkin discretizations through the systematic application of non conventional

semi-implicit and/or semi-Lagrangian time discretizations, combined with dynamical degree

adaptation techniques. In [45], the first mass conservative DG semi-Lagrangian ever presented

in the literature was introduced, a discrete maximum principle of its low order version was proven

and a novel monotonization approach was introduced, which was shown to improve substantially

standard monotonization techniques. The semi-Lagrangian discretization also allowed to achieve

high accuracy with large values of the Courant number at reduced computational cost. In [56],

it was shown for the first time that semi-Lagrangian and semi-implicit approaches could be

employed successfully in a p−adaptive DG framework. In [55], a numerical model based on

this concept was validated successfully for the first time on the full set of standard benchmarks

for idealized numerical weather prediction, showing the remarkable computational gains that

2

Page 3: Curriculum Vitˆ of Luca Bonaventura

are feasible with this novel technique and achieving full second order accuracy in time via a

semi-Lagrangian version of a specific Diagonally Implicit Runge Kutta method. My co-author

was awarded the European Meteorological Society Young Scientist Award in 2016 for this paper.

The same method was chosen by the European Center for Medium Range Weather Forecasts

(ECMWF) as the core technique for the development of exascale demonstration software within

the ESCAPE-2 H2020 FET project. Other papers related to my research activity in numerical

models for applications to weather prediction are [14], [53],[52], [21], [15], [46], [18] and the

review book [23]. The paper [9] is devoted to the perspective for application of fault tolerant

methods and resiliency approaches to numerical weather prediction. I have also been active

in developing mathematical analyses and numerical methods for models of estuarine flows and

other river hydraulics models, the results being presented in the papers [40], [26], [49], [47], [31],

[20], [34], [48], [35], [16], [6], [36].

In a related development, modal DG techniques were used in a Variational Multi Scale frame-

work in order to increase the efficiency of the Large Eddy Simulation approach. In particular, in

[2] it was shown that, contrary to the implicit assumption in mainstream VMS approaches, the

use of sophisticated dynamical subgrid scale models is beneficial for the quality of the results.

In [54], a novel physically based p−refinement criterion was introduced and validated in a static

refinement context, showing its superior performance with respect to more conventional refine-

ment criteria. In [3], the same criterion was applied in producing one of the first dynamically

adaptive LES simulations ever realised, in which the p−adaptation concepts developed in the

candidate’s research project were shown to be able to reduce substantially the computational

cost of parallel simulations of turbulent flows.

I have then contributed in [32] to the analysis of one of the most widely used time discretiza-

tion methods for structural mechanics and seismic engineering. In this paper, it was shown how

to express all the generally unrelated dissipation parameters of the method as a function of a

unique parameter representing the rate of dissipation of the highest frequency oscillations in the

simulated system, thus allowing to use the technique in a most straightforward way in practical

applications. This paper is my most cited publication. A more recent contribution on numerical

methods for structural mechanics is [22].

Another important research direction I have pursued in recent years concerns non conven-

tional methods for the time discretization of partial differential equations. In particular, in [17]

I have contributed to the development of the first semi-Lagrangian treatment of diffusion equa-

tions in divergence form. This technique allows to achieve unconditional stability for the time

discretization of equations with parabolic terms using an explicit approach that does not require

the solution of large linear systems and that can be coupled naturally to modified methods of

characteristics to treat advection diffusion equation in a stable, accurate and efficient way. Ex-

tensions of this work have been presented in [18], [12]. In [33], the first systematic comparison

of the performance of exponential integrators and of more conventional implicit time discretiza-

tion methods was carried out, using as benchmark a spectral discretization of incompressible

rotating flow in a spherical shell. The results presented in this paper show that standard Krylov

based techniques for the computation of the matrix exponential in large scale problems are not

sufficient to yield superior efficiency with respect to standard implicit methods in the fully non-

linear regime. In [25], an unconditionally monotonic extension of a specific Diagonally Implicit

Runge Kutta method was introduced, analyzed and validated. Finally, implicit multirate meth-

ods were studied in [13], [29], with special focus on their application to the time discretization

of hyperbolic partial differential equations. In particular, the first general analysis of implicit

multirate methods based on one-step, multistage solvers was presented in [13], while the first

fully conservative multirate method for nonlinear conservation laws was introduced in [29].

3

Page 4: Curriculum Vitˆ of Luca Bonaventura

I have also proposed numerical methods for the incompressible Navies-Stokes equations [1],

[19], numerical methods for multiphase pyroclastic flows arising in volcanology [27], [28], numer-

ical methods for distributed population modelling, with applications to lacustrine and oceanic

species [41], [42] and in particular to the migration of eels from the Caribbean to Europe [43],

Large Eddy Simulation approaches for variable density flows [38], [4], [5], spectral numerical

methods for semi-infinite domains and their coupling to more standard techniques on neigh-

bouring finite domains [7], [8].

In recent years, I have also started a line of research in computational electromagnetism,

investigating both space and time discretization methods in [51], [50], with the aim of improving

the simulation technique currently employed in hadronic accelerators [44], in collaboration with

the Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA).

References

[1] A. Abba and L. Bonaventura. A vorticity preserving finite difference discretization for the

incompressible Navier-Stokes equations. International Journal of Numerical Methods in

Fluids, 56:1101–1106, 2008.

[2] A. Abba, L. Bonaventura, M. Nini, and M. Restelli. Dynamic models for Large Eddy

Simulation of compressible flows with a high order DG method. Computers & Fluids,

122:209–222, 2015.

[3] A. Abba, L. Bonaventura, A. Recanati, and M. Tugnoli. Dinamically p−adaptivity for LES

of compressible flows in a high order DG framework. Journal of Computational Physics,

420:109720, 2020.

[4] C. Bassi, A. Abba, L. Bonaventura, and L. Valdettaro. Simulation of gravity currents

with a high order DG method. Communications in Applied and Industrial Mathematics,

8:128–148, 2017.

[5] C. Bassi, A. Abba, L. Bonaventura, and L. Valdettaro. Large Eddy Simulation of non-

Boussinesq gravity currents with a DG method. Theoretical and Computational Fluid Dy-

namics, 34:231–247, 2020.

[6] C. Bassi, L. Bonaventura, S. Busto, and M. Dumbser. A hyperbolic reformulation of

the Serre-Green-Naghdi model for general bottom topographies. Computers & Fluids,

212:104716, 2020.

[7] T. Benacchio and L. Bonaventura. Absorbing boundary conditions: a spectral collocation

approach. International Journal of Numerical Methods in Fluids, 72:913–936, 2013.

[8] T. Benacchio and L. Bonaventura. An extension of DG methods for hyperbolic problems to

one-dimensional semi-infinite domains. Applied Mathematics and Computation, 350:266–

282, 2019.

[9] T. Benacchio, L. Bonaventura, M. Altenbernd, C. D. Cantwell, P. D. Duben, M. Gillard,

L. Giraud, D. Goddeke, E. Raffin, K. Teranishi, and N. Wedi. Resilience and fault-tolerance

in high-performance computing for numerical weather and climate prediction. The Inter-

national Journal of High Performance Computing Applications, 2021.

[10] L. Bonaventura. Interface evolution in an interacting spin system. Journal of Nonlinear

Analysis, Theory Methods and Applications, 25:799–819, 1995.

4

Page 5: Curriculum Vitˆ of Luca Bonaventura

[11] L. Bonaventura. A semi-implicit, semi-Lagrangian scheme using the height coordinate for

a nonhydrostatic and fully elastic model of atmospheric flows. Journal of Computational

Physics, 158:186–213, 2000.

[12] L. Bonaventura, E. Calzola, E. Carlini, and R. Ferretti. Flux form semi-Lagrangian methods

for parabolic problems. Journal of Scientific Computing, 88:23, 2021.

[13] L. Bonaventura, F. Casella, L. Delpopolo Carciopolo, and A. Ranade. A self adjusting mul-

tirate algorithm for robust time discretization of partial differential equations. Computers

and Mathematics with Applications, 79:2086–2098, 2020.

[14] L. Bonaventura and V. Casulli. A semi-implicit scheme for the barotropic primitive equa-

tions of atmospheric dynamics. International Journal of Numerical Methods for Heat and

Fluid Flow, 7:63–80, 1997.

[15] L. Bonaventura and D. Cesari. An efficient nonhydrostatic dynamical core for high-

resolution simulations down to the urban scale. Nuovo Cimento C - Geophysics and Space

Physiscs, 28:105–114, 2006.

