31
2/8/2016 1 Daniel J. Gauthier The Ohio State University (614) 247-8477 Department of Physics [email protected] 191 West Woodruff Ave. http://www.researcherid.com/rid/G-1336-2011 Columbus, OH 43235 http://scholar.google.com/citations?user=tXYIYJsAAAAJ Education University of Rochester 1989 Ph.D. in Optics University of Rochester 1983 M.S. in Optics University of Rochester 1982 B.S. in Optics Professional Experience 2016 - Professor of Physics, The Ohio State University 2015 Visiting Professor of Physics, Department of Physics, The Ohio State University 2015 Interim Chair, Department of Physics, Duke University 2013 - 2015 Professor of Electrical and Computer Engineering, Duke University 2011 - 2015 Robert C. Richardson Professor of Physics, Duke University 2007 - 2011 Professor of Physics, Duke University 2005 - 2011 Chair, Department of Physics, Duke University 2004 -2007 Anne T. and Robert M. Bass Professor of Physics 2004 -2011 Professor of Biomedical Engineering, Duke University 2002 -2004 Anne T. and Robert M. Bass Associate Professor of Physics, Duke University 2001 - 2015 Director, Quantum Optoelectronics Laboratory, The Fitzpatrick Institute for Photonics, Duke University 2001 - 2002 Director of Undergraduate Studies, Physics Department, Duke University 1997 - 1999 2000 - 2004 Associate Professor of Biomedical Engineering, Duke University 1999 - 2003 Associate Director, Center for Nonlinear and Complex Systems, Duke University 1999 - 2002 Associate Professor of Physics, Duke University 1995 - 2000 Assistant Research Professor of Biomedical Engineering, Duke University 1992 - 1998 Assistant Professor of Physics, Duke University 1991 Senior Research Scientist, Duke University 1989 -1991 Research Associate, University of Oregon Post-doctoral mentor: Prof. Thomas W. Mossberg 1982 -1989 Research Assistant, University of Rochester Graduate Advisor: Prof. Robert W. Boyd Instabilities and chaos of laser beams propagating through nonlinear optical media 1980 -1982 Optical Technician, Laboratory for Laser Energetics, University of Rochester

Daniel J. Gauthier - phy.duke.eduphy.duke.edu/~gauthier/cv.pdf · Daniel J. Gauthier The Ohio State University ... 2013 - 2015 Professor ... 2013 Kristine E. Callan Method to sense

Embed Size (px)

Citation preview

2/8/2016

1

Daniel J. Gauthier

The Ohio State University (614) 247-8477 Department of Physics [email protected] 191 West Woodruff Ave. http://www.researcherid.com/rid/G-1336-2011 Columbus, OH 43235 http://scholar.google.com/citations?user=tXYIYJsAAAAJ

Education

University of Rochester 1989 Ph.D. in Optics

University of Rochester 1983 M.S. in Optics

University of Rochester 1982 B.S. in Optics

Professional Experience

2016 - Professor of Physics, The Ohio State University 2015 Visiting Professor of Physics, Department of Physics, The Ohio State University 2015 Interim Chair, Department of Physics, Duke University 2013 - 2015 Professor of Electrical and Computer Engineering, Duke University 2011 - 2015 Robert C. Richardson Professor of Physics, Duke University 2007 - 2011 Professor of Physics, Duke University 2005 - 2011 Chair, Department of Physics, Duke University 2004 -2007 Anne T. and Robert M. Bass Professor of Physics 2004 -2011 Professor of Biomedical Engineering, Duke University 2002 -2004 Anne T. and Robert M. Bass Associate Professor of Physics, Duke University 2001 - 2015 Director, Quantum Optoelectronics Laboratory, The Fitzpatrick Institute for Photonics, Duke University 2001 - 2002 Director of Undergraduate Studies, Physics Department, Duke University 1997 - 1999 2000 - 2004 Associate Professor of Biomedical Engineering, Duke University 1999 - 2003 Associate Director, Center for Nonlinear and Complex Systems, Duke University 1999 - 2002 Associate Professor of Physics, Duke University 1995 - 2000 Assistant Research Professor of Biomedical Engineering, Duke University 1992 - 1998 Assistant Professor of Physics, Duke University 1991 Senior Research Scientist, Duke University 1989 -1991 Research Associate, University of Oregon Post-doctoral mentor: Prof. Thomas W. Mossberg 1982 -1989 Research Assistant, University of Rochester Graduate Advisor: Prof. Robert W. Boyd Instabilities and chaos of laser beams propagating through nonlinear optical media 1980 -1982 Optical Technician, Laboratory for Laser Energetics, University of Rochester

2/8/2016

2

Awards

Memberships American Physics Society (Fellow) IEEE Society IEEE Photonics Society Optical Society of America (Fellow) Tau Beta Pi Engineering Society Reviewing Activities Annals of Biomedical Engineering, Applied Physics Letters, ASME Journal of Computational and Nonlinear Dynamics, Biophysical Journal, Chaos, European Commission: Future & Emerging Technologies, German-Israeli Foundation for Scientific Research and Development, IEEE Journal of Quantum Electronics, IEEE/OSA Journal of Lightwave Technology, IET Circuits, Devices & Systems, Israeli National Science Foundation, Journal of the Optical Society of America A and B, Journal of Physics B: Atomic Molecular, and Optical Physics, Nature, Nature Communications, Nature Photonics, Nature Physics, New Journal of Physics, Optica, Optics Communications, Optics Express, Optics Letters, Physica D, Physical Review Letters, Physical Review A, B, and E, Physics Reports, Science, Science Advances, Science Reports, Swiss National Science Foundation, The Research Corporation, The Royal Society, U.S. Army Research Office, U.S. Civilian Research and Development Foundation, U.S. National Science Foundation, U.S. Department of Energy. Patents

Z. Shi, R.W. Boyd, D.J. Gauthier, ‘Fast-Light-and Slow-Light-Based Interferometric Apparatus and Methods,’ U.S. Patent 7,990,540, issued Aug. 2, 2011.

D.J. Gauthier and H.G. Robinson, ‘Compact enhanced performance optical isolator using a Faraday rotator,’ U.S. Patent 5,528,415, issued June 18, 1996.

D.J. Gauthier, R.W. Boyd, R.K. Junquist and L.L. Voci, ‘Phase Conjugate Fizeau Interferometer,’ U.S. Patent 4,938,596, issued July 3, 1990.

2009 Outstanding Referee of the Physical Review and Physical Review Letters 2006 Fellow of the Optical Society of America 2002 Fellow of the American Physical Society 2002 Bass Society of Fellows, Duke University 2000 -2001 Barbara and Randal Smith and Duke University Arts & Sciences Faculty Enrichment Scholar 1997 Honorary Faculty Member, Golden Key National Honor Society 1993 - 1998 National Science Foundation Young Investigator 1992 - 1995 U.S. Army Research Office Young Investigator 1987 - 1989 University Research Initiative Fellow

2/8/2016

3

Professional Activities

2015 - Member, Strategic Advisory Board for QuantIC, the Quantum Enhanced Imaging Hub, Glasgow, UK 2015 - Member, Editorial Board, Physical Review E 2014 - Associate Editor, Optica, Optical Society of America 2012 - 2014 Chair, 2014 New Laser Scientist Workshop 2012 - 2013 Co-Chair, 2013 Division of Laser Science Annual Meeting 2012 - 2013 Member, Technical Program Committee, 2013 International Quantum Electronics

Conference 2011 Member, 2011 Arthur L. Schawlow Prize in Laser Science of the American Physical

Society 2011 Member, Academic Accreditation Review of the Sciences, New York University Program in Abu Dhabi, United Arab Emirates 2009 - 2011 General Co-Chair, Nonlinear Optics 2011 2008 - 2011 Topical Editor, Optics Letters, Optical Society of America 2007 - 2009 Technical Program Committee Member, 2008, 2009 European Quantum Electronics and Laser Science Meeting 2007 - 2009 Technical Program Co-Chair, Nonlinear Optics 2009 2007 - 2008 Member, International Advisory Board, Dynamics Days Europe 2008 2007 - 2008 Chair, Technical Program Committee on Nonlinear Optics, 2008 Quantum Electronics and Laser Science 2006 - 2007 Technical Program Committee Member, Nonlinear Optics 2007 2005 - 2008 Member-at-Large of the Executive Committee of the Division of Laser Science, American Physical Society 2004 - 2005 Technical Program Committee Member 2005 European Quantum Electronics and Laser Science Meeting 2004 Chair, The Fitzpatrick Center’s 4th Annual Meeting: The Physics of Information 2003 Technical Program Chair, Dynamics Days 2004, Chapel Hill, NC 2003 - 2008 Member, Editorial Board, Physical Review A 2003 - 2004 Member, 2004 Max Born Award Committee, Optical Society of America 2000 - 2003 Technical Group Chair of the Nonlinear Optics Technical Group,

Optical Society of America 2000 Organizer, Dynamics Days 2001, Chapel Hill, NC 2000 Technical Program Committee Member, 2000 Southeast Regional Meeting on Optoelectronics, Photonics, and Imaging 1999 - 2000 Technical Program Committee Member, 2000 Quantum Electronics and Laser Science Conference 1998 - 2003 Member-at-Large of the Executive Committee of the Division of Biological Physics, American Physical Society 1998 - 1999 Technical Program Committee Member, 1999 Quantum Electronics and Laser Science Conference

2/8/2016

4

1995 - 1996 Technical Program Committee Member, 26th Winter Colloquium on the Physics of Quantum Electronics 1995 - 1996 Technical Program Committee Member, 1996 Quantum Electronics and Laser Science Conference

