D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

Embed Size (px)

Citation preview

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    1/57

    Go back to BasicAssessment of Soil Stiffness

    byIr. Chua Chai Guan

    IEM Evening Talk on 18 Oct 2012

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    2/57

    Presentation Outlines

    1. Definition of soil stiffness

    2. Assessment of basic soil properties

    3. Assessment of soil stiffness from laboratory testing

    4. Non-linear soil stiffness

    5. Conclusions

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    3/57

    Definition of Soil Stiffness

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    4/57

    Definition of Stress & Strain

    Normal Stress

    Shear Stress

    Volumetric Strain

    Shear Strain

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    5/57

    Definition of Stiffness Stress-Strain Behaviour

    Hookes Law ofIsotropic Elasticity

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    6/57

    Typical Stress-Strain Curve For Soil & Definition ofTangent and Secant Modulus

    During loading in soils, both shear and normal stresses are

    likely to change simultaneously so there will be shearing

    and volumetric straining together. The behaviour of stress-strain for soil is largely non-linear stiffness.

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    7/57

    Basic of Partial Safety Factor Limit Strain for AMobilized Strength

    (after Bolton, 1993)

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    8/57

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    9/57

    Grading Curve for Particle Size Distribution

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    10/57

    Classification of Coarse and Fine Soils(BS5950:1981)

    % of clay & silts < 35%

    % of clay & silts >= 35%

    Coarse Soils

    Fine Soils

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    11/57

    1st Question to Audiences:

    % of clay & silts < 35%

    % of clay & silts >= 35%

    Coarse Soils

    Fine Soils

    Is 35% (after omitting boulder and

    cobbles) of boundary used to

    divide coarse and fine soils

    appropriate?

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    12/57

    Differentiate SILT and CLAY using PI Chart

    PI = 0.73(LL-20)

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    13/57

    Water Content and Unit Weight

    - The most convenient measureable parameters are water content

    (w) and unit weight ()

    - e = wGs for saturated soils and Gs is specific gravity (~2.65 for quartz

    sand)

    = (Gs+e)/(1+e)w for saturated soils

    - Important mechanical properties to tell-tale the soil compressibility

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    14/57

    Differences of Coarse-Grained and Fine-Grained Soils

    - The specific surface of clays is minimum 50,000 time more

    than sands

    - Fine-grained soils show significant volume changes as the

    loading and water content changes

    - Effects of surface forces are relatively important for fine-

    rained soils

    Activity=

    PI/(% by weight of

    clay)

    Self-weight force

    Inter-particleforce on contact

    area

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    15/57

    Packing of Coarse-Grained Soils

    Cubic Array

    n =0.47

    Densest array

    n =0.25

    - Specific volume (v)= V/Vs

    where V = the volume of a sample containing a volume Vs of soil grains

    - Void ratio (e) where e =Vw/Vs for saturated soil, v= 1+e

    - Porosity = Vw/V for saturated soil

    Coarse-grained soils

    consistency

    Dr e n kN/m

    3

    v.loose 0.2 1.13 0.53 17.7

    loose 0.4 0.93 0.48 18.5

    m.dense 0.6 0.73 0.42 19.5

    dense 0.8 0.53 0.35 20.8

    v.dense >0.8

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    16/57

    Type of soils specific vol void ratio porosity unit weight

    v e n

    kN/m3

    montmorillonite 10 9 0.9 11.7

    Kaolin 3 2 0.7 15.5

    Range of Specific Volume for Fine-Grained Soils

    Under large loads, the specific volume of clay soils may be reduced to as little as v=

    1.2 as the flat clay plate become nearly parallel

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    17/57

    Atterberg Limits Basic Behaviour of Fine-GrainedSoil

    Liquid limit determines thewater content at which the soil

    has weakened so much it starts

    to flow like a liquid

    Plastic limit determines the

    water content at which the soil

    has become so brittle that it

    crumbles

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    18/57

    Limits of Consistency for Soils

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    19/57

    Generalized Stress-Strain Response for VariousStates of a Soil

    LI < 0

    Brittle Solid or

    Semi Solid

    0 < LI < 1

    Plastic Solid

    LI > 0

    Liquid

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    20/57

    Consistency of Fine-Grained Soils

    Consistency Identification UndrainedStrength

    cu, kPa

    SPT N, blowcounts/30cm

    Very soft Extrudes between fingers < 20 0 2

    Soft Easily moulded in fingers 20 40 2- 4

    Firm Moulded by strong finger

    pressure

    40-75 4- 8

    Stiff Cannot be moulded in

    fingers

    75-100 8-15

    Very Stiff Brittle and very tough > 150 15 - 30

    w LL & LI = 1, cu ~ 1.5kPa and

    w PL & LI = 0, cu ~ 150kPa

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    21/57

    Example of Good Presentation of Subsoil Profile

    (After Lehane 2003)