[16] L. Bonaventura, E. D. Fernandez-Nieto, J. Garres-Dıaz, and G. Narbona-Reina. Multi-

layer shallow water models with locally variable number of layers and semi-implicit time

discretization. Journal of Computational Physics, 364:209–234, 2018.

[17] L. Bonaventura and R. Ferretti. Semi-Lagrangian methods for parabolic problems in diver-

gence form. SIAM Journal of Scientific Computing, 36:A2458 – A2477, 2014.

[18] L. Bonaventura and R. Ferretti. Flux form semi-Lagrangian methods for parabolic prob-

lems. Communications in Applied and Industrial Mathematics, 7:53–70, 2016.

[19] L. Bonaventura, R. Ferretti, and L. Rocchi. A fully semi-Lagrangian discretization for

the 2D incompressible Navier-Stokes equations in the vorticity-streamfunction formulation.

Applied Mathematics and Computation, 323:132–144, 2018.

[20] L. Bonaventura, A. Iske, and E. Miglio. Kernel-based vector field reconstruction in com-

putational fluid dynamic models. International Journal of Numerical Methods in Fluids,

66:714–729, 2011.

[21] L. Bonaventura, L.Kornblueh, T.Heinze, and P. Rıpodas. A semi-implicit method conserv-

ing mass and potential vorticity for the shallow water equations on the sphere. International

Journal of Numerical Methods in Fluids, 47:863–869, 2005.

[22] L. Bonaventura and M. Gomez Marmol. The TR-BDF2 method for second order problems

in structural mechanics. Computers and Mathematics with Applications, 92:13–26, 2021.

[23] L. Bonaventura, R. Redler, and R. Budich. Earth System Modelling 2: Algorithms, Code

Infrastructure and Optimisation. Springer Verlag, New York, 2012.

[24] L. Bonaventura and T. Ringler. Analysis of discrete shallow water models on geodesic

Delaunay grids with C-type staggering. Monthly Weather Review, 133:2351–2373, 2005.

[25] L. Bonaventura and A. Della Rocca. Unconditionally strong stability preserving extensions

of the TR-BDF2 method. Journal of Scientific Computing, 70:859–895, 2017.

5

Page 6: Curriculum Vitˆ of Luca Bonaventura

[26] L. Bonaventura and G. Rosatti. A cascadic conjugate gradient algorithm for mass conserva-

tive, semi-implicit discretization of the shallow water equations on locally refined structured

grids. International Journal of Numerical Methods in Fluids, 40:217–230, 2002.

[27] S. Carcano, L. Bonaventura, A. Neri, and T. Esposti Ongaro. A second order accurate nu-

merical model for multiphase underexpanded volcanic jets. Geophysical Model Development,

6:1905–1924, 2013.

[28] S. Carcano, T. Esposti Ongaro, L. Bonaventura, and A. Neri. Influence of grain-size dis-

tribution on the dynamics of underexpanded volcanic jets. Journal of Volcanology and

Geothermal Research, 285:60–80, 2014.

[29] L. Delpopolo Carciopolo, L. Bonaventura, A. Scotti, and L. Formaggia. A conservative

implicit multirate method for hyperbolic problems. Computational Geosciences, 23:647–

664, 2019.

[30] S. Castruccio, L. Bonaventura, and L.M. Sangalli. A bayesian approach to spatial prediction

with flexible variogram models,. Journal of Agricultural, Biological, and Environmental

Statistics, 17:209–227, 2012.

[31] A. Decoene, L. Bonaventura, E. Miglio, and F. Saleri. Asymptotic derivation of the section

averaged shallow water equations for river hydraulics. Mathematical Models and Methods

in Applied Sciences, 19:387–417, 2009.

[32] S. Erlicher, L. Bonaventura, and O. S. Bursi. The analysis of the generalized-α method for

non-linear dynamic problems. Computational Mechanics, 28:83–104, 2002.

[33] F. Garcia, L. Bonaventura, M. Net, and J. Sanchez. Exponential versus IMEX high-order

time integrators for thermal convection in rotating spherical shells. Journal of Computa-

tional Physics, 264:41–54, 2014.

[34] G. Garegnani, G. Rosatti, and L. Bonaventura. Free surface flows over mobile bed: math-

ematical analysis and numerical modeling of coupled and decoupled approaches. Commu-

nications in Applied and Industrial Mathematics, 1(3), 2011.

[35] G. Garegnani, G. Rosatti, and L. Bonaventura. On the range of validity of the Exner-based

models for mobile-bed river flow simulations. Journal of Hydraulic Research, 51:380–391,

2013.

[36] J. Garres-Dıaz and L. Bonaventura. Flexible and efficient discretizations of multilayer

models with variable density. Applied Mathematics and Computation, 402:126097, 2021.

[37] F. Gatti, A. Menafoglio, N. Togni, L. Bonaventura, D. Brambilla, M. Papini, and L. Lon-

goni. A novel downscaling procedure for compositional data in the Aitchison geometry with

application to soil texture data. Stochastic Environmental Research and Risk Assessment,

35:1223–1241, 2021.

[38] M. Germano, A. Abba, R. Arina, and L. Bonaventura. On the extension of the eddy

viscosity model to compressible flows. Physics of Fluids, page 041702, 2014.

[39] E.S. Gross, L. Bonaventura, and G. Rosatti. Consistency with continuity in conservative

advection schemes for free-surface models. International Journal of Numerical Methods in

Fluids, 38:307–327, 2002.

6

Page 7: Curriculum Vitˆ of Luca Bonaventura

[40] E.S. Gross, V. Casulli, L. Bonaventura, and J.R. Koseff. A semi-implicit method for verti-

cal transport in multidimensional models. International Journal of Numerical Methods in

Fluids, 28:157–186, 1998.

[41] L. Mari, C. Biotto, A. Decoene, and L. Bonaventura. A coupled ecological-hydrodynamic

model for the spatial distribution of sessile aquatic species in thermally forced basins. Eco-

logical Modelling, 220:2310–2324, 2009.

[42] L. Mari, L. Bonaventura, A. Storto, P. Melia, M. Gatto, S. Masina, and R. Casagrandi.

Understanding large-scale, long-term larval connectivity patterns: The case of the Northern

Line Islands in the Central Pacific Ocean. PLoS ONE, 12:e0182681, 2017.

[43] P. Melia, M. Schiavina, M. Gatto, L. Bonaventura, S. Masina, and R. Casagrandi. Inte-

grating field data into individual-based models for the migration of european eel larvae.

Marine Ecology Progress Series, 487:135–149, 2013.

[44] T. Pugnat, B. Dalena, A. Simona, and L. Bonaventura. Computation of beam based

quantities with 3D final focus quadrupoles field in circular hadronic accelerators. Nuclear

Instruments and Methods in Physics Research, A978:164350, 2020.

[45] M. Restelli, L. Bonaventura, and R. Sacco. A semi-Lagrangian Discontinuous Galerkin

method for scalar advection by incompressible flows. Journal of Computational Physics,

216:195–215, 2006.

[46] P. Rıpodas, A. Gassmann, J. Forstner, D. Majewski, M. Giorgetta, P. Korn, L. Korn-

blueh, H. Wan, G. Zangl, L. Bonaventura, and T. Heinze. Icosahedral Shallow Water

Model (ICOSWM): results of shallow water test cases and sensitivity to model parameters.

Geophysical Model Development, 2:231–251, 2009.

[47] G. Rosatti, L. Bonaventura, and R. Chemotti. High order interpolation methods for semi-

Lagrangian models of mobile-bed river hydrodynamics on cartesian grids with cut cells.

International Journal of Numerical Methods in Fluids, 47:1269–1275, 2005.

[48] G. Rosatti, L. Bonaventura, A. Deponti, and G. Garegnani. An accurate and efficient semi-

implicit method for section-averaged free-surface flow modelling. International Journal of

Numerical Methods in Fluids, 65:448–473, 2011.

[49] G. Rosatti, D. Cesari, and L. Bonaventura. Semi-implicit, semi-Lagrangian environmental

modelling on cartesian grids with cut cells. Journal of Computational Physics, 204:353–377,

2005.

[50] A. Simona, L. Bonaventura, C. de Falco, and S. Schops. IsoGeometric Approximations

for Electromagnetic Problems in Axisymmetric Domains. Computer Methods in Applied

Mechanics and Engineering, 369:113211, 2020.

[51] A. Simona, L. Bonaventura, T. Pugnat, and B. Dalena. High order time integrators for

the simulation of charged particle motion in magnetic quadrupoles. Computer Physics

Communications, 239:33–52, 2019.