Ph.D. Theses Supervised

2016 Bonnie L. Schmittberger Multimode Atomic Pattern Formation via Enhanced Light-atom Interactions 2015 Hannah E. Guilbert Efficient entangled biphoton production and manipulation for quantum applications 2014 David P. Rosin (co-supervised with Prof. Eckehard Schöll, Technical University, Berlin) Dynamics of complex autonomous Boolean networks 2013 Yunhui Zhu Theory and application of SBS-based group velocity manipulation in optical fiber 2013 Kristine E. Callan Method to sense changes in network parameters with high-speed, nonlinear dynamical nodes 2013 Seth D. Cohen Subwavelength sensing using nonlinear feedback in a wave-chaotic cavity 2012 Joel A. Greenberg Collective light-matter interactions via emergent order in cold atoms 2008 Caroline M. Berger Evidence for an unfolded border-collision bifurcation in paced cardiac tissue 2008 Hana Dobrolvony Spatial variation of cardiac restitution properties and the onset of alternans 2008 Andrew M.C. Dawes Using transverse optical patterns for ultra-low-light all-optical switching 2006 Heejeong Jeong Direct observation of optical precursors in a cold potassium gas 2003 Michael D. Stenner Measurement of the information velocity in fast-and slow-light optical pulse propagation 2003 Jonathan N. Blakely Experimental control of a fast chaotic time-delay opto-electronic device 1999 G. Martin Hall Controlling complex behavior in cardiac muscle 1999 William J. Brown Experimental realization of a two-photon Raman laser 1997 David W. Sukow Experimental control of instabilities and chaos in fast dynamical systems 1996 Hope M. Concannon

Two-photon Raman gain in a laser driven potassium vapor

2/8/2016

5

Post-doctoral Research Associates/Research Scientists Mentored

2014 - Dr. Andrés A. Aragoneses 2014 - 2016 Dr. Otti D’Huys 2012 - 2014 Dr. Mario Stipcevic 2012 - 2013 Dr. Christoph Wildfeuer 2012 Dr. Joel Greenberg 2011 - 2013 Dr. Damien Rontani 2008 Dr. Carolyn Martsberger 2008 - 2011 Dr. Rui Zhang 2008 - 2011 Dr. Hugo Leonardo David de Souza Cavalcante 2007 - 2008 Dr. Eduardo Cabrera 2005 - 2007 Dr. Xiaopeng Zhao 2004 - 2008 Dr. Zhaoming Zhu 2003 - 2007 Dr. Lucas Illing 2001 - 2004 Dr. Elena Tolkacheva 1999 Dr. John Swartz 1997 - 1999 Dr. Olivier Pfister 1997 - 1999 Dr. Sonya Bahar 1995 - 1997 Dr. Jeff R. Gardner

2/8/2016

6

External funding

D.J. Gauthier is the Principal Investigator of all grants unless otherwise noted.

Pending Support

1. ‘Single Photon Emitters Bridging Classical and Quantum Functionality,’ National Science Foundation, E. Johnston-Halperin (PI) and R. Kawakami, D.J. Gauthier (Co-PIs), 31 May 16 – 1 Jun 19, Total Direct Costs: $267,571, Total Indirect Costs: $121,417, Total Costs: $388,988.

Current and Past Support

45. ‘Compact single-atom entanglement experiment for quantum networks,’ Army Research Office, W911NF-15-2-0047, D.J. Gauthier (PI, Duke Scientific Manager and Research Collaborator) and P.M. Baker (Co-PI, ARO Staff Researcher), 15 May 15 – 14 May 19, Total Direct Costs: $237,596, Total Indirect Costs: $48,826, Total Costs: $320,000.

44. ‘Hybrid Boolean networks for ultrafast true random number generation,’ Army Research Office, STTR Program, Topic A14A-T002, D.J. Gauthier (Duke PI, subcontractor to Eno River Technologies, LLC), 1 Aug 14 - 31 Jan 15, Total Direct Costs: $28,756, Total Indirect Costs: $16,391, Total Costs: $45,147.

43. ‘Fundamental research on wavelength-agile high-rate quantum key distribution (QKD) in a marine environment,’ Office of Naval Research, D.J. Gauthier (Co-PI, subcontractor with U. Illinois, P. Kwiat PI plus others), 1 Aug 13 - 31 Sep 18, (Gauthier): Total Direct Costs: $936,598, Total Indirect Costs: $533,861, Total Costs: $1,650,558.

42. ‘Scalable Platform for Agile extended-Reach Quantum Communication (SPARQC),’ DARPA Quiness (ARMDEC), J. Kim (PI) and D.J. Gauthier (Co-PI) plus other non-Duke partners, 1 Oct 12 - 30 Sep 15, Total Cost (Gauthier): $57,785.

41. ‘Research Instrumentation (RI): Network Dynamics Measurement Instrument,’ Army Research Office, W911NF-12-1-0424, 20 Aug 12 - 19 Aug 13, Total Costs: $77,813.

40. ‘Enhancing Light-Matter Interfaces via Collective Self-Organization,’ National Science Foundation, PHY-0855399, 1 Sep 12 -31 Aug 16, Total Direct Costs: $325,698, Total Indirect Costs: $154,302, Total Costs: $480,000.

39. ‘Fundamental Experimental Research on the Dynamics of Physical Networks,’ U.S. Army Research Office, W911NF-12-1-0099, 14 Mar 12 -13 Mar 17, Total Direct Costs: $274,912; Total Indirect Costs: $156,701; Total Costs: $476,000.

38. ‘Networks of coupled, time delay optical and opto-electronic oscillators,’ M. Rosenbluh (PI, Bar-Ilan U.), I. Kanter (Bar-Ilan), and D.J. Gauthier (Duke U.), United States -Israel Binational Science Foundation, 1 Oct 11 -30 Sep 15, Total Direct Costs (Duke portion): $22,480; Total Indirect Costs: $2,927; Total Costs: $25,407.

37. ‘STIR: Developing an Experimental Platform for Fundamental Research in Network Dynamics,’ U.S. Army Research Office, W911NF-11-1-0451, 1 Sep 11 -31 May 12, Total Direct Costs: $49,973; Total Indirect Costs: $0; Total Costs: $49,973.

36. ‘Low Cost Chaos Radar,’ Propagation Research Associates, Inc. (sub-contract, Primary Agency: US Army, 2011 STTR Topic #AF06-T024), 1 Aug 11 -31 Jan 12, Total Direct Costs: $28,585, Total Indirect Costs: $13,843, Total Costs: $42,428.

35. ‘Waveguide QED: Quantum Optics of Multiple Two-Level-Systems Strongly Coupled to 1D Bosons,’ H.U. Baranger (PI), D.J. Gauthier, National Science Foundation, PHY-1068698, Total Direct Costs:

2/8/2016

7

$151,455, Total Indirect Costs: $73,545, Total Costs: $225,000.

34. ‘Information on a Photon: Free-Space Quantum Communication (InPho: FSQC),’ D.J. Gauthier (PI), S.M. Barnett (U. Strathclyde), R.W. Boyd (U. Rochester), P.G. Kwiat (U. Illinois), D.A.B. Miller (Stanford U.), M. Padgett (Glasgow U.), and G.A. Tyler (the Optical Sciences Comp.), DARPA DSO, funded through the Army Research Office, 14 Aug 10 -30 Jun 14, W911NF-10-1-0395, Total Direct Costs (Duke portion): $638,148, Total Indirect Costs: $343,028, Total Costs: $981,176. Total Program Costs: $4,492,714.

33. ‘DURIP: Quantum Optical System to Realize Hybrid Quantum Memories,’ Army Research Office, 15 Jun 10 -14 Jun 11, Total Direct Costs: $114,585, Total Indirect Costs: $0, Total Costs: $114,585.

32. ‘Entanglement of Photon Orbital Angular Momentum (EPOAM),’ D.J. Gauthier (PI), R.W. Boyd (Co-PI, U. Rochester), DARPA DSO, 09 Dec 09 -09 Sep 10, Total Direct Costs (Duke portion): $104,139, Total Indirect Costs: $52,838. Total Costs: $162,977. Total Program Costs: $299,976.

31. ‘FY09 MURI Topic #25: Quantum-Optical Circuits of Hybrid Quantum Memories,’ C. Monroe (PI, U. Maryland), J. Taylor and E. Waks (U. Maryland), P. Kwiat and B. Lev (U. Illinois), L. Sham (UCSD), L. Duan and D. Steel (U. Michigan), D. Gauthier and J. Kim (Duke U.), U. Maryland (sub-contract, Primary Agency: Army Research Office), 01 Jun 09 -05 May 14, Total Direct Costs (Gauthier portion): $103,980, Total Indirect Costs: $58,229, Total Costs: $162,209. Total Program Costs: $6,250,000.

30. ‘Low-Light-Level Nonlinear Optics via Recoil-Induced Resonance,’ National Science Foundation, Grant # PHY-0855399, 1 Jul 09 -30 Jun 12, Total Direct Costs: $319,423, Total Indirect Costs: $160,577, Total Costs: $480,000.

29. ‘Advanced Imaging Using Optical Coherence Tomography (OCT),’ D.J. Gauthier (PI), J. Izatt, A. Wax, DARPA MTO, Contract #FA8650-09-C-7932, 1 Sep 09 -30 Aug 10, Total Direct Costs: $449,672, Total Indirect Costs: $173,529, Total Costs: Total Program Costs: $623,201.

28. ‘Fundamentals and applications of slow light in optical fibers: Phase III,’ R. Boyd (PI, U. Rochester), D. Gauthier, J. Howell (U. Rochester), U. Rochester (sub-contract, Primary Agency: DARPA DSO), Contract PO #5-29910, 05 Aug 08 -31 Aug 10, Total Direct Costs (Duke portion): $166,667, Total Indirect Costs: $93,333, Total Costs: $260,000.