    35%

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    22/57

    Ground Water Table from Water Stand Pipe

    Monitor the Fluctuation of Water Table

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    23/57

    Summary of Basic Information Required ForAssessment of Soil Stiffness

    Information Required Basic Properties

    Soil Types Fine-grained & coarse-grained

    Particle Size Distribution Dominant grain size/Soil origin

    Unit Weight & Specific Gravity Stress Profile and Void Ratio & SoilConsistency

    Moisture Content Void Ratio and Soil States

    Atterberg Limit LL, PL and PI, LI & Soil Consistency

    Ground Water Table Stress Profile & Max Stress

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    24/57

    Assessment of Soil Stiffness from Laboratory

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    25/57

    Constrained Modulus Eoed from Oedometer

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    26/57

    (After Janbu 1963)

    Typical Range of Eoed for Primary Loading of NC Soils

    m = 0.5 for SAND

    = 0.75 for SILT

    = 1 for CLAY

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    27/57

    Eoed for Primary Loading from Porosity of NC Soils

    eo ~ wGs where w = natural moisture content

    Gs= specific gravity = 2.65~2.7

    n = e/(1+e)

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    28/57

    Eoed for Primary Loading of Coarse-Grained Soils

    (After Von Sooss 2002)

    Eoedref = 60IDMPa

    emax = 1.3

    emin =0.3

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    29/57

    Eoed for Primary Loading from Liquid Limit (Fine-Grained Soil)

    (After Engel 2001)

    cc = 0.9(wL-0.1) by Terzaghi & Peck 1967

    Eoedref = 230(1+eo)/cc

    1+eo ~ 2.0

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    30/57

    (After Kulhawy and Mayne 1990)

    Compression Index (cc and cr) vs PI

    cc =(PIxGs)/200 ~ PI/74(after Atkinson,1993)

    cs ~ 5cc

    Eoedur ~ 5Eoed

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    31/57

    Modulus E50 from Drained Triaxial Test

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    32/57

    Modulus E50 using Janbu Formula

    E50 =E50ref

    m = 0.5 for SAND

    = 0.75 for SILT

    = 1 for CLAY

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    33/57

    Relationship Between E50ref and Eoedref

    E50 =E50ref

    Eoed =Eoedref

    =

    1

    1 1 2

    50

    1

    1 21

    1

    SAND m= 0.5

    v ((1-v)/v)^0.5 (1-v)/((1-2v)(1+v)) Eref

    50/Eref

    oed

    0.2 2.00 1.11 1.80

    0.25 1.73 1.20 1.44

    0.3 1.53 1.35 1.13

    0.33 1.41 1.50 0.94

    0.35 1.36 1.60 0.85

    0.4 1.22 2.14 0.57

    0.45 1.11 3.79 0.29

    0.49 1.02 17.11 0.06

    SILT m=0.75

    v ((1-v)/v)^0.75 (1-v)/((1-2v)(1+v)) Eref

    50/Eref

    oed

    0.2 2.83 1.11 2.55

    0.25 2.28 1.20 1.90

    0.3 1.89 1.35 1.40

    0.33 1.68 1.50 1.12

    0.35 1.59 1.60 0.99

    0.4 1.36 2.14 0.63

    0.45 1.16 3.79 0.31

    0.49 1.03 17.11 0.06

    CLAY m =1

    v ((1-v)/v) (1-v)/((1-2v)(1+v)) Eref

    50/Eref

    oed

    0.2 4.00 1.11 3.60

    0.25 3.00 1.20 2.50

    0.3 2.33 1.35 1.73

    0.33 2.00 1.50 1.33

    0.35 1.86 1.60 1.16

    0.4 1.50 2.14 0.700.45 1.22 3.79 0.32

    0.49 1.04 17.11 0.06

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    34/57

    Modulus E50u from Undrained Triaxial Test

    Eu

    50= 3G

    50

    E50u

    E50u =200cu ifvf= 1%

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    35/57

    Modulus E50u from Cu and Plasticity Index

    Eu50

    =15000Cu

    Ip%

    For NC Clays

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    36/57

    Eu50

    =15000Cu

    Ip%

    For NC Clays

    2nd Question to Audiences:

    Is Eu50 a stress-dependent parameter ?