[52] J. Steppeler, R. Hess, G. Doms, U. Schattler, and L. Bonaventura. Review of numeri-

cal methods for nonhydrostatic weather prediction models. Meteorology and Atmospheric

Physics, 82:287–301, 2003.

7

Page 8: Curriculum Vitˆ of Luca Bonaventura

[53] J. Steppeler, M. Minotte, H.W. Bitzer, and L. Bonaventura. Nonhydrostatic modelling

using a z−coordinate representation. Monthly Weather Review, 130:2143–2149, 2002.

[54] M. Tugnoli, A. Abba, L. Bonaventura, and M. Restelli. A locally p−adaptive approach for

Large Eddy Simulation of compressible flows in a DG framework. Journal of Computational

Physics, 349:33–58, 2017.

[55] G. Tumolo and L. Bonaventura. A semi-implicit, semi-Lagrangian, DG framework for adap-

tive numerical weather prediction. Quarterly Journal of the Royal Meteorological Society,

141:2582–2601, 2015.

[56] G. Tumolo, L. Bonaventura, and M. Restelli. A semi-implicit, semi-Lagrangian, p−adaptive

discontinuous Galerkin method for the shallow water equations. Journal of Computational

Physics, 232:46–67, 2013.

[57] H. Wan, M. Giorgetta, and L. Bonaventura. Ensemble Held-Suarez test with a spec-

tral transform model: variability, sensitivity and convergence. Monthly Weather Review,

136:1075–1092, 2008.

[58] H. Wan, M. A. Giorgetta, G. Zangl, M. Restelli, D. Majewski, L. Bonaventura, K. Frohlich,

D. Reinert, P. Rıpodas, L. Kornblueh, and J. Forstner. The ICON-1.2 hydrostatic atmo-

spheric dynamical core on triangular grids – Part 1: Formulation and performance of the

baseline version. Geophysical Model Development, 6:735–763, 2013.

Outline of teaching activities:

I have over 25 years of teaching experience and I have been teaching Bachelor and Master

Degree courses in numerical mathematics, mathematical analysis, statistics and probability. I

have taught PhD courses at Politecnico di Milano and IMUS Sevilla and held specific courses

on numerical methods for employees of regional weather services in Italy. I have been EASED

Erasmus Mundus Exchange Professor at the Keio University, Tokyo in 2015 and ERCOFTAC

Leonhard Euler Lecturer at ETH Zurich in 2004. I have tutored or co-tutored 31 Bachelor and

Master Degree candidates and 7 PhD candidates, several of them being international students.

Several of these students have been later hired in important academic and industrial research

institutions also based on the thesis work I tutored.

8

Page 9: Curriculum Vitˆ of Luca Bonaventura

Outline of research coordination and other professional activities:

I have been active in a number of MIUR, INDAM and GNCS projects from the beginning of

my career. I have coordinated the numerical modelling activities of two key projects for the

development of novel methods for weather prediction, namely ICON (financed by Max Planck

Institute for Meteorology and the German Weather Forecasting Service, 2002-5) and ESCAPE-

2 (financed by the European Commission, 2018-21). During my involvement with the ICON

project, I have been working full time as Scientist at the Max Planck Institute for Meteorology

in Hamburg and have been in charge of the dissemination and coordination activities related to

the project. I have been the recipient of individual grants from the European Commission, the

Erasmus Mundus programme and the Office of Naval Research. I have participated in projects

on the development of numerical methods for environmental flows supported by the Italian

National Institute for Geology and Volcanology, Fondazione CARIPLO and by the Spanish

Government. I have participated to a number of third party industrial projects with major

Italian companies (ENI, Tenova) and acted in the past as scientific consultant for the German

Weather Forecasting service and for some Italian regional weather services. I am a member of the

European Science Foundation College of Expert Reviewers and of the Editorial Board of Applied

Mathematics and Computation. I have been invited to a number of high profile research meetings

on numerical methods for modelling of atmospheric flows, including initiatives at the Institute

for Pure and Applied Mathematics (UCLA, US) and the Newton Institute for Mathematical

Sciences (Cambridge, UK).

Complete record of activities and publications:

• Special temporary positions:

– Invited Visiting Scientist, Keio University, Tokyo, Japan, 2015

– Invited Visiting Scientist, Met Office, Exeter, UK, 2015

– Visiting PhD lecturer, IMUS, Sevilla, Spain, 2015

– Invited Visiting Scientist, Newton Institute Programme on Multiscale Numerics for

the Atmosphere and Ocean, Cambridge, UK, 2012

– ONR grant Visiting Scientist, Naval Postgraduate School, Monterey, USA, 2011

– Invited Senior Fellow, IPAM Special Programme on Model and Data Hierarchies for

Simulating and Understanding Climate, UCLA, Los Angeles, USA, 2010

– ERCOFTAC Leonhard Euler Lecturer, ETH Zurich, Switzerland, 2004

• Other temporary positions:

– Scientific consultant, ARPA Piemonte, Torino, Italy, 2002-3

– Scientific consultant, Deutscher Wetterdienst, Frankfurt am Main, Germany, 2000-1

– Scientific consultant, ARPA Emilia Romagna, Bologna, Italy, 2000-1

– Scientific consultant, PROTECNO s.r.l., Padova, Italy, 2000

– Scientific consultant, Istituto di Ricerca Scientifica e Tecnologica, Trento, Italy, 1996

9

Page 10: Curriculum Vitˆ of Luca Bonaventura

• Main conference invitations:

– Invited participant, Dagstuhl Seminar on Resiliency in Numerical Algorithm Design

for Extreme Scale Simulations, Dagstuhl, Germany, 2020

– Invited Keynote Minisymposium Speaker, Finite Elements in Flows Conference, Uni-

versity Sapienza, Rome, Italy, 2017

– Invited Speaker, INDAM - GNCS 2016 congress, Montecatini, Italy, 2016

– Invited Speaker, Workshop on Reactive Transport Modelling in the Geological Sci-

ences, Institut Henri Poincare, Paris, France, 2015

– Invited Speaker, Conference on Numerical methods for PDEs: optimal control, games

and image processing, University Sapienza, Rome, Italy, 2014

– Invited Speaker, IMUS workshop on mathematical modelling and simulation of sedi-

ment transport, Sevilla, Spain, 2014

– Invited Speaker, Final workshop of COST Action ES0905, Toulouse, France, 2014

– Invited Speaker, 26th Entretiens Jacques Cartier, Section: Mathematiques et change-

ments climatiques, Lyon, France, 2013

– Invited Lecturer, Geophysical Fluid Dynamics Workshop, Madeira, Portugal, 2008

– Invited Speaker, ECMWF Seminar on recent developments in numerical methods for

atmosphere and ocean modelling, Reading, UK, 2004

– Invited Speaker, ECMWF-SPARC Workshop on Modelling and Assimilation for the

Stratosphere and Tropopause, ECMWF, Reading, UK, 2003

10

Page 11: Curriculum Vitˆ of Luca Bonaventura

• Coordination of research projects and individual grants:

– ESCAPE-2 FET H2020 project, coordinator of the work unit at Politecnico di Milano

and co-leader of Work Package 1, 2018-21

– SMART-SED project, Fondazione CARIPLO, coordinator of the work unit at the

Mathematics Department of Politecnico di Milano, 2018-20

– LISA production project DECLES: Large Eddy Simulation of Density Currents and

Variable Density Flows, HPL13PJ6YS, 2016-17, principal investigator

– INDAM - GNCS project Metodi numerici semi-impliciti e semi-Lagrangiani per sis-

temi iperbolici di leggi di bilancio, 2015-16, coordinator

– ERASMUS MUNDUS Programme, Euro-Asian Sustainable Energy Development Con-

sortium, EM-EASED 10073, 2015, individual grant

– Office of Naval Research (USA) grant N62909-11-1-4007:Exponential Time-Integrators

for Non-hydrostatic Atmospheric Modeling, 2011, individual grant

– MPI for Meteorology, Hamburg and Deutscher Wetterdienst, Frankfurt, ICON project,

2002-5, coordinator of Numerical Methods group

– Marie Curie Training and Mobility of Researchers Program, European Union, Con-

tract ERBFMBICT961555, 1996, individual grant

• Participation to research projects:

– European Commission - Research & Innovation Fund for Coal and Steel, Burner4.0

project, 2019-21

– INDAM - GNCS project Approssimazione numerica di problemi di natura iperbolica

ed applicazioni, 2019-20

– ENI - MOX Politecnico di Milano, Progetto MUFLOT, 2018-21

– INDAM - GNCS project Modellazione numerica di fenomeni idro/geomeccanici per

la simulazione di eventi sismici, 2017-18

– ENI - MOX Politecnico di Milano, Progetto BIOGEN, 2015-17

– Universidad de Sevilla Proyecto SIMURISK, Desarrollo de simuladores hidrodinamicos

y morfodinamicos eficientes para la evaluacion y prevision de riesgos, MTM2015-

70490-C2-2-R, 2016-18

– INGV Progetto V1 Valutazione della pericolosita vulcanica in termini probabilistici,

2013-14

– INDAM - GNCS project Metodi ad alta risoluzione per problemi evolutivi fortemente

nonlineari, 2014-15

– COST Action ES0905 Basic concepts for convection parameterization in weather fore-

cast and climate models, 2013-14

– INDAM - GNCS project Metodologie teoriche ed applicazioni avanzate nei metodi

Semi-Lagrangiani, 2011-13

– ENI - MOX Politecnico di Milano, Progetto GeoDyn, 2011-13

– MIUR, PRIN 2008 Approssimazione Numerica con Tecniche Adattive e Non-Conformi

di Problemi Multifisica, codice 200834WK7H 005, Unita operativa Milano Politecnico,

2008-10

11

Page 12: Curriculum Vitˆ of Luca Bonaventura

– MIUR, PRIN 2005 Modelli numerici nella dinamica dei fluidi con applicazioni al

sistema cardiovascolare ed all’ambiente, codice 2005 2005013982 001, Unita operativa

Milano Politecnico, 2006-7

– MIUR, PRIN 2004 Adattivita numerica e di modello per problemi alle derivate parziali,

codice 2004014411 006, Unita operativa di Milano Politecnico, 2005

– MIUR, PRIN 2002 Modellazione matematica di estuari e reti a marea, codice 2002085571 004,

Unita operativa di Trento, 2002

– MIUR, PRIN 2001: Calibrazione sperimentale di modelli matematici per la valu-

tazione dei carichi massimi ammissibili nei corpi idrici superficiali, codice 2001085991 001,

Unita operativa di Trento, 2001

– MIUR, PRIN 1997 Metodi e Modelli Matematici in Fluidodinamica, codice 9701091751 010,

Unita operativa di Trento, 1997

• Organization of international scientific events as main or co-organizer:

– 2021: Head of the organizing committee of the ESCAPE-2 summer school, online,

July 19-23 2021

– 2021: Member of the local organizing committee of the 2021 SIAM Geosciences

Congress, online, June 21-24 2021

– 2019: Co-organizer of Minisymposium on fault tolerant linear solvers, PASC 2019

Conference, Zurich, Switzerland

– 2019: Co-organizer of Minisymposium on numerical methods for environmental flows,

International Congress on Industrial and Applied Mathematics, Valencia, Spain

– 2019: Organizer of ESCAPE-2 workshop on Fault tolerant algorithms and resilient

approaches, Milano, Italy

– 2018: Member of the scientific committee of the PASC 2018 Conference, Basel,

Switzerland

– 2017: Co-organizer of Minisymposium on numerical methods for numerical weather

prediction, SIAM Conference on Numerical Methods for the Geosciences, Erlangen,

Germany

– 2016: Member of the organizing committee of the 2016 SIMAI Congress

– 2016: Main organizer of SISL-Day 2016 Workshop on semi-implicit and semi-Lagrangian

methods, Politecnico di Milano

– 2015-16: Co-editor of special issue of Communications in Applied and Industrial

Mathematics on Semi-Lagrangian Methods

– 2015: Co-organizer of Minisymposium Numerical time integration strategies for highly

oscillatory systems of hyperbolic PDEs, SciCADE, International Conference on Sci-

entific Computation and Differential Equations, Potsdam, Germany, 2015

– 2015: Co-organizer of Workshop Spectral Elements in Elastodynamics: applications

to seismic wave propagation problems, Politecnico di Milano

– 2014: Main organizer of Workshop of EU Cost Action 0905, working group 1, Po-

litecnico di Milano

– 2013: Main organizer of ’SL-Day 2012’ workshop on semi-Lagrangian methods, Po-

litecnico di Milano

12

Page 13: Curriculum Vitˆ of Luca Bonaventura

– 2011: Co-organizer of ’SL-Day 2011’ workshop on semi-Lagrangian methods, Univer-

sita Sapienza di Roma

– 2010: Co-organizer of Minisymposium on numerical methods for environmental prob-

lems, joint SIMAI-SEMA Conference, Cagliari, Italy

– 2007: Co-organizer of Minisymposium on numerical methods for free surface flows,

ICIAM Conference, Zurich, Switzerland

– 2005: Co-organizer of Minisymposium on numerical methods for nonhydrostatic at-

mospheric modelling, SIAM Conference on Numerical Methods for the Geosciences,

Avignon, France

– 2003: Co-organizer of Minisymposium on numerical methods for atmospheric mod-

elling, GAMM Annual Meeting, Padova, Italy

– 2002: Co-organizer of ICON Project Exploratory Workshop, Hamburg, Germany

– 1999: Co-organizer of International Workshop on Atmospheric, Oceanic and Ground-

water Flows, CIRM, Trento, Italy

• Member of the European Science Foundation College of Expert Reviewers

• Reviewer for:

– Journal of Computational Physics

– International Journal of Numerical Methods in Fluids

– Computers and Mathematics with Applications

– Monthly Weather Review

– Oceanic Modelling

– Geophysical Model Development

– Advances in Water Resources

– Journal of Advances in Modelling Earth Systems

– Journal of Hydraulic Engineering

– Communications in Applied and Industrial Mathematics

– Communications in Computer Physics

• Books:

2) L. Bonaventura, L. Formaggia, E. Miglio, N. Parolini, A. Scotti and C. Vergara

(editors), Proceedings of the XIII SIMAI congress 2016, ISBN 978-88-6493-035-0,

SIMAI, 2016

1) L. Bonaventura, R. Redler, R. Budich, Earth System Modelling 2: Algorithms, Code

Infrastructure and Optimisation, Springer Briefs in Earth System Science, ISBN 978-

3-642-23830-7, Springer Verlag, 2012

13

Page 14: Curriculum Vitˆ of Luca Bonaventura

• Complete list of publications in refereed journals:

60) F. Vismara, T. Benacchio, L. Bonaventura, A seamless, extended DG approach for

hyperbolic-parabolic problems on unbounded domains, Journal of Scientific Comput-

ing, to appear, 2021

59) E. Agullo, M. Altenbernd, H. Anzt, L. Bautista-Gomez, T. Benacchio, L. Bonaven-

tura, H. J. Bungartz, S. Chatterjee, F. Ciorba, N. DeBardeleben, et al, Resiliency

in Numerical Algorithm Design for Extreme Scale Simulations, The International

Journal of High Performance Computing Applications, to appear, 2021

58) L. Bonaventura, E. Calzola, E. Carlini, R. Ferretti, Second order fully semi-Lagrangian

discretizations of advection–diffusion–reaction systems, Journal of Scientific Comput-

ing, Vol. 88, 23, 2021

57) L. Bonaventura, M. Gomez Marmol, The TR-BDF2 method for second order prob-

lems in structural mechanics, Computers and Mathematics with Applications, Vol.

92, pp. 13-26, 2021

56) L. Bonaventura, J. Garres Diaz, Flexible and efficient discretizations of multilayer

models with variable density, Applied Mathematics and Computation, Vol. 402,

126097, 2021

55) T. Benacchio, L. Bonaventura, M. Altenbernd, C. D. Cantwell, P. D. Duben, M. Gillard,

L. Giraud, D. Goddeke, E. Raffin, K. Teranishi, N. Wedi, Resilience and fault-

tolerance in high-performance computing for numerical weather and climate predic-

tion, The International Journal of High Performance Computing Applications, Vol.