27. ‘DURIP: Characterizing Complexity-Based Sensor Networks,’ Office of Naval Research, 15 Apr 08 -14 Apr 09, Total Direct Costs: $134,523, Total Indirect Costs: $0, Total Costs: $134,523.

26. ‘FY07 MURI Topic #1: Exploiting nonlinear dynamics for novel devices,’ E. Ott (PI, U. Maryland), S. Anlage, T. Antonsen, B. Hunt, P. Krishnaprasad, D. Lathrop, T. Murphy, J. Rodgers, R. Roy, J. Yorke (U. Maryland), and D. Gauthier (Duke U.), U. Maryland (sub-contract, Primary Agency: Office of Naval Research), 1 May 07 -30 Apr 12, Total Direct Costs (Duke portion): $649,942, Total Indirect Costs: $334,771, Total Costs: $984,713. Total Program Costs: $5,696,174.

25. ‘Fundamentals and applications of slow light in optical fibers: Phase II,’ R.W. Boyd (PI, U. Rochester), D. Blumenthal (UCSB), A. Gaeta (Cornell U.), D. Gauthier (Duke U.), J. Howell (U. Rochester), A. Willner (USC), U. Rochester (sub-contract, Primary Agency: DARPA DSO), Contract PO #412785-G-2, 1 Aug 06 -30 Apr 08, Total Direct Costs (Duke portion): $201,388, Total Indirect Costs: $112,450, Total Costs: $313,838.

24. ‘Border-collision bifurcations in cardiac muscle,’ D.J. Gauthier (PI), W. Krassowska, D.G. Schaeffer, National Science Foundation, Grant # PHY-0549259, 1 Sep 06 -31 Aug 09, Total Direct Costs: $231,016, Total Indirect Costs: $128,984, Total Costs: $360,000.

23. ‘Complexity-enable sensor networks and photonic switching devices,’ U.S. Army Research Office, Grant # W911NF-05-1-0228, 16 May 05 -15 May 08, Total Direct Costs: $196,629, Total Indirect

2/8/2016

8

Costs: $103,371, Total Costs: $300,000.

22. ‘Fundamentals and applications of slow light in optical fibers: Phase I,’ R.W. Boyd (PI, U. Rochester), D. Blumenthal (UCSB), A. Gaeta (Cornell U.), D. Gauthier (Duke U.), J. Howell (U. Rochester), A. Willner (USC), U. Rochester (sub-contract, Primary Agency: DARPA DSO), Contract PO #412785-G, 1 Aug 04 -31 July 06, Total Direct Costs (Duke portion): $243,572, Total Indirect Costs: $98,028, Total Costs: $341,600.

21. ‘Topic #A03-058, Ultra-high-frequency chaotic devices for RADAR applications,’ Intelligent Automation, Inc., U.S. Army Research Office, W911NF-04-C-0011 (Sub-contract # 373-1), 14 Dec 03 -1 Jun 04, Total Direct Costs: $14,935, Total Indirect Costs: $8,065, Total Costs: $23,000.

20. ‘Feedback control of bifurcations in spatially-extended cardiac muscle,’ D.J. Gauthier (PI), W. Krassowska, D.G. Schaeffer, National Science Foundation, Grant # PHY-0243584, 15 Jul 03 -14 Jul 06, Total Direct Costs: $194,805, Total Indirect Costs: $105,195, Total Costs: $300,000.

19. ‘Stability of cardiac response to rapid pacing,’ W. Krassowska (PI), D.J. Gauthier, C.S. Henriquez, S.F. Idriss, D.G. Schaeffer, and P.D. Wolf, National Institute of Health, Grant # 1R01-HL-72831,1 May 03 -30 Apr 07, Total Direct Costs $975,000, Total Costs: $1,484,625.

18. ‘Applications of super-enhanced two-photon stimulated emission processes,’ National Science Foundation, Grant # PHY-0139991, 1 Jul 02 -30 Jun 05, Total Direct Costs: $281,301, Total Indirect Costs: $129,763, Total Costs: $411,064. REU Supplement (Sub #1), Total Direct Costs: $4,000, Total Indirect Costs: $1,000, Total Costs: $5,000. REU Supplement (Sub #2), Total Direct Costs: $4,000, Total Indirect Costs: $1,000, Total Costs: $5,000. Equipment Supplement (Sub #3), Total Direct Costs: $40,000, Total Indirect Costs: 0, Total Costs: $40,000.

17. ‘Controlling high-dimensional chaos in optical devices,’ U.S. Army Research Office, Grant # DAAD19-02-1-0223, 10 Jun 02 -9 Jun 05, Total Direct Costs: $165,585, Total Indirect Costs: $89,415, Total Costs: $255,000.

16. ‘Proposal for a Conference: Dynamics Days 2001,’ Office of Naval Research, Grant # N00014-01-1-0070, 1 Jan 01 -30 Sep 01, Total Directs Costs: $13,281, Total Costs: $17,000.

15. ‘Very low energy cardioversion for atrial fibrillation,’ P.D. Wolf (PI) and D.J. Gauthier, National Institute of Health, Grant # 1R01-HL-64238, 1 Jul 00 -30 Jun 04, Total Direct Costs: $700,000, Total Indirect Costs: $407,060, Total Costs: $1,107,060.

14. ‘Feedback control of bifurcations in small pieces of rapidly-paced cardiac muscle,’ D.J. Gauthier (PI), W. Krassowska, D.G. Schaeffer, National Science Foundation, Grant # PHY-9982860, 1 Jul 00 -30 Jun 03, Total Direct Costs: $201,467, Total Indirect Costs: $98,533, Total Costs: $300,000.

13. ‘Theoretical investigation of the two-photon laser,’ National Research Council COBASE program, 1 Aug 99 -31 Jul 00, Total Costs: $2,500.

12. ‘Robust control and synchronization of chaos,’ U.S. Army Research Office, Grant # DAAD19-99-1-0199, 20 Apr 99 -30 Sep 02, Total Direct Costs: $155,843, Total Indirect Costs: $84,157, Total Costs: $240,000.

11. ‘Realization and Characterization of the Two-Photon Laser,’ National Science Foundation, Grant # PHY-9876988, 1Jul 99 -30 Jun 02, Total Direct Costs: $230,618, Total Indirect Costs: $112,555, Total Costs: $343,173.

10. ‘Instrumentation Grant for the Duke University Nonlinear Dynamics Laboratory,’ U.S. Army Research Office, Grant # DAAD19-99-1-0039, 1 Mar 99 -29 Feb 00, Total Direct Costs: $112,298.

2/8/2016

9

9. ‘Introductory Physics: Integrative Approaches to Inquiry-Based Laboratories,’ D.J. Gauthier (PI) and R. Behringer, National Science Foundation, Grant # DUE-9972423, 15 Jul 99 -30 Jun 00, Total Direct Costs: $81,560, Total Indirect Costs: $9,708, Total Costs: $91,268.

8. ‘Dynamics and control of high-speed instabilities and chaos in semiconductor lasers,’ U.S. Army Research Office, Grant # DAAG55-97-1-0308, 1 Jul 97 -30 Jun 00, Total Direct Costs: $68,430, Total Indirect Costs: $36,952, Total Costs: $105,382.

7. ‘Controlling complex electrical activity in the heart using small perturbations,’ The Whitaker Foundation, 1 Apr 96 -31 Mar 99, Total Direct Costs: $172,349, Total Indirect Costs: $33,211, Total Costs: $205,560.

6. ‘Experimental control of chaos,’ U.S. Army Research Office, Grant # DAAH04-95-1-1-0529, 15 Aug 95 -14 Aug 98, Total Direct Costs: $146,851, Total Indirect Costs: $72,968, Total Costs: $219,819.

5. ‘Controlling chaos in high-speed semiconductor lasers,’ U.S. Air Force Office of Scientific Research (Kirtland AFB), Contract # F29601-95-K-0058, 15 Feb 95 -14 Feb 98, Total Direct Costs: $77,516, Total Indirect Costs: $41,598, Total Costs: $119,114.

4. ‘Investigation of new two-photon gain media,’ U.S. Army Research Office, Grant # DAAH04-94-G-0174, 1 Jul 94 -30 Jul 97, Total Direct Costs: $65,758, Total Indirect Costs: $33,405, Total Costs: $99,163.

3. ‘Compact, high-performance Faraday isolators,’ Litton-Airtron Synoptics Synthetic Crystals and Optical Products Division, 1 Jun 93 -31 May 94, Total Direct Costs: $9,869, Total Indirect Costs: $5,014, Total Costs: $14,883.

2. ‘NSF Young Investigator,’ National Science Foundation, Grant #PHY-9357234-001, 1 Sep 92 -28 Feb 99, Total Direct Costs: $268,378, Total Indirect Costs: $20,376, Total Costs: $288,754.

1. ‘Compact, high-power two-photon lasers,’ U.S. Army Research Office, Grant #DAAL03-92-G-0286, 1 Jun 92 -31 May 95, Total Direct Costs: $115,402, Total Indirect Costs: $34,598, Total Costs: $150,000.

2/8/2016

10

Publication List (204 Total Scholarly Works)

Peer-Reviewed Journal Articles

156. T. Brougham, C.F. Wildfeuer, S.M. Barnett and D.J. Gauthier, ‘The information of high-dimensional time-bin encoded photons,’ submitted for publication, Phys. Rev. A (2015).

155. B. L. Schmittberger and D. J. Gauthier, ‘Spontaneous emergence of free-space optical and atomic patterns,’ submitted for publication (2015).

154. M. Stipcevic and D. J. Gauthier, ‘Precise Monte Carlo simulation of single-photon detectors with active quenching,’ submitted for publication (2013).