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    37/57

    Summary for Soil Stiffness Assessment fromLaboratory Test

    - Always be coupled with the knowledge of basic soil

    properties, particularly on moisture content &stress level & plasticity index (for fine-grained soil)

    - Loading and unloading steps are equally important

    - Cross-check using different tests e.g. Oedometerand Drained Triaxial Test or Undrained Triaxial Test

    - Cross- reference with typical range of soil stiffnessfor various soil types

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    38/57

    Non-Linear Soil Stiffness

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    39/57

    Soil Stiffness Non-linear Stress-Strain Behaviour

    (after Atkinson, 2000)

    Soils are packed withcollection of grainswith grading,mineralogy, shape andtexture.

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    40/57

    Soil Stiffness Yielding and Plastic Straining

    e p

    p related to y by hardening law

    (after Atkinson, 1993)

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    41/57

    Soil Stiffness Rigidity and Non-linearity

    (after Atkinson, 2000)

    -Rigidity = Eo/qf =1/ r

    -Non-linearity = f/ r

    - r is a reference strain

    Soil stiffness is principally related topeak strength and both of themincrease with effective stress andoverconsolidation

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    42/57

    Rigidity and Non-linearity for some commonmaterials

    (after Atkinson, 2000)

    Rigidity Non-linearity

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    43/57

    Characteristic Stiffness-Strain Behaviour

    (after Atkinson, 2000)

    (after Atkinson & Sallfors, 1991 and Mair , 1993)

    very small strain

    small strain

    large strain

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    44/57

    Variation of Stiffness with Strain, Stress & OCR

    (after Atkinson 1993)

    (State parameters A, n, m varies for different soils

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    45/57

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    46/57

    Variation of Stiffness with State Parameters forReconstituted Kaolin Clay

    (after Viggiani & Atkinson 1995)

    n = 0.65

    A=2000

    m=0.2

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    47/57

    Variation of Stiffness with State Parameters forCarbonate Sand

    (after Jovi i & Coop, 1997)

    n = 0.58

    A=4000

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    48/57

    Material Parameters for Go

    (after Viggiani & Atkinson 1995)

    All these parameters A, n& mare related to plasticity index

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    49/57

    Typical Values of Strength and Stiffness of Soils

    (after Tatsuoko & Shibuya, 1992)

    All these parameters A, n& mare related to plasticity index

    80MPa

    600MPa

    80kPa 400kPa

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    50/57

    Variation of rigidity with state and plasticity index

    (after Atkinson, 2000)

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    51/57

    Variation of Failure Strain with State

    (after Atkinson, 2000)

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    52/57

    Non-linear Stress-Strain Expression for Soils

    (after Georgiannou et al. 1991, Coop et al. 1997, Cuccovillo & Coop 1997 &

    Atkinson 2000)

    1

    1

    o = 0.0005% for low plasticity silts

    o = 0.005% for high plasticity clays

    o = 0.0001% for unbonded coarse grained soils

    o = 0.02% for bonded soils and soft rocks

    r = 0.1 to 0.5

    o = 0.001%

    = 0.1%

    Es/Eo = 0.2

    Es/Eo = 0.5

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    53/57

    Variation of Es/Eowith rigidity and non-linearity

    (after Atkinson 2000)

    = 0.1%

    Es/Eo = 0.5

    Es/Eo = 0.2

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    54/57

    Application of Non-Linear Stiffness for Design

    (after Atkinson, 2000)

    (Settlement of model foundation onsands and clay)

    (Stiffness-strain curve from triaxial)

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    55/57

    Summary for Non-linear Soil Stiffness

    - Soil stress-strain behaviour is highly non-linear

    - Non-linear behaviour can be characterized byrigidity and degree of non-linearity

    - Very small strain-stiffness is measurable from fieldshear wave velocity or bender element test

    - Peak strength and failure strain measurable fromroutine laboratory test

    - Stiffness is related to its composition and to its

    current state

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    56/57

    Conclusions

    - The objectives of assessment for soil stiffness should be clear

    particularly for the range of strain level for the targetedapplication (dynamic or static, small strain or large deformation)

    - Basic information e.g. particle composition, unit weight, moisturecontent, Atterberg limits and fluctuation of ground water tableshould be gathered for the assessment of soil stiffness

    - Always cross-check the measured soil stiffness using differenttests or correlation to basic soil properties

  • 7/30/2019 D Internet Myiemorgmy Iemms Assets Doc Alldoc Document 2594 Go

    57/57

    Thank You for Your Attention