35, pp. 285–311, 2021

54) F. Gatti, A. Menafoglio, N. Togni, L. Bonaventura, D. Brambilla, M. Papini, L. Lon-

goni, A novel downscaling procedure for compositional data in the Aitchison geome-

try with application to soil texture data, Stochastic Environmental Research and Risk

Assessment, Vol. 35, pp. 1223–1241, 2021

53) C. Bassi, L. Bonaventura, S. Busto, M. Dumbser A hyperbolic reformulation of the

Serre-Green-Naghdi model for general bottom topographies, Computers & Fluids,

Vol. 212, 104716, 2020

52) A. Abba, L. Bonaventura, A. Recanati, M. Tugnoli, Dynamical p−adaptivity for

LES of compressible flows in a high order DG framework, Journal of Computational

Physics, Vol. 420, 109720, 2020

51) T. Pugnat, B. Dalena, A. Simona, L. Bonaventura, Computation of beam based

quantities with 3D final focus quadrupoles field in circular hadronic accelerators,

Nuclear Instruments and Methods in Physics Research, A978, 164350, 2020

50) A. Simona, L. Bonaventura, C. de Falco, S. Schops, IsoGeometric Approximations for

Electromagnetic Problems in Axisymmetric Domains, Computer Methods in Applied

Mechanics and Engineering, Vol. 369, 113211, 2020

49) C. Bassi, A. Abba, L. Bonaventura, L. Valdettaro, Large Eddy Simulation of non-

Boussinesq gravity currents with a DG method, Theoretical and Computational Fluid

Dynamics, Vol. 34, pp. 231-247, 2020

48) L. Bonaventura, F. Casella, L. Delpopolo Carciopolo, A. Ranade, A self adjusting

multirate algorithm for robust time discretization of partial differential equations,

Computers and Mathematics with Applications, Vol. 79, pp. 2086-2098, 2020

14

Page 15: Curriculum Vitˆ of Luca Bonaventura

47) L. Delpopolo Carciopolo, L. Bonaventura, A. Scotti, L. Formaggia, A conservative

implicit multirate method for hyperbolic problems, Computational Geosciences, Vol.

23, pp. 647-664, 2019

46) A. Simona, L. Bonaventura, T. Pugnat, B. Dalena, High order time integrators for

the simulation of charged particle motion in magnetic quadrupoles, Computer Physics

Communications, Vol. 239, pp. 33-52, 2019

45) T. Benacchio, L. Bonaventura, An extension of DG methods for hyperbolic problems

to one-dimensional semi-infinite domains, Applied Mathematics and Computation,

Vol. 350, pp. 266-282, 2019

44) L. Bonaventura, E. D. Fernandez Nieto, J. Garres Diaz, G. Narbona Reina, Multilayer

shallow water models with locally variable number of layers and semi-implicit time

discretization, Journal of Computational Physics, Vol. 364, pp. 209-234, 2018

43) L. Bonaventura, R. Ferretti, L. Rocchi, A fully semi-Lagrangian discretization for the

2D incompressible Navier-Stokes equations in the vorticity-streamfunction formula-

tion, Applied Mathematics and Computation, Vol. 323, pp. 132-144, 2018

42) M. Tugnoli, A. Abba, L. Bonaventura, M. Restelli, A locally p−adaptive approach

for Large Eddy Simulation of compressible flows in a DG framework, Journal of

Computational Physics, Vol. 349, pp. 33-58, 2017

41) L. Mari, L. Bonaventura, A. Storto, P. Melia, M. Gatto, S. Masina, R. Casagrandi,

Understanding large-scale, long-term larval connectivity patterns: The case of the

Northern Line Islands in the Central Pacific Ocean, PLoS ONE, Vol. 12, e0182681,

2017

40) C. Bassi, A. Abba, L. Bonaventura, L. Valdettaro, Large Eddy Simulation of gravity

currents with a high order DG method, Communications in Applied and Industrial

Mathematics, Vol. 8, pp. 128-148, 2017

39) L. Bonaventura, A. Della Rocca, Unconditional Strong Stability Preserving extensions

of the TR-BDF2 method, Journal of Scientific Computing, Vol. 70, pp. 859-895, 2017

38) L. Bonaventura, M. Falcone, R. Ferretti, Introduction to the Special Issue on New

Trends in Semi-Lagrangian Methods, Communications in Applied and Industrial

Mathematics, Vol. 7, pp. 1-3, 2016

37) L. Bonaventura, R. Ferretti, Flux form Semi-Lagrangian methods for parabolic prob-

lems, Communications in Applied and Industrial Mathematics, Vol. 7, pp. 53-70,

2016

36) G. Tumolo, L. Bonaventura, A semi-implicit, semi-Lagrangian, DG framework for

adaptive numerical weather prediction, Quarterly Journal of the Royal Meteorological

Society, Vol. 141, pp. 2582-2601, 2015

35) A. Abba, L. Bonaventura, M. Nini, M. Restelli, Dynamic models for Large Eddy

Simulation of compressible flows with a high order DG method, Computers & Fluids,

Vol. 122, pp. 202 - 222, 2015

34) L. Bonaventura, R. Ferretti, Semi-Lagrangian methods for parabolic problems in

divergence form, SIAM Journal of Scientific Computing, Vol. 36, pp. A2458 - A2477,

2014

33) S. Carcano, T. Esposti Ongaro, L. Bonaventura, A. Neri, Influence of grain-size dis-

tribution on the dynamics of underexpanded volcanic jets, Journal of Volcanology

and Geothermal Research,Vol. 285, pp. 60 - 80, 2014

15

Page 16: Curriculum Vitˆ of Luca Bonaventura

32) M. Germano, A. Abba, R. Arina, L. Bonaventura, On the extension of the eddy

viscosity model to compressible flows, Physics of Fluids, 041702, 2014

31) F. Garcia, L. Bonaventura, M. Net, J. Sanchez, Exponential versus IMEX high-

order time integrators for thermal convection in rotating spherical shells, Journal of

Computational Physics, Vol. 264, pp. 41-54, 2014

30) S. Carcano, L. Bonaventura, A. Neri, T. Esposti Ongaro, A second order accurate

numerical model for multiphase underexpanded volcanic jets, Geoscientific Model

Development,Vol. 6, pp. 1905-1924, 2013

29) P. Melia, M. Schiavina, M. Gatto, L. Bonaventura, S. Masina, R. Casagrandi, In-

tegrating field data into individual-based models for the migration of European eel

larvae, Marine Ecology Progress Series, Vol. 487, pp. 135-149, 2013

28) G. Garegnani, G. Rosatti, L. Bonaventura, On the range of validity of the Exner-

based models for mobile-bed river flow simulations, Journal of Hydraulic Research,

Vol. 51, pp. 380-391, 2013

27) H. Wan, M. A. Giorgetta,G. Zangl, M. Restelli, D. Majewski, L. Bonaventura,K. Frohlich,

D. Reinert, P. Rıpodas, L. Kornblueh, J. Forstner, The ICON-1.2 hydrostatic atmo-

spheric dynamical core on triangular grids – Part 1: Formulation and performance of

the baseline version, Geoscientific Model Development,Vol. 6, pp. 735-763, 2013

26) T. Benacchio, L. Bonaventura, Absorbing boundary conditions: a spectral collocation

approach, International Journal of Numerical Methods in Fluids, Vol. 72, pp. 913-

936, 2013

25) G. Tumolo, L. Bonaventura, M. Restelli, A semi-implicit, semi-Lagrangian, p−adaptive

Discontinuous Galerkin method for the shallow water equations, Journal of Compu-

tational Physics, Vol. 232, pp. 46-67, 2013

24) S. Castruccio, L. Bonaventura, L. M. Sangalli, A Bayesian Approach to Spatial Pre-

diction With Flexible Variogram Models, Journal of Agricultural, Biological, and

Environmental Statistics, Vol. 17, pp. 209-227, 2012

23) G. Garegnani, G. Rosatti, L. Bonaventura, Free surface flows over mobile bed: mathe-

matical analysis and numerical modeling of coupled and decoupled approaches, Com-

munications in Applied and Industrial Mathematics, Vol. 1, N. 3, 2011

22) L. Bonaventura, A. Iske, E. Miglio, Kernel-Based Vector Field Reconstruction in

Computational Fluid Dynamic Models, International Journal of Numerical Methods

in Fluids,Vol. 66, pp. 714-729, 2011

21) G. Rosatti, L. Bonaventura, A. Deponti, G. Garegnani, An Accurate and Efficient

Semi-Implicit Method for Section Averaged Free Surface Flow Modelling,International

Journal of Numerical Methods in Fluids,Vol. 65, pp. 448-473, 2011

20) P. Ripodas, A. Gassmann, J. Forstner, D. Majewski, M. Giorgetta, P. Korn, L. Ko-

rnblueh, H. Wan, G. Zangl, L. Bonaventura, T. Heinze, Icosahedral Shallow Water

Model (ICOSWM): results of shallow water test cases and sensitivity to model pa-

rameters,Geoscientific Model Development,Vol. 2, pp. 231-251, 2009

19) L. Mari, C. Biotto, A. Decoene, L. Bonaventura, A coupled ecological-hydrodynamic

model for the spatial distribution of sessile aquatic species in thermally forced basins,