153. H.E. Guilbert, Y. Wong, and D. J. Gauthier, ‘Observation of elliptical rings in type-I spontaneous parametric down-conversion,’ JOSA B 32, 2096 (2015).

152. R.R. Rivera-Durón, E. Campos-Cantón, I. Campos-Cantón, and D.J. Gauthier, ‘Forced synchronization of autonomous Boolean networks,’ Chaos 25, 083113 (2015).

151. M. Mirhosseini, O.S. Magaña-Loaiza, N.N. O'Sullivan, B. Rodenburg, M. Malik, M.P.J. Lavery, M.J. Padgett, D.J. Gauthier, and R.W. Boyd, ‘High-dimensional quantum cryptography with twisted light,’ New J. Phys. 17, 033033 (2015).

150. N.D. Haynes, M.C Soriano, D.P Rosin, I. Fischer, D.J. Gauthier, ‘Reservoir computing with a single time-delay autonomous Boolean node,’ Phys. Rev. E 91, 020801 (2015).

149. H. E. Guilbert and D. J. Gauthier, ‘Enhancing heralding efficiency and biphoton rate in Type-I spontaneous parametric down-conversion,’ J. Sel. Top. Quantum Electron. 21, 6400610 (2015).

148. L. Weicker, T. Erneux, D.P Rosin, and D.J. Gauthier, ‘Multi-rhythmicity in an optoelectronic oscillator with large delay,’ Phy. Rev. E 91, 012910 (2015).

147. A. Baron, S. Larouche, D. J. Gauthier and D. R. Smith, ‘Scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface,’ J. Opt. Soc. Am. B 32, 9 (2014).

146. D.P. Rosin, D. Rontani, N.D. Haynes, E. Schöll and D.J. Gauthier, ‘Transient scaling and resurgence of chimera states in coupled Boolean phase oscillators,’ Phys. Rev. E (Rapid Communication) 90, 030902 (2014).

145. B. L. Schmittberger and D. J. Gauthier, ‘Enhancing light-atom interactions via atomic bunching,’ Phys. Rev. A 90, 013813 (2014).

144. Y. Zhu, J. A. Greenberg, N. A. Husein, and D. J. Gauthier, ‘Giant all-optical tunable group velocity dispersion in an optical fiber,’ Opt. Express 22, 14382 (2014).

143. Y. Lin, J. C. Ramirez-Giraldo, D.J. Gauthier, K. Stierstorfer, and E. Samei, ‘An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements,’ Med. Phys. 41, 062104 (2014).

142. D.P. Rosin, D. Rontani, and D.J. Gauthier, ‘Synchronization of coupled Boolean phase oscillators,’ Phys. Rev. E 89, 042907 (2014).

141. A. Aragoneses, T. Sorrentino, S. Perrone, D. J. Gauthier, M. C. Torrent, and C. Masoller, ‘Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser,’ Opt. Express 22, 4705 (2014).

140. S.D. Cohen, A. Aragoneses, D. Rontani, M.C. Torrent, C. Masoller, and D.J. Gauthier, ‘Multidimensional subwavelength position sensing using a semiconductor laser with optical feedback,’ Opt. Lett. 38, 4331 (2013).

139. H. L. D. de S. Cavalcante, M. Oriá, D. Sornette, and D. J. Gauthier, ‘Predictability and control of

2/8/2016

11

extreme events in complex systems,’ Phys. Rev. Lett. 111, 198701 (2013).

138. H. Zheng, D.J. Gauthier, and H.U. Baranger, ‘Waveguide-QED-Based Photonic Quantum Computation,’ Phys. Rev. Lett. 111, 090502 (2013).

137. J.E. Vornehm, A. Schweinsberg, Z. Shi, D.J. Gauthier, and R.W. Boyd, ‘Phase locking of multiple optical fiber channels for a slow-light-enabled laser radar system,’ Opt. Express 21, 13094 (2013).

136. A.D. Jackson, D. Huang, D.J. Gauthier, and S. Venakides, ‘Destructive impact of imperfect beam collimation in extraordinary optical transmission,’ J. Opt. Soc. Am. A 30, 1281 (2013).

135. D.P. Rosin, D. Rontani, D.J. Gauthier, and E. Schöll, ‘Experiments on autonomous Boolean networks,’ Chaos 23, 025102 (2013).

134. T. Brougham, S.M. Barnett, K.T. McCusker, P.G. Kwiat, and D.J. Gauthier, ‘Security of high-dimensional quantum key distribution protocols using Franson interferometers,’ J. Phys. B: At. Mol. Opt. Phys. 46, 104010 (2013).

133. D.P. Rosin, D. Rontani, and D.J. Gauthier, ‘Ultra-fast physical generation of random numbers using hybrid Boolean networks,’ Phys. Rev. E 87, 040902(R) (2013).

132. Y. Zhu, J. Kim, and D.J. Gauthier, ‘Aberration-corrected quantum temporal imaging system,’ Phys. Rev. A 87, 043808 (2013).

131. D.P. Rosin, D. Rontani, D.J. Gauthier, and E. Schöll, ‘Control of synchronization patterns in neural-like Boolean networks,’ Phys. Rev. Lett. 110, 104102 (2013).

130. H. Zheng, D.J. Gauthier, and H.U. Baranger, ‘Decoy-state quantum key distribution with nonclassical light generated in a one-dimensional waveguide,’ Opt. Lett. 38, 622 (2013).

129. D.J. Gauthier, ‘Comment on “Generalized grating equation for virtually-imaged phased-array spectral dispersers”,’ Appl. Opt. 51, 8187 (2012).

128. S.D. Cohen, D. Rontani, and D.J. Gauthier, ‘Ultra-high-frequency piecewise-linear chaos using delayed feedback loops,’ Chaos 22, 043112 (2012).

127. D.P. Rosin, D. Rontani, and D.J. Gauthier, and E. Schöll, ‘Excitability in autonomous Boolean networks,’ Europhys. Lett. 100, 30003 (2012).

126. S.D. Cohen and D.J. Gauthier, ‘A pseudo-matched filter for chaos,’ S.D. Cohen and D.J. Gauthier, ' Chaos 22, 033148 (2012).

125. J.A. Greenberg and D.J. Gauthier, ‘Steady-state, cavity-less, multimode superradiance,’ Phys. Rev. A 86, 013823 (2012).

124. J. Leach, E. Bolduc, D.J. Gauthier, and R.W. Boyd, ‘The secure information capacity of photons entangled in high dimensions,’ Phys. Rev. A 85, 060304(R) (2012).

123. E. Poutrina, C. Ciracì, D.J. Gauthier, and D.R. Smith, ‘Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,’ Opt. Express 20, 11005 (2012).

122. J.A. Greenberg and D.J. Gauthier, ‘Higher-order optical nonlinearity at low light levels,’ Eur. Phys. Lett. 98, 24001 (2012).

121. H. Zheng, D.J. Gauthier, and H.U. Baranger, ‘Strongly-correlated photons generated by coupling a three-or four-level system to a waveguide,’ Phys. Rev. A 85, 043832 (2012).

120. S.D. Cohen, H.L.D. de S. Cavalcante, and D.J. Gauthier, ‘Sub-wavelength position sensing using chaos,’ Phys. Rev. Lett. 107, 254103 (2011). Selected as an Editor’s Choice.

119. M. Lee, Y. Zhu, D. J. Gauthier, M. E. Gehm, and M. A. Neifeld, ‘Information-theoretic analysis of

2/8/2016

12

a stimulated-Brillouin-scattering-based slow-light system,’ Appl. Opt. 50, 6063 (2011).

118. H. Zheng, D.J. Gauthier, and H.U. Baranger, ‘Cavity-free photon blockade induced by many-body bound states,’ Phys. Rev. Lett. 107, 223601 (2011).

117. D.P. Rosin, K.E. Callan, D.J. Gauthier, and E. Schöll, ‘Pulse-train solutions and excitability in an optoelectronic oscillator,’ Eur. Phys. Lett. 96, 34001 (2011).

116. J.A. Greenberg, B. L. Schmittberger and D.J. Gauthier, ‘Bunching-induced optical nonlinearity and instability in cold atoms,’ an invited paper in the Nonlinear Optics 2011 Focus Issue, Opt. Express 19, 22535 (2011).

115. R. Zhang, J.A. Greenberg, M.C. Fischer and D.J. Gauthier, ‘Controllable ultra-broadband slow light in a warm Rubidium vapor,’ J. Opt. Soc. Am. B 28, 2578 (2011).

114. H. Jeong, A.M.C. Dawes, and D.J. Gauthier, ‘Carrier-Frequency Dependence of a Step-Modulated Pulse Propagating Through a Weakly Dispersive Single Narrow-Resonance Absorber,’ J. Mod. Opt. 58, 865 (2011).

113. R.Y. Hwang, D.J. Gauthier, D. Wallace, N.A. Afshari, ‘Refractive Changes After Descemet Stripping Endothelial Keratoplasty: A simplified mathematical model,’ Investigative Ophthalmology & Visual Science (IVOS) 52, 1043 (2011).

112. J. Wang, Y. Zhu, R. Zhang and D.J. Gauthier, ‘FSBS resonances observed in a standard highly-nonlinear fiber,’ Opt. Express 19, 5339 (2011).

111. Y. Zhu, M. Lee, M.A. Neifeld, D.J. Gauthier, ‘High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,’ Opt. Express 19, 687 (2011).

110. R. Zhang, Y. Zhu, J. Wang, D.J. Gauthier, ‘Slow Light with A Swept-Frequency Source,’ Opt. Express 18, 27263 (2010).

