10
Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Embed Size (px)

Citation preview

Page 1: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

Intro. Number Theory

Modular e’th roots

Online Cryptography Course Dan Boneh

Page 2: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

Modular e’th rootsWe know how to solve modular linear equations:

a x + b = 0 ⋅ in ZN Solution: x = −b a⋅ -1 in ZN

What about higher degree polynomials?

Example: let p be a prime and c Z∈ p . Can we solve:

x2 – c = 0 , y3 – c = 0 , z37 – c = 0 in Zp

Page 3: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

Modular e’th rootsLet p be a prime and c Z∈ p .

Def: x Z∈ p s.t. xe = c in Zp is called an e’th root of c .

Examples: 71/3 = 6 in

31/2 = 5 in

11/3 = 1 in

21/2 does not exist in

Page 4: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

The easy caseWhen does c1/e in Zp exist? Can we compute it efficiently?

The easy case: suppose gcd( e , p-1 ) = 1Then for all c in (Zp)*: c1/e exists in Zp and is easy to

find.

Proof: let d = e-1 in Zp-1 . Then

d e = 1 in Z⋅ p-1 ⇒

Page 5: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

The case e=2: square rootsIf p is an odd prime then gcd( 2, p-1) ≠ 1

Fact: in , x x⟶ 2 is a 2-to-1 function

Example: in :

Def: x in is a quadratic residue (Q.R.) if it has a square root in

p odd prime the # of Q.R. in is (p-1)/2 + 1 ⇒

1 10

1

2 9

4

3 8

9

4 7

5

5 6

3

x −x

x2

Page 6: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

Euler’s theoremThm: x in (Zp)* is a Q.R. x⟺ (p-1)/2 = 1 in Zp (p odd prime)

Example:

Note: x≠0 x⇒ (p-1)/2 = (xp-1)1/2 = 11/2 { 1, -1 } in Z∈ p

Def: x(p-1)/2 is called the Legendre Symbol of x over p (1798)

in : 15, 25, 35, 45, 55, 65, 75, 85, 95, 105

= 1 -1 1 1 1, -1, -1, -1, 1, -1

Page 7: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

Computing square roots mod pSuppose p = 3 (mod 4)

Lemma: if c (Z∈ p)* is Q.R. then √c = c(p+1)/4 in Zp

Proof:

When p = 1 (mod 4), can also be done efficiently, but a bit harder

run time ≈ O(log3 p)

Page 8: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

Solving quadratic equations mod pSolve: a x⋅ 2 + b x + c = 0 in Z⋅ p

Solution: x = (-b ± √b2 – 4 a c ) / 2a in Z⋅ ⋅ p

• Find (2a)-1 in Zp using extended Euclid.

• Find square root of b2 – 4 a c ⋅ ⋅ in Zp (if one exists)

using a square root algorithm

Page 9: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

Computing e’th roots mod N ??Let N be a composite number and e>1

When does c1/e in ZN exist? Can we compute it efficiently?

Answering these questions requires the factorization of N(as far as we know)

Page 10: Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh

Dan Boneh

End of Segment