Ecological Modelling,Vol. 220, pp. 2310-2324, 2009

16

Page 17: Curriculum Vitˆ of Luca Bonaventura

18) A. Decoene, L. Bonaventura, E. Miglio, F. Saleri, Asymptotic Derivation of the Sec-

tion Averaged Shallow Water Equations for River Hydraulics, Mathematical Models

and Methods in Applied Sciences, Vol. 19, pp. 387-417, 2009

17) H. Wan, M. Giorgetta, L. Bonaventura, Ensemble Held-Suarez test with a spectral

transform model: variability, sensitivity and convergence, Monthly Weather Review,

Vol. 136, pp. 1075-1092, 2008

16) A. Abba, L. Bonaventura, A vorticity preserving finite difference discretization for the

incompressible Navier-Stokes equations, International Journal of Numerical Methods

in Fluids,Vol. 56, pp. 1101-1106, 2008

15) M. Restelli, L. Bonaventura, R. Sacco, A semi-Lagrangian discontinuous Galerkin

method for scalar advection by incompressible flows, Journal of Computational Physics,

Vol. 216, pp. 195-215, 2006

14) L. Bonaventura, D. Cesari, An efficient nonhydrostatic dynamical core for high-

resolution simulations down to the urban scale, Nuovo Cimento C - Geophysics and

Space Physiscs,Vol. 28, pp. 105-114, 2006

13) L. Bonaventura, T. Ringler, Analysis of discrete shallow-water models on geodesic

Delaunay grids with C-type staggering, Monthly Weather Review,Vol. 133, pp. 2351-

2373, 2005

12) G. Rosatti, L. Bonaventura, R. Chemotti, High order interpolation methods for semi-

Lagrangian models of mobile-bed river hydrodynamics on cartesian grids with cut

cells, International Journal of Numerical Methods in Fluids,Vol.47, pp. 1269-1275,

2005

11) L. Bonaventura, L. Kornblueh, T. Heinze, P. Ripodas, A Semi-implicit method con-

serving mass and potential vorticity for the shallow water equations on the sphere,

International Journal of Numerical Methods in Fluids,Vol. 47, pp. 863-869, 2005

10) G. Rosatti, D. Cesari, L. Bonaventura, Semi-implicit, semi-Lagrangian environmental

modelling on cartesian grids with cut cells, Journal of Computational Physics,Vol.

204, pp. 352-377, 2005

9) J. Steppeler, R. Hess, G. Doms, U. Schattler, L. Bonaventura, Review of numerical

methods for nonhydrostatic weather prediction models, Meteorology and Atmospheric

Physics,Vol. 82, pp. 287-301, 2003

8) S. Erlicher, L. Bonaventura, O. S. Bursi, The Analysis of the Generalized-α Method

for Non-linear Dynamic Problems, Computational mechanics,Vol. 28, pp. 83-104,

2002

7) L. Bonaventura, G. Rosatti, A cascadic conjugate gradient algorithm for mass conser-

vative, semi-implicit discretization of the shallow water equations on locally refined

structured grids, International Journal of Numerical Methods in Fluids,Vol. 40, pp.

217-230, 2002

6) J. Steppeler, M. Minotte, H. W. Bitzer, L. Bonaventura, Nonhydrostatic modelling

using a z−coordinate representation, Monthly Weather Review,Vol. 130, pp. 2143-

2149, 2002

5) E. S. Gross, L. Bonaventura, G. Rosatti, Consistency with continuity in conserva-

tive advection schemes for free-surface models, International Journal of Numerical

Methods in Fluids, Vol. 38, pp. 307-327, 2002

17

Page 18: Curriculum Vitˆ of Luca Bonaventura

4) L. Bonaventura, A Semi-Implicit, Semi-Lagrangian Scheme Using the Height Coor-

dinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows, Journal

of Computational Physics,Vol. 158, pp. 186-213, 2000

3) E.S. Gross, V. Casulli, L. Bonaventura, J.R. Koseff, A Semi-Implicit Method for

Vertical Transport in Multidimensional Models, International Journal of Numerical

Methods in Fluids, Vol. 28, pp. 157-186, 1998

2) L. Bonaventura, V. Casulli, A Semi-Implicit Scheme for the Barotropic Primitive

Equations of Atmospheric Dynamics, International Journal of Numerical Methods

for Heat and Fluid Flow, Vol. 7, pp. 63-80, 1997

1) L. Bonaventura, Interface Evolution in an Interacting Spin System, Journal of Non-

linear Analysis, Theory Methods and Applications, Vol. 25, pp. 799-819, 1995.

• Refereed Conference Proceedings:

13) M. Tugnoli, A. Abba, L. Bonaventura, Dynamical degree adaptivity for DG-LES

models, Proceedings of the ICOSAHOM 2018 Conference, London, UK, 2020

12) D. Brambilla, M. Papini, V.I. Ivanov, L. Bonaventura, A. Abbate, L. Longoni,

Sediment Yield, Mountain Basins, Analysis, and Management: The SMART-SED

Project. In: De Maio M., Tiwari A. (eds) Applied Geology, Springer, 2020

11) G. Tumolo, L. Bonaventura, Simulations of Non-hydrostatic Flows by an Efficient

and Accurate p-adaptive DG Method, In: van Brummelen H., Corsini A., Perotto

S., Rozza G. (eds) Numerical Methods for Flows. Lecture Notes in Computational

Science and Engineering, Vol. 132, pp 41–53, Springer, 2020

10) L. Bonaventura, E. Calzola, E. Carlini, R. Ferretti, A fully semi-Lagrangian method

for the Navier-Stokes equations in primitive variables, In: van Brummelen H., Corsini

A., Perotto S., Rozza G. (eds) Numerical Methods for Flows. Lecture Notes in

Computational Science and Engineering, Vol. 132, pp 55–62, Springer, 2020

9) T. Pugnat, B. Dalena, A. Simona, L. Bonaventura, R. De Maria, V. K. Bergyld

Olsen, Study Of Fringe Fields Effects From Final Focus Quadrupoles On Beam Based

Measured Quantities, Proceedings of IPAC2019, Melbourne, Australia, 2019

8) T. Pugnat, B. Dalena, A. Simona, L. Bonaventura, R. De Maria, J. Molson, Accurate

And Efficient Tracking In Electromagnetic Quadrupoles, Proceedings of IPAC2018,

Vancouver, BC, Canada, 2018

7) V. Covello, A. Abba, L. Bonaventura, A. Della Rocca, L. Valdettaro, A multiphase

model for the numerical simulation of ice formation in sea water, in: Proceedings of

the ECCOMAS Congress 2016, VII European Congress on Computational Methods

in Applied Sciences and Engineering, Crete, Greece, June 2016

6) M. Schiavina, R. Casagrandi, M. Gatto, L. Bonaventura, S. Masina, P. Melia, Has

the ocean contributed to the decline of European eel recruitment? Results of a 40-

year simulation experiment, in: Proceedings of the 1st SISC Congress, Lecce, Italy,

September 2013

5) A. Quarteroni, L. Bonaventura, I modelli matematici per la previsione meteorologica,

in: Matematica e cultura 2007, Springer Milan, p. 241-251, 2007

4) L. Bonaventura, Development of the ICON dynamical core: modelling strategies and

preliminary results, in: Proceedings of the ECMWF/SPARC Workshop on Modelling

and Assimilation for the Stratosphere and Tropopause, ECMWF, 2003

18

Page 19: Curriculum Vitˆ of Luca Bonaventura

3) G. Rosatti, L. Bonaventura, L. Poli, Analisi dell’impatto del progetto MOSE sulla

dinamica e sul trasporto nella laguna di Venezia, in: Atti del 28° Convegno di Idraulica

e Costruzioni idrauliche, Potenza, Italia, 2002

2) L. Bonaventura, E. S. Gross,Constancy Preserving, Conservative Methods for Free-

Surface Models, in: Godunov Methods, E.F. Toro (ed.), Springer, 2001

1) L. Bonaventura, A second order, semi-Lagrangian scheme with accurate approxima-

tion of trajectories, in: Proceedings of the 10th International Conference on Numerical

Methods in Fluids, Pineridge Press, Swansea, 1997

• Preprints and preliminary reports:

48) G. Orlando, A. Della Rocca, P. Barbante, L. Bonaventura,N. Parolini, An efficient and

accurate implicit DG solver for the incompressible Navier-Stokes equations, arXiv,