109. H. Zheng, D.J. Gauthier, H.U. Baranger, ‘Waveguide QED: Many-Body Bound State Effects on Coherent and Fock State Scattering from a Two-Level System,’ Phys. Rev. A 82, 063816 (2010).

108. Y. Zhu, E. Cabrera-Granado, O.G. Calderon, S. Melle, Y. Okawachi, A.L. Gaeta, D.J. Gauthier, ‘Competition between the Modulation Instability and Stimulated Brillouin Scattering in a Broadband Slow Light Device,’ an invited article in the special issue on Slow Light, J. Opt. 12, 104019 (2010).

107. K.E. Oughstun, H. Jeong, D.J. Gauthier, and N.A. Cartwright, ‘Optical precursors in the singular and weak dispersion limits,’ J. Opt. Soc. Am. B 27, 1664 (2010).

106. K.E. Callan, L. Illing, Z. Gao, D.J. Gauthier, and E. Schöll, ‘Broadband chaos generated by an opto-electronic oscillator,’ Phys. Rev. Lett. 104, 113901 (2010).

105. A.M.C. Dawes, D.J. Gauthier, S. Schumacher, N.H. Kwong, R. Binder and A.L. Smirl, ‘Transverse optical patterns for ultra-low-light-level all-optical switching,’ in invited article in Laser & Photon. Rev. 4, 221 (2010).

104. H. L. D. de S. Cavalcante, D. J. Gauthier, J. E. S. Socolar, and R. Zhang, ‘On the Origin of Chaos in Autonomous Boolean Networks,’ Philos. Trans. Royal Soc. A 368, 495 (2010).

103. R.W. Boyd and D.J. Gauthier, ‘Controlling the Velocity of Optical Pulses,’ an invited review in Science 326, 1074 (2009).

102. R. Zhang, H.L.D. de S. Cavalcante, Z. Gao, D.J. Gauthier, J.E.S. Socolar, M. Adams and D.P. Lathrop, ‘Boolean Chaos,’ Phys. Rev. E 80, 045202(R) (2009).

101. W.R. LeFew, S. Venakides, and D.J. Gauthier, ‘Accurate description of optical precursors and their relation to weak-field coherent optical transients,’ Phys. Rev. A 79, 063842 (2009).

2/8/2016

13

100. J.A. Greenberg and D.J. Gauthier, ‘Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances,’ Phys. Rev. A 79, 033414 (2009).

99. G.M. Gehring, R.W. Boyd, A.L. Gaeta, D.J. Gauthier, and A.E. Willner, ‘Fiber-Based Slow-Light Technologies,’ J. Lightwave Tech. 26, 3752 (2008).

98. E. Cabrera-Granado and D.J. Gauthier, ‘Recent advancements in SBS Slow Light,’ an invited article in Opt. Pura Apl. 41, 313 (2008).

97. A.A. Juarez, R. Vilaseca, Z. Zhu, and D.J. Gauthier, ‘Room-temperature spectral hole burning in an engineered inhomogeneously-broadened resonance,’ Opt. Lett. 33, 2374 (2008). Selected to appear in the Virtual Journal of Ultrafast Science, Volume 7, Issue 11, November 2008.

96. E. Cabrera-Granado, O.G. Calderón, Sonia Melle, and D.J. Gauthier, ‘Observation of large 10-Gb/s SBS slow light delay with low distortion using an optimized gain profile,’ Opt. Express 16, 16032 (2008).

95. X. Zhao, D.G. Schaeffer, C.M. Berger, W. Krassowska, and D.J. Gauthier, ‘Cardiac alternans arising from an unfolded border-collision bifurcation,’ J. Comput. Nonlinear Dynam. 3, 041004 (2008).

94. D.W. Evertson, M.R. Holcomb, M.D.C. Eames, M.A.P. Bray, V.Y. Sidorov, J. Xu, H. Wingard, H.M. Dobrovolny, M.C. Woods, D.J. Gauthier, and J.P. Wikswo, ’High-resolution high-speed panoramic cardiac imaging system,’ IEEE Trans. Biomed. Eng. 55, 1241 (2008).

93. R. Pant, M.D. Stenner, M.A. Neifeld, and D.J. Gauthier, ‘Optimal pump profile designs for broadband SBS slow-light systems,’ Opt. Express 16, 2764 (2008).

92. A. M. C. Dawes, L. Illing, J. A. Greenberg, D. J. Gauthier, ‘All-Optical Switching with Transverse Optical Patterns,’ Phys. Rev. A 77, 013833 (2008).

91. Z. Zhu, D.J. Gauthier, and R.W. Boyd, ‘Stored light in an optical fiber via Stimulated Brillouin Scattering,’ Science 318, 1748 (2007).

90. J.A. Greenberg, M. Oriá, A.M.C. Dawes, and D.J. Gauthier, ‘Absorption-induced trapping in an anisotropic magneto-optial trap,’ Opt. Express 15, 17699 (2007).

89. C.M. Berger, J.W. Cain, J.E.S. Socolar, and D.J. Gauthier, ‘Control of Electrical Alternans in Paced Myocardium Using Extended Time-Delay Autosynchronization,’ Phys. Rev. E 76, 041917 (2007). Selected to appear in the Virtual Journal of Biological Physics, Volume 14, November 1, 2007.

88. R. Pant, M.D. Stenner, M.A. Neifeld, Z. Shi, R.W. Boyd, and D.J. Gauthier, ‘Maximizing the opening of eye diagrams for slow-light systems,’ Appl. Opt. 46, 6513 (2007).

87. C.M. Berger, X. Zhao, D.G. Schaeffer, W. Krassowska, H.M. Dobrovolny, and D.J. Gauthier, ‘Period-Doubling Bifurcation to Alternans in Paced Cardiac Tissue: Crossover from Smooth to Border-Collision Characteristics,’ Phys. Rev. Lett. 99, 058101 (2007). Selected to appear in the Virstual Journal of Biological Physics, Volume 14, Issue 3, August 1, 2007.

86. Z. Shi, R. Pant, Z. Zhu, M.D. Stenner, M.A. Neifeld, D.J. Gauthier, and R.W. Boyd, ‘Design of a Tunable Time-Delay Element Using Multiple Gain Lines for Large Fractional Delay with High Data Fidelity,’ Opt. Lett. 32, 1986 (2007).

85. N.H. Brown, H.M. Dobrovolny, P.D. Wolf, and D.J. Gauthier, ‘A fiber-based ratiometric optical cardiac mapping channel using a diffraction grating and split detector,’ Biophys. J. 93, 254 (2007).

84. Z. Shi, R.W. Boyd, D.J. Gauthier, and C.C. Dudley, ‘Enhancing the spectral sensitivity of interferometers using slow-light media,’ Opt. Lett. 32, 915 (2007).

83. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H.J. Chang, R.W. Boyd, Q-H. Park, and D.J. Gauthier, ‘Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber

2/8/2016

14

amplifier,’ Opt. Lett. 32, 906 (2007). Selected to appear in the Virtual Journal of Ultrafast Science, Volume 6, Issue 4, April 2007.

82. Z. Zhu, A.M.C. Dawes, D.J. Gauthier, L. Zhang, and A.E. Willner, ‘Broadband SBS slow light in an optical fiber,’ J. Lightwave Tech. 25, 201 (2007).

81. D.G. Schaeffer, J.W. Cain, D.J. Gauthier, S.S. Kalb, R.A. Oliver, E.G. Tolkacheva, W. Ying, and W. Krassowska, ‘An ionically based mapping model with memory for cardiac restitution,’ Bull. Math. Bio. 69, 459 (2007).

80. X. Zhao, D.G. Schaeffer, C.M. Berger, and D.J. Gauthier, ‘Small-signal amplification of period-doubling bifurcations in smooth iterated maps,’ Nonlinear Dyn. 48, 381 (2007).

79. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, ‘Slow light on Gbit/s differential-phase-shift-keying signals,’ Opt. Express 15, 1878 (2007).

78. G.S. Agarwal, T.N. Dey, and D.J. Gauthier, ‘Competition between Electromagnetically Induced Transparency and Raman Processes,’ Phys. Rev. A 74, 043805 (2006).

77. L. Illing and D. J. Gauthier, ‘Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,’ Chaos 16, 033119 (2006).

76. Z. Zhu and D.J. Gauthier, ‘Nearly transparent SBS slow light in an optical fiber,’ Opt. Express 14, 7238 (2006).

75. H. Jeong, A.M.C. Dawes, and D.J. Gauthier, ‘Direct observation of optical precursors in a region of anomalous dispersion,’ Phys. Rev. Lett. 96, 143901 (2006).

74. J.L. Font, J.J. Fernández-Soler, R. Vilaseca, D.J. Gauthier, ‘Multi-photon lasing in atomic potassium: Steady state and dynamic behavior,’ Phys. Rev. A 72, 063810 (2005). Selected to appear in the Virtual Journal of Ultrafast Science, Volume 5, Issue 1, January 2006.

73. M.D. Stenner and M.A. Neifeld, Z. Zhu, A.M.C. Dawes, and D.J. Gauthier, ‘Distortion management in slow-light pulse delay,’ Opt. Express 13, 9995 (2005).

72. Z. Zhu, D.J. Gauthier, Y. Okawachi, J.E. Sharping, A.L. Gaeta, R.W. Boyd, and A.E. Willner, ‘Numerical study of slow light via stimulated Brillouin scattering in optical fibers,’ J. Opt. Soc. Am. B 22, 2378 (2005).

71. L. Illing and D.J. Gauthier, ‘Hopf bifurcations in time-delay systems with band-limited feedback,’ Physica D 210, 180 (2005).

70. A.M.C. Dawes, L. Illing, S.M. Clark, and D.J. Gauthier, ‘Optical switching in rubidium vapor,’ Science 308, 672 (2005).

69. Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, and A.L. Gaeta, ‘Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,’ Phys. Rev. Lett. 94, 153902 (2005).

68. S.S. Kalb, E.G. Tolkacheva, D.G. Schaeffer, D.J. Gauthier, and W. Krassowska, ‘Restitution in Mapping Models with an Arbitrary Amount of Memory,’ Chaos 15, 023701 (2005). Selected to appear in the Virtual Journal of Biological Physics Research, Volume 9, Issue 8, April 15, 2005.

67. M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, ‘Fast causal information transmission in a medium with a slow group velocity,’ Phys. Rev. Lett. 94, 053902 (2005).

66. R.W. Boyd, D.J. Gauthier, A.L. Gaeta, and A.E. Willner, ‘Maximum time delay achievable on propagation through a slow-light medium,’ Phys. Rev. A 71, 023801 (2005). Erratum: 72, 059903 (2005).

2/8/2016

15

65. J.W. Cain, E.G. Tolkacheva, D.G. Schaeffer, and D.J. Gauthier, ‘Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber,’ Phys. Rev. E 70, 061906 (2004). Selected to appear in the Virtual Journal of Biological Physics Research, Volume 8, Issue 12, December 15, 2004.

64. E. Tolkacheva, M.M. Romeo, and D.J. Gauthier, ‘Control of cardiac alternans in a mapping model with memory,’ Physica D 194, 385 (2004).

63. S.S. Kalb, H. Dobrovolny, E. Tolkacheva, S.F. Idriss, W. Krassowska, and D.J. Gauthier, ‘The restitution portrait: A new method for investigating rate-dependent restitution,’ J. Cardiovas. Electr. 15, 698 (2004). Highlighted on the cover of JCE.

62. J.N. Blakely, L. Illing, and D.J. Gauthier, ‘Controlling fast chaos in delay dynamical systems,’ Phys. Rev. Lett. 92, 193901 (2004). Selected to appear in the Virtual Journal of Ultrafast Science, Volume 3, Issue 6, June 1, 2004.

61. M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, ‘Superluminal speed of information? Reply,’ Nature 429, 6987 (2004).

60. J.N. Blakely, L. Illing, and D.J. Gauthier, ‘High speed chaos in an optical feedback system with flexible timescales,’ IEEE J. Quantum Electron. 40, 299 (2004).

59. E.G. Tolkacheva, M.M. Romeo, M. Guerraty, and D.J. Gauthier, ‘Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics,’ Phys. Rev. E 69, 031904 (2004). Selected to appear in the Virtual Journal of Biological Physics Research, Volume 7, Issue 6, March 15, 2004.

58. M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, ‘The speed of information in a ‘fast light’ optical medium,’ Nature 425, 665 (2003).

57. J.J. Fernández-Soler, J.L. Font, R. Vilaseca, D.J. Gauthier, and A. Kul’minskii, ‘Multi-photon amplification processes and quantum-path interferences in a coherently driven atomic vapor,’ Phys. Rev. A 68, 043823 (2003).

56. D.J. Gauthier, ‘Resource Letter: CC-1: Controlling Chaos,’ an Invited paper in Am. J. Phys. 71, 750 (2003).

55. A. Kul’minskii, D.J. Gauthier, R. Vilaseca, J.J. Fernández-Soler, J.L. Font, ‘Polarization behavior of a cascade/two-photon laser in the presence of an arbitrarily directed magnetic field,’ J. Opt. B: Quantum Semiclass. Opt. 5, 243 (2003).

54. M.D. Stenner and D.J. Gauthier, ‘Pump-beam-instability limits to Raman-gain-doublet ‘fast light’ pulse propagation,’ Phys. Rev. A 67, 063801 (2003).

53. E.G. Tolkacheva, D.G. Schaeffer, D.J. Gauthier, and W. Krassowska, ‘Condition for alternans and stability of the 1:1 response pattern in a ‘memory’ model of paced cardiac dynamics,’ Phys. Rev. E 67, 031904 (2003). Selected to appear in the Virtual Journal of Biological Physics Research, Volume 5, March 15, 2003.

52. E.G. Tolkacheva, D.G. Schae�er, D.J. Gauthier, and C.C. Mitchell, ‘Analysis of the Fenton-Karma model through approximation by a one-dimensional map,’ Chaos 12, 1034 (2002). Selected to appear in the Virtual Journal of Biological Physics Research, Volume 4, November 1, 2002.

51. D.J. Gauthier, G.M. Hall, R.A. Oliver, E.G. Dixon-Tulloch, P.D. Wolf, and S. Bahar, ‘Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method,’ an Invited Article in the Theme Issue on Mapping and Control of Complex Cardiac Arrhythmias, Chaos 12, 952 (2002).

50. G.M. Hall and D.J. Gauthier, ‘Experimental control of cardiac muscle alternans,’ Phys. Rev. Lett.

2/8/2016

16

88, 198102 (2002). Selected to appear in the Virtual Journal of Biological Physics Research, Volume 3, May 1, 2002.

49. R.S. Bennik, V. Wong, A.M. Marino, D.L. Aronstein, R.W. Boyd, C.R. Stroud, Jr., S. Lukishova, and D.J. Gauthier, ‘Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor,’ Phys. Rev. Lett. 88, 113901 (2002). Highlighted on the cover of Phys. Rev. Lett. and was selected for Optics in 2002 by the Optical Society of America.

48. J.J. Fernández-Soler, J.L. Font, R. Vilaseca, D.J. Gauthier, A. Kul’minskii, and O. Pfister, ‘Two-photon amplification and lasing in laser driven potassium atoms: Theoretical analysis,’ Phys. Rev. A (R) 65, 031803 (2002).

47. O. Pfister, W.J. Brown, M.D. Stenner, and D.J. Gauthier, ‘Polarization instabilities in a two-photon laser,’ Phys. Rev. Lett. 86, 4512 (2001). Highlighted by the American Institute of Physics (Physics News Update), Nature Science Portal, and Optics.org, and was selected for Optics in 2002 by the Optical Society of America.

46. R.A. Oliver, G.M. Hall, S. Bahar, W. Krassowska, P.D. Wolf, W. Krassowska, E.G. Dixon-Tulloch, and D. Gauthier, ‘Existence of bistability and correlation with arrhythmogenesis in paced sheep atria,’ J. Cardiovasc. Electr. 11, 797 (2000).

45. J.N. Blakely and D.J. Gauthier, ‘Attractor bubbling in coupled hyperchaotic oscillators,’ an Invited article in the Theme Issue of Control and Synchronization of Chaos, Int. J. Bifurcation Chaos 10, 835 (2000).

44. J.N. Blakely, D.J. Gauthier, G. Johnson, T.L. Carroll, and L.M. Pecora, ‘Experimental investigation of high-quality synchronization of coupled oscillators,’ Chaos 10, 738 (2000).

43. D.W. Sukow and D.J. Gauthier, ‘Entraining power-dropout events in an external cavity semiconductor laser using weak modulation of the injection current,’ IEEE J. Quantum Electron. QE-36, 175 (2000).

42. O. Pfister, W.J. Brown, M.D. Stenner, and D.J. Gauthier, ‘Two-photon stimulated emission in laser-driven alkali-metal atoms using an orthogonal pump-probe geometry,’ Phys. Rev. A (R) 60, R4249 (1999).

41. G.M. Hall, S. Bahar, and D.J. Gauthier, ‘The prevalence of rate-dependent dynamics in cardiac tissue,’ Phys. Rev. Lett. 82, 2995 (1999).

40. A. Chang, J.C. Bienfang, G.M. Hall, J.R. Gardner, and D.J. Gauthier, ‘Stabilizing unstable steady states using extended time-delay autosynchronization,’ Chaos 8, 782 (1998).

39. G.M. Hall, S. Bahar, and D.J. Gauthier, ‘Experimental control of a chaotic integrate-and-fire system using interspike intervals,’ Phys. Rev. E 58, 1685 (1998).

38. J.E.S. Socolar and D.J. Gauthier, ‘Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps,’ Phys. Rev. E 57, 6589 (1998).

37. D.J. Gauthier, ‘Controlling lasers by use of extended time-delay autosynchronization,’ Opt. Lett. 23, 703 (1998).

36. D.J. Gauthier and J.E.S. Socolar, ‘Comment on “Dynamic control of cardiac alternans”,’ Phys. Rev. Lett. 79, 4938 (1997).

35. D.W. Sukow, J.R. Gardner, and D.J. Gauthier, ‘Statistics of power dropout events in semiconductor lasers with time-delayed optical feedback,’ Phys. Rev. A (R) 56, R3370 (1997).

34. D.W. Sukow, M.E. Bleich, D.J. Gauthier, and J.E.S. Socolar, ‘Controlling chaos in fast dynamical systems: Experimental results and theoretical analysis,’ an Invited article in Chaos 7, 560 (1997).

2/8/2016

17

33. W.J. Brown, J.R. Gardner, D.J. Gauthier, and R. Vilaseca, ‘Amplification of laser beams counterpropagating through a potassium vapor: The effects of atomic coherence,’ Phys. Rev. A 56, 3255 (1997).

32. H.M. Concannon, W.J. Brown, J.R. Gardner, and D.J. Gauthier, ‘Observation of large continuous-wave two-photon optical amplification,’ Phys. Rev. A 56, 1519 (1997).

31. W.J. Brown, J.R. Gardner, D.J. Gauthier, and R. Vilaseca, ‘Amplification of laser beams propagating through a collection of strongly-driven, Doppler-broadened two-level atoms,’ Phys. Rev. A (R) 55, R1601 (1997).

30. S.C. Venkataramani, B.R. Hunt, E. Ott, D.J. Gauthier, and J.C. Bienfang, ‘Transitions to Bubbling of Chaotic Systems,’ Phys. Rev. Lett. 77, 5361 (1996).