2107.07776, 2021

47) L. Bonaventura, F. Gatti, A. Menafoglio, D. Rossi, D. Brambilla, M. Papini, L. Lon-

goni, An efficient and robust soil erosion model at the basin scale, MOX Report

34/2021, 2021

46) F. Vismara, T. Benacchio, L. Bonaventura, A seamless, extended DG approach for

hyperbolic-parabolic problems on unbounded domains, arXiv, 2012.05954, 2020

45) E. Agullo, M. Altenbernd, H. Anzt, L. Bautista-Gomez, T. Benacchio, L. Bonaven-

tura, H. J. Bungartz, S. Chatterjee, F. Ciorba, N. DeBardeleben, et al, Resiliency in

Numerical Algorithm Design for Extreme Scale Simulations,arXiv, 2010.13342, 2020

44) L. Bonaventura, M. Gomez Marmol, The TR-BDF2 method for second order prob-

lems in structural mechanics, arXiv, 2007.12363, 2020

43) L. Bonaventura, J. Garres Diaz, Flexible and efficient discretizations of multilayer

models with variable density, arXiv, 2007.12917, 2020

42) F. Gatti, A. Menafoglio, N. Togni, L. Bonaventura, D. Brambilla, M. Papini, L. Lon-

goni, A novel downscaling procedure for compositional data in the Aitchison geometry

with application to soil texture data, arXiv, 2007.06856, 2020

41) T. Benacchio, L. Bonaventura, M. Altenbernd, C. D. Cantwell, P. D. Duben, M. Gillard,

L. Giraud, D. Goddeke, E. Raffin, K. Teranishi, N. Wedi, Resilience and fault-

tolerance in high-performance computing for numerical weather and climate predic-

tion, MOX Report 21/2020, 2020

40) C. Bassi, L. Bonaventura, S. Busto, M. Dumbser A hyperbolic reformulation of the

Serre-Green-Naghdi model for general bottom topographies, arXiv, 2003.14309, 2020

39) L. Bonaventura, E. Calzola, E. Carlini, R. Ferretti, Second order fully semi-Lagrangian

discretizations of advection–diffusion–reaction systems, MOX Report 10/2020, 2020

38) A. Simona, L. Bonaventura, C. de Falco, S. Schops, IsoGeometric Approximations for

Electromagnetic Problems in Axisymmetric Domains, MOX Report 54/2019, 2019

37) A. Abba, L. Bonaventura, A. Recanati, M. Tugnoli, Dinamically p−adaptivity for

LES of compressible flows in a high order DG framework, MOX Report 41/2019,

2019

36) L. Bonaventura, A. Della Rocca, Convergence analysis of a cell centered finite volume

diffusion operator on non-orthogonal polyhedral meshes, MOX Report 37/2018, 2018

19

Page 20: Curriculum Vitˆ of Luca Bonaventura

35) C. Bassi, A. Abba, L. Bonaventura, L. Valdettaro, Direct and Large Eddy Simulation

of three-dimensional non-Boussinesq gravity currents with a high order DG method,

MOX Report 24/2018, 2018

34) T. Benacchio, L. Bonaventura, A seamless extension of DG methods for hyperbolic

problems to unbounded domains, MOX Report 23/2018, 2018

33) C. Bassi, A. Abba, L. Bonaventura, L. Valdettaro, A priori tests of a novel LES

approach to compressible variable density turbulence, MOX Report 20/2018, 2018

32) A. Simona, L. Bonaventura, T. Pugnat, B. Dalena, High order time integrators for

the simulation of charged particle motion in magnetic quadrupoles, MOX Report

15/2018, 2018

31) L. Delpopolo Carciopolo, L. Bonaventura, A. Scotti, L. Formaggia, A conservative

implicit multirate method for hyperbolic problems, MOX Report 11/2018, 2018

30) L. Bonaventura, F. Casella, L. Delpopolo Carciopolo, A. Ranade, A self adjusting

multirate algorithm based on the TR-BDF2 method, MOX Report 8/2018, 2018

29) L. Bonaventura, E. D. Fernandez Nieto, J. Garres Diaz, G. Narbona Reina, Multilayer

shallow water models with locally variable number of layers and semi-implicit time

discretization, MOX Report 38/2017, 2017

28) L. Bonaventura, R. Ferretti, L. Rocchi, A fully semi-Lagrangian discretization for the

2D Navier-Stokes equations in the vorticity-streamfunction formulation, MOX Report

27/2017, 2017

27) C. Bassi, A. Abba, L. Bonaventura, L. Valdettaro, Large Eddy Simulation of gravity

currents with a high order DG method, MOX Report 57/2016, 2016

26) M. Tugnoli, A. Abba, L. Bonaventura, M. Restelli, A locally p−adaptive approach

for Large Eddy Simulation of compressible flows in a DG framework, MOX Report

37/2016, 2016

25) L. Bonaventura, A. Della Rocca, Monotonicity, positivity and strong stability of the

TR-BDF2 method and of its SSP extensions, MOX Report 56/2015, 2015

24) L. Bonaventura, Local Exponential Methods: a domain decomposition approach to

exponential time integration of PDEs, MOX Report 24/2015, 2015

23) L. Bonaventura, R. Ferretti, Flux form Semi-Lagrangian methods for parabolic prob-

lems, MOX Report 22/2015, 2015

22) A. Abba, L. Bonaventura, M. Nini, M. Restelli, Anisotropic dynamic models for

Large Eddy Simulation of compressible flows with a high order DG method, MOX

Report36/2014, 2014

21) L. Bonaventura, R. Ferretti, Semi-Lagrangian methods for parabolic problems in

divergence form, MOX Report 19/2014, 2014

20) G. Tumolo, L. Bonaventura, An accurate and efficient numerical framework for adap-

tive numerical weather prediction, MOX Report 18/2014, 2014

19) F. Garcia, L. Bonaventura, M. Net, J. Sanchez, Exponential versus IMEX high-order

time integrators for thermal convection in rotating spherical shells, MOX Report

36/2013, 2013

18) S. Carcano, L. Bonaventura, A. Neri, T. Esposti Ongaro, A second order accurate

numerical model for multiphase underexpanded volcanic jets, MOX Report 50/2012,

2012

20

Page 21: Curriculum Vitˆ of Luca Bonaventura

17) G. Tumolo, L. Bonaventura, M. Restelli, A semi-implicit, semi-Lagrangian, p−adaptive

Discontinuous Galerkin method for the shallow water equations, MOX Report 04/2012,

2012

16) T. Benacchio, L. Bonaventura, A spectral collocation method for the one dimensional

shallow water equations on semi-infinite domains, MOX Report 34/2011, 2011

15) G. Garegnani, G. Rosatti, L. Bonaventura, Mathematical and Numerical Modelling

of Fully Coupled Mobile Bed Free Surface Flows, MOX Report 03/2011, 2011

14) A. Abba, L. Bonaventura, A mimetic finite difference method for Large Eddy Simu-

lation of incompressible flow, MOX Report 34/2010, 2010

13) L. Bonaventura, S. Castruccio, L. M. Sangalli, A Bayesian approach to geostatistical

interpolation with flexible variogram models, MOX Report 21/09, 2009

12) L. Bonaventura, C. Biotto, A. Decoene, L. Mari, E. Miglio, A coupled ecological-

hydrodynamic model for the spatial distribution of sessile aquatic species in thermally

forced basins, MOX Report 02/09, 2009

11) L. Bonaventura, S. Castruccio, P. Crippa, G. Lonati, Geostatistical estimate of PM10

concentrations in Northern Italy: validation of kriging reconstructions with classical

and flexible variogram models, MOX Report 18/08, 2008

10) A. Deponti, L. Bonaventura, G. Rosatti, G. Garegnani, An Accurate and Efficient

Semi-Implicit Method for Section Averaged Free Surface Flow Modelling,MOX Report

12/07, 2007

9) A. Decoene, L. Bonaventura, E. Miglio, F. Saleri, Asymptotic Derivation of the Sec-

tion Averaged Shallow Water Equations for River Hydraulics,Report MOX 16/07,

2007

8) A. Deponti, L. Bonaventura, L. Fraccarollo, E. Miglio, G. Rosatti, Analysis of Hy-

perbolic Systems for Mobile Bed, Free Surface Flow Modelling in Arbitrary Cross

Sections,MOX Report 06/07, 2007

7) A. Abba, L. Bonaventura, A vorticity preserving finite difference discretization for

the incompressible Navier-Stokes equations, MOX Report 83, 2006

6) J. Baudisch, L. Bonaventura, A. Iske, E. Miglio, Matrix valued Radial Basis Functions

for local vector field reconstruction: applications to computational fluid dynamic

models,MOX Report 75, 2006

5) H. Wan, M. Giorgetta, L. Bonaventura, Held-Suarez test with ECHAM5, Berichte

zur Erdsystemforschung,Max Planck Institut fur Meteorologie, N. 20, 2006

4) M. Restelli, L. Bonaventura, R. Sacco, A flux form, semi - Lagrangian method for the

scalar advection equation using Discontinuous Galerkin reconstruction,MOX Report

63,2005

3) E. Roeckner, G. Bauml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hage-

mann, L. Kornblueh, U. Schlese. U. Schulzweida, The atmospheric general circulation

model ECHAM5: model description, MPI report n. 349, Max Planck Institut fur Me-

teorologie, 2003

2) L. Bonaventura, A Semi-Implicit, Semi-Lagrangian Scheme for the Compressible Non-

hydrostatic Equations of the Atmosphere, GKSS Research Centre External Report,

GKSS 98/E/12, 1998

21

Page 22: Curriculum Vitˆ of Luca Bonaventura

1) L. Bonaventura, Studio analitico e numerico di un modello di equazioni primitive per

la dinamica atmosferica, UTM PhDTS 1 , N. 5, Universita di Trento, 1995.

• Complete record of teaching activity in Master and Bachelor degree courses:

2018-19/2020-21 Numerical methods for Engineering, Corso di Laurea Specialistica in Ingegneria FIsica,

Politecnico di Milano; Numerical Methods for PDEs, Corso di Laurea specialistica in-

ternazionale in Civil Engineering for Risk Mitigation, Politecnico di Milano.

2017-18 Mathematical methods for Engineering, Corso di Laurea Specialistica in Ingegneria

FIsica, Politecnico di Milano; Numerical Methods for PDEs, Corso di Laurea special-

istica internazionale in Civil Engineering for Risk Mitigation, Politecnico di Milano.

2011-12/2013-14 Advanced numerical methods for large ODE systems, Corso di Dottorato in Modelli

e Metodi Matematici per l’Ingegneria, Politecnico di Milano

2010-11/2016-17 Calcolo Numerico, Corso di Laurea Specialistica in Ingegneria Civile ed Ingegneria

Ambientale, Politecnico di Milano; Numerical Methods for PDEs, Corso di Laurea

specialistica internazionale in Civil Engineering for Risk Mitigation, Politecnico di

Milano.

2008-09/2009-10 Calcolo Numerico, Corso di Laurea Specialistica in Ingegneria Civile ed Ingegneria

Ambientale, Politecnico di Milano; Numerical Analysis, Corso di Laurea specialistica

internazionale in Civil Engineering, Politecnico di Milano.

2007-08 Calcolo Numerico and Modelli numerici per la fluidodinamica ambientale, Corso di

Laurea Specialistica in Ingegneria Civile ed Ingegneria Ambientale, Politecnico di

Milano; Numerical Analysis, Corso di Laurea specialistica internazionale in Civil En-

gineering, Politecnico di Milano.

2006-07 Calcolo Numerico and Modelli numerici per la fluidodinamica ambientale, Corsi di

Laurea Specialistica in Ingegneria Civile ed Ingegneria Ambientale, Politecnico di

Milano.

2005-06 Algebra Lineare e Calcolo Numerico, Corso di Laurea di I livello in Ingegneria Mec-

canica, Politecnico di Milano; esercise sessions in Elementi di Analisi Matematica e

Geometria,Equazioni Differenziali Ordinarie, Corso di Laurea di I livello in Ingegneria

Ambientale, Politecnico di Milano.

2004-05 Calcolo Numerico Corso di Laurea di I livello in Ingegneria Meccanica, Politecnico di

Milano.

2001-02 Analisi Matematica I, Corsi di Lauree di I livello in Ingegneria, Universita di Trento;

Analisi Numerica, Corso di Lauree di I livello in Ingegneria Informatica, Universita di

Trento; exercise sessions in Analisi Matematica I,Analisi Numerica, Corso di Laurea

di I livello in Ingegneria Ambientale, Universita di Trento.

1998-2001 Metodi probabilistici e statistici, Corso di Diploma in Ingegneria Ambientale ed In-

formatica, Universita di Trento; exercise sessions in Analisi Matematica I,Analisi

Matematica II, Corsi di Laurea in Ingegneria, Universita di Trento. Exercise sessions

in Calcolo Numerico, Corso di Laurea in Matematica, Universita di Trento.

1995-97 Exercise sessions in Analisi Matematica I, Analisi Matematica II Corsi di Laurea in

Ingegneria, Universita di Trento.

• PhD theses tutored as main or co-tutor:

22

Page 23: Curriculum Vitˆ of Luca Bonaventura

2019-2022 Giuseppe Orlando, Politecnico di Milano

2016-2019 Abele Simona, Politecnico di Milano

2015-2018 Caterina Bassi, Politecnico di Milano

2013-2018 Alessandro Della Rocca, Politecnico di Milano

2013-2015 Akshay Ranade, Politecnico di Milano

2011-2014 Susanna Carcano, Politecnico di Milano

2008-2010 Giovanni Tumolo, Universita di Trieste

2007-2008 Giulia Garegnani, Universita di Trento

2004-2007 Marco Restelli, Politecnico di Milano

2005-2007 Hui Wan, MPI Hamburg, Germania

2000-2002 Maud Minotte, University of Frankfurt, Germany

• Master theses tutored as main or co-tutor:

2020 Federico Vismara, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2019 Costanza Agazzi, Laurea Magistrale in Ingegneria Fisica,

Politecnico di Milano

2018 Jeremy Grudnicki, Laurea Magistrale in Civil Engineering for Risk Mitigation,

Politecnico di Milano

2018 Matteo Castellini, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2017 Francesco L. Romeo, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2016 Abele Simona, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2016 Ludovica Delpopolo Carciopolo, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2016 Paolo Gorlani, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2015 Lea Boittin, Laurea Magistrale in Civil Engineering for Risk Mitigation,

Politecnico di Milano

2015 Andrea Abbate, Laurea Magistrale in Ingegneria Ambientale,

Politecnico di Milano

2013 Matteo Parnigoni, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2012 Andrea Abbate, Laurea di I livello in Ingegneria Ambientale,

Politecnico di Milano

2011 Tommaso Benacchio, Laurea Magistrale in Ingegneria Matematica,

Politecnico di Milano

2009 Matteo Parnigoni, Laurea di I livello in Ingegneria Matematica,

Politecnico di Milano

23

Page 24: Curriculum Vitˆ of Luca Bonaventura

2007 Angelo Colbertaldo, Laurea specialistica in Ingegneria Aereospaziale,

Politecnico di Milano

2008 Claudia Giannini, Laurea di I livello in Ingegneria Matematica,

Politecnico di Milano

2007 Stefano Castruccio, Laurea specialistica in Ingegneria Matematica,

Politecnico di Milano

2007 Giulia Garegnani, Laurea specialistica in Ingegneria Matematica,

Politecnico di Milano

2007 Cristian Biotto, Laurea specialistica in Ingegneria Aereospaziale,

Politecnico di Milano

2007 Monica Crippa, Laurea specialistica in Ingegneria Ambientale,

Politecnico di Milano

2007 Paola Crippa, Laurea specialistica in Ingegneria Ambientale,

Politecnico di Milano

2007 Luca Bertoletti, Laurea specialistica in Ingegneria Aereospaziale,

Politecnico di Milano

2007 Armando Cilento, Laurea di I livello in Ingegneria Matematica,

Politecnico di Milano

2005 Stefania Madeo, Laurea di I livello in Ingegneria Matematica,

Politecnico di Milano

2005 Marta Penati, Laurea di I livello in Ingegneria Matematica,

Politecnico di Milano

2001 Daniela Dalmonech, Laurea di I livello in Ingegneria Ambientale,

Universita di Trento

2001 Luca Poli, Laurea in Ingegneria Ambientale,

Universita di Trento

2000 Silvano Erlicher, Laurea in Ingegneria Civile,

Universita di Trento

1999 Stefano Vignoli, Laurea in Ingegneria Ambientale,

Universita di Trento

1999 Giuliano Rizzi, Laurea in Ingegneria Ambientale,

Universita di Trento

1998 Gabriele Rampanelli, Laurea in Ingegneria Ambientale,

Universita di Trento

24