29. D.J. Gauthier and J.C. Bienfang, ‘Intermittent loss of synchronization in coupled chaotic oscillators: toward a new criterion for high-quality synchronization,’ Phys. Rev. Lett. 77, 1751 (1996).

28. J.E.S. Socolar, D.W. Sukow, and D.J. Gauthier, ‘Stabilizing unstable periodic orbits in fast dynamical systems,’ Phys. Rev. E 50, 3245 (1994).

27. D.J. Gauthier, D.W. Sukow, H.M. Concannon, and J.E.S. Socolar, ‘Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization,’ Phys. Rev E 50, 2343 (1994).

26. B.A. Hooper, D.J. Gauthier, and J.M.J. Madey, ‘Fourth-harmonic generation in a single lithium niobate crystal by cascaded second-harmonic generation,’ Appl. Opt. 33, 6980 (1994).

25. Q. Wu, D.J. Gauthier, and T.W. Mossberg, ‘Optical resonance and coherent transients in dressed atomic systems,’ Phys. Rev. A 50, 1474 (1994).

24. H.M. Concannon and D.J. Gauthier, ‘Simple rate-equation model for two-photon lasers,’ Opt. Lett. 19, 472 (1994).

23. Q. Wu, D.J. Gauthier, and T.W. Mossberg, ‘Phase-sensitive dynamics of bichromatically driven two-level atoms,’ Phys. Rev. A 49, R1519-R1522 (1994).

22. D.J. Gauthier, ‘Alternate schemes for the coherent laser control of chemical reactions,’ J. Chem. Phys. 99, 1618 (1993).

21. D.J. Gauthier, Q. Wu, S.E. Morin and T.W. Mossberg, ‘Realization of a continuous-wave, two-photon-optical laser,’ Phys. Rev. Lett. 68, 464 (1992).

20. T.W. Mossberg, M. Lewenstein and D.J. Gauthier, ‘Trapping and cooling of atoms in a vacuum perturbed in a frequency-dependent manner,’ Phys. Rev. Lett. 67, 1723 (1991).

19. D.J. Gauthier, Y. Zhu and T.W. Mossberg, ‘Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,’ Phys. Rev. Lett. 66, 2460 (1991).

18. G.S. Agarwal, Y. Zhu, D.J. Gauthier and T.W. Mossberg, ‘Spectrum of radiation from atoms under intense bichromatic excitation,’ J. Opt. Soc. Am. B 8, 1163 (1991).

17. J.H. Zhang, D.J. Gauthier, J. Huang and T.W. Mossberg, ‘Use of phase-noisy laser fields in the storage of optical pulseshapes in inhomogeneously broadened absorbers,’ Opt. Lett. 16, 103 (1991).

16. Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael and T.W. Mossberg, ‘Vacuum Rabi splitting as a feature of linear dispersion theory: Analysis and experimental observations,’ Phys. Rev. Lett. 64, 2499 (1990).

15. Y. Zhu, Q. Wu, A. Lezama, D.J. Gauthier and T.W. Mossberg, ‘Resonance fluorescence of two-

2/8/2016

18

level atoms under strong bichromatic excitation,’ Phys. Rev. A 41, 6574 (1990).

14. D.J. Gauthier, M.S. Malcuit, A.L. Gaeta and R.W. Boyd, ‘Polarization bistability of counterpropagating laser beams,’ Phys. Rev. Lett. 64, 1721 (1990).

13. M. Kauranen, D.J. Gauthier, M.S. Malcuit and R.W. Boyd, ‘Polarization properties of optical phase conjugation by two-photon-resonant degenerate four-wave mixing,’ Phys. Rev. A 40, 1908 (1989).

12. D.J. Gauthier, R.W. Boyd, R.K. Jungquist J.B. Lisson and L.L. Voci, ‘Phase-conjugate Fizeau interferometer,’ Opt. Lett. 14, 323 (1989).

11. D.J. Gauthier, M.S. Malcuit and R.W. Boyd, ‘Polarization instabilities of counterpropagating laser beams in sodium vapor,’ Phys. Rev. Lett. 61, 1827 (1988).

10. M.S. Malcuit, D.J. Gauthier and R.W. Boyd, ‘Vector phase conjugation by two-photon resonant degenerate four-wave mixing,’ Opt. Lett. 13, 663 (1988).

9. M.S. Malcuit, D.J. Gauthier and R.W. Boyd, ‘Competition between four-wave mixing and amplified spontaneous emission,’ Hyperfine Interactions 37, 125 (1987).

8. D.J. Gauthier, P. Narum and R.W. Boyd, ‘Observation of deterministic chaos in a phase conjugate mirror,’ Phys. Rev. Lett. 58, 1640 (1987).

7. R.W. Boyd, D.J. Gauthier, M.S. Malcuit and K. Rzazewski, ‘Competition between amplified spontaneous emission and the four-wave mixing process,’ Phys. Rev. A 35, 1648 (1987).

6. D.J. Gauthier, P. Narum and R.W. Boyd, ‘Simple, compact high-performance permanent-magnet Faraday isolator,’ Opt. Lett. 11, 623 (1986).

5. J.A. Benda, D.J. Gauthier and R.W. Boyd, ‘Transient sum-frequency generation in resonant three-level media,’ Phys. Rev. A 32, 3461 (1985).

4. M.S. Malcuit, D.J. Gauthier and R.W. Boyd, ‘Suppression of amplified spontaneous emission by the four-wave mixing process,’ Phys. Rev. Lett. 55, 1086 (1985).

3. J. Krasinski, D.J. Gauthier, M.S. Malcuit and R.W. Boyd, ‘Two-photon conical emission,’ Opt. Commun. 54, 241 (1985).

2. R.W. Boyd, D.J. Gauthier, J. Krasinski and M.S. Malcuit, ‘Continuously tunable sum-frequency generation involving sodium Rydberg states,’ IEEE J. Quantum Electron. QE-20, 1074 (1984).

1. D.J. Gauthier, J. Krasinski and R.W. Boyd, ‘Observation of resonantly enhanced sum-frequency generation involving sodium Rydberg states,’ Opt. Lett. 8, 221 (1983).

Book Chapters

10. K. E. Callan, L. Illing, and D.J. Gauthier, ‘Broadband Chaos,’ in Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, K. Lüge, Ed. (Wiley-VCH Verlag, Weinheim, 2012), Ch. 13, pp. 317-332.

9 R.W. Boyd, D.J. Gauthier, and P. Narum, ‘Causality in superluminal pulse propagation,’ an invited chapter in Time in Quantum Mechanics II, G. Muga, A. Ruschhaupt, A. del Campo, Eds. (Springer, Berlin, 2010), Ch. 7, pp. 175-204.

8. D.J. Gauthier, ‘Superluminal communication in quantum mechanics,’ an invited article in Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, D. Greenberger, K. Hentschel, and Friedel Weinert (Springer-Verlag, Berlin, 2009), pp. 776-769.

7. Z. Zhu, D.J. Gauthier, A.L. Gaeta, and R.W. Boyd, ‘Slow light in optical waveguides,’ an invited chapter in Slow Light: Science and Applications, J.B. Khurgin and R.S. Tucker, Eds. (CRC Press, Boca Raton, 2008), Ch. 3, pp. 37-57.

2/8/2016

19

6. L. Illing, D. J. Gauthier, and J. N. Blakely, ‘Controlling fast chaos in opto-electronic delay dynamical systems,’ an invited chapter in Handbook of Chaos Control, 2nd Ed., E. Schöll, H. G. Schuster, Eds. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008), pp. 407-425.

5. L. Illing, D.J. Gauthier, and R. Roy, ‘Controlling Optical Chaos, Spatio-temporal Dynamics, and Patterns,’ and invited chapter in Advanced in Atomic, Molecular, and Optical Physics, Vol. 54, P.R Berman, E. Arimondo, and C. Lin, Eds. (Elsevier, Amsterdam, 2007), pp. 615-695.

4. D.J. Gauthier, ‘Two-photon lasers,’ an Invited Chapter in Progress in Optics, Vol. 45, E. Wolf, Ed. (Elsevier, Amsterdam, 2003), Ch. 4, pp. 205-272.

3. R.W. Boyd and D.J. Gauthier, ‘ “Slow” and “Fast” Light,’ An Invited Chapter in Progress in Optics Vol. 43, E. Wolf, Ed. (Elsevier, Amsterdam, 2002), Ch. 6, pp. 497-530.

2. D.J. Gauthier, S. Bahar, and G.M. Hall, ‘Controlling the dynamics of cardiac muscle using small electrical stimuli,’ Handbook of Biological Physics, Volume 4: Neuro-informatics, Neural Modeling, F. Moss, S. Gielen, Eds. (Elsevier, Amsterdam, 2001), pp. 229 -256.

1. D.J. Gauthier and H.M. Concannon, ‘The two-photon laser,’ Nonlinear Spectroscopy of Solids: Advances and Applications, B. Di Bartolo and B. Bowlby, eds. (Plenum Press, New York, 1994), pp. 365-384.

Reviews and Related Scholarly Works

10. D.J. Gauthier, ‘Solitons go slow,’ Nature Photon. 1, 92 (2007).

9. D.J. Gauthier and R.W. Boyd, ‘Fast light, slow light, and optical precursors ... What does it all mean?,’ Photonics Spectra, pp. 82-90, January (2007).

8. R.W. Boyd and D.J. Gauthier, ‘Transparency on an optical chip,’ Nature 441, 701 (2006).

7. R.W. Boyd, D.J. Gauthier, and A.L. Gaeta, ‘Applications of slow light in telecommunications,’ Optics and Photonics News 17, 18 (2006).

6. D.J. Gauthier, A.L. Gaeta, and R.W. Boyd, ‘Slow Light: From basics to future prospects,’ Photonics Spectra, pp. 44-50 March (2006).

5. D. Gauthier, ‘Slow light brings faster communication,’ Phys. World 18, No. 12, 30-32 (2005).

4. D.J. Gauthier, ‘Chaos comes again,’ Science 279, 1156 (1998).

3. D.J. Gauthier and D.W. Sukow, ‘Controlling chaos and instabilities in fast optical systems,’ LEOS Newsletter 6, 15 (1996).

2. D.J. Gauthier, ‘The dynamics of optical systems: A renaissance of the 1990’s,’ Nonlinear Science Today 4, (2) 1 (1994).

1. H.M. Concannon and D.J. Gauthier, ‘Recent advances in two-photon lasers,’ Condensed Matter News 3, 7 (1994).

Peer-Reviewed Conference Proceedings

28. B. Christensen, D. Kumor, K. McCusker, V. Chandar, D. Gauthier, and P. Kwiat, 'Information reconciliation in higher-dimensional quantum cryptography,' in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics (CQO10), N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 537-538.

27. D.J. Gauthier, C.F. Wildfeuer, H. Guilbert, M. Stipcevic, B. Christensen, D. Kumor, P. Kwiat, K. McCusker, T. Brougham, and S.M. Barnett, ‘Quantum key distribution using hyperentangled time-bin states,’ in Proceedings of The Tenth Rochester Conference on Coherence on Quantum Optics

2/8/2016

20

(CQO10), N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Eds. (Optical Society of America, 2014), pp. 234-239.

26. J. Kim, R. Clark, D. Gauthier, ‘Low-Noise frequency downconversion for long-distance distribution of entangled atomic qubits,’ Photonics Society Summer Topical Meeting Series, 2013 IEEE, pp. 183-184, 8-10 July 2013, doi: 10.1109/PHOSST.2013.6614563.

25. M. Stipcevic and D.J. Gauthier, ‘Precise Monte Carlo simulations of single-photon detectors,’ in Advanced Photon Counting Techniques VII, Proc. SPIE Defense, Security and Sensing, M.A. Itzler and J.C. Campbell, Eds. 8727, 87270K (2013).

24. G.M. Hall, E.J. Holder, S.D. Cohen, and D.J. Gauthier, ‘Low-cost chaotic radar design,’ Proc. SPIE 8361, 836112 (2012).

23. R. Zhang, Y. Zhu, J. Wang, and D.J. Gauthier, ‘Fiber-length dependence of slow light with a swept-frequency source,’ Proc. SPIE 7949, 794909 (2011).

22. R.W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D.J. Gauthier, ‘Quantum key distribution in a high-dimensional state space: Exploiting the transverse degree of freedom of the photon,’ Proc. SPIE 7948, 79480L (2011).

21. H.M. Dobrovolny, C.M. Berger, N.H. Brown, W.K. Neu and D.J. Gauthier, ‘Spatial Heterogeneity of Restitution Properties and the Onset of Alternans,’ an invited article in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’09, pp. 4186-9 (2009).

20. A. M. C. Dawes and D. J. Gauthier, ‘Using Transverse Patterns for All-Optical Switching,’ in Proceedings of The Ninth Rochester Conference on Coherence on Quantum Optics (CQO9), N. Bigelow, J. Eberly and C. Stroud, Jr., Eds. (American Institute of Physics, Melville, NY, 2008).

19. X.P. Zhao, D.G. Schaeffer, W. Krassowska, and D.J. Gauthier, ‘A model-independent technique for eigenvalue identification and its application in predicting cardiac alternans,’ Proc. ASME Int. Mech. Egr. Congress and Exposition 2007, Vol. 2: Biomed. Biotech. Tech., p. 301 (2008).

18. L. Illing, J. N. Blakely, and D. Gauthier, ‘Time delay systems with band-limited feedback,’ in Proceedings of the ENOC-2005 Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven, The Netherlands, August 7–12, 2005, D.H. Van Campen, M.D. Lazurko, W.P.J.M. Van Der Oever, Eds., pp. 1115-1123 (2005).

17. A.M.C. Dawes, S.M. Clark, L. Illing, D.J. Gauthier, ‘Observation of ultra-low-light-level all-optical switching,’ in Advanced Optical and Quantum Memories and Computing II ; H. J. Coufal, Z. U. Hasan, and A. E. Craig; Eds., Proc. SPIE 5735, 60-68 (2005).

16. D.J. Gauthier, O. Pfister, W.J. Brown, and M.D. Stenner, ‘Polarization Dynamics of a Two-Photon Laser,’ in Coherence and Quantum Optics VIII, N. P. Bigelow, J. H. Eberly, C.R. Stroud and I. A. Walmsley, Eds. (Kluwer Academic/Plenum Publishers, New York, 2003), pp. 131-136.

15. D.J. Gauthier and M.D. Stenner, ‘Pulse propagation in a high-gain bichromatically-driven Raman amplifier,’ in Coherence and Quantum Optics VIII, N. P. Bigelow, J. H. Eberly, C.R. Stroud and I. A. Walmsley, Eds. (Kluwer Academic/Plenum Publishers, New York, 2003), pp. 619-620.

14. D.J. Gauthier, O. Pfister, W.J. Brown, and M.D. Stenner, ‘Dynamics of a two-photon laser,’ in Coherence and Quantum Optics VIII, N. P. Bigelow, J. H. Eberly, C. R. Stroud and I. A. Walmsley, Eds. (Kluwer Academic/Plenum Publishers, New York, 2003), pp. 547-548.

13. D.J. Gauthier, ‘Intermittent loss of synchronized chaos under conditions when high-quality synchronization is expected,’ in Proceedings of the 4th Experimental Chaos Conference, M. Ding, W. Ditto, L. Pecora, M. Spano, and S. Vohra, eds., (World Scientific, Singapore, 1998), pp. 383-

2/8/2016

21

394.

12. S. Bahar, G.M. Hall, R.A. Oliver, W. Krassowska, and D.J. Gauthier, ‘Transitions between 2:1 and 1:1 responses in cardiac muscle induced by added stimuli,’ Proceedings of the First Joint BMES/EMBS Conference 1, 258 (1999).

11. R.A. Oliver, W. Krassowska, G.M. Hall, S. Bahar, P.D. Wolf, D.J. Gauthier, ‘Existence of bistability and correlation with arrhythmogenesis in sheep atria,’ Proceedings of the First Joint BMES/EMBS Conference 1, 157 (1999).

10. D.J. Gauthier and H.M. Concannon, ‘Observation of 30% continuous-wave two-photon amplification,’ Coherence and Quantum Optics VII, J.H. Eberly, L. Mandel and E. Wolf, eds., (Plenum, New York, 1995), pp. 501-502.

9. D.J. Gauthier and H.M. Concannon, ‘Instabilities in two-photon lasers,’ in Chaos in Optics, R. Roy, ed., Proc. SPIE 2039, 198-205 (1993).

8. R.W. Boyd, A.L. Gaeta, D. J. Gauthier and M.S. Malcuit, ‘Bistability and chaotic instabilities of laser beams counterpropagating through sodium vapor,’ in Laser Spectroscopy IX, M.S. Feld, J.E. Thomas and A. Mooradian, eds. (Academic, Boston, 1989), pp. 164-166.

7. D.J. Gauthier, M.S. Malcuit and R.W. Boyd, ‘Bistability and chaos of counterpropagating laser beams,’ in Coherence and Quantum Optics VI, J.H. Eberly, L. Mandel and E. Wolf, eds., (Plenum, New York, 1989), pp. 395-399.

6. M.S. Malcuit, D.J. Gauthier, J.J. Maki and R.W. Boyd, ‘Competition effects among nonlinear optical processes,’ in Laser Spectroscopy VIII, W. Persson and S. Svanberg, eds. (Springer-Verlag, Berlin, 1987), pp. 312-313.

5. R.W. Boyd, D.J. Gauthier, A.L. Gaeta, M.S. Malcuit and P. Narum, ‘Instabilities in four-wave mixing,’ Proc. SPIE 667, pp. 156-162 (1986).

4. R.W. Boyd, D.J. Gauthier and M.S. Malcuit, ‘Instabilities in the propagation of laser beams through atomic vapors,’ in Optical Instabilities, R.W. Boyd, M.G. Raymer and L.M. Narducci, eds. (Cambridge University Press, New York, 1986), pp. 334-336.

3. P. Narum, D.J. Gauthier and R.W. Boyd, ‘Instabilities in a self-pumped phase conjugate mirror,’ in Optical Bistability III, H.M. Gibbs, P. Mandel, N. Peyghambarian and S.D. Smith, eds. (Springer-Verlag, Berlin, 1986), pp. 298-301.

2. R.W. Boyd, D.J. Gauthier, J. Krasinski and M.S. Malcuit, ‘Continuously tunable sum-frequency generation involving Rydberg states,’ in Laser Techniques in the Extreme Ultraviolet, S.E. Harris and T.B. Lucatorto, eds. (American Institute of Physics, New York, 1984), pp. 356-360.

1. D.J. Gauthier, J. Krasinski and R.W. Boyd, ‘A novel technique for resonantly enhanced sum-frequency generation involving Rydberg atomic states,’ in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1983), pp. 517-522.

2/8/2016

22

Presentations

* denotes invited presentation

198. * ‘Dynamics of autonomous, time-delay Boolean networks with application to information processing, 14th Experimental Chaos and Complexity Conference (ECC), Banff Centre, Canada, May 16-19, 2016.

197. * ‘High-dimension quantum key distribution,’ Department of Physics Colloquium, Baylor University, Waco, TX, Feb. 22, 2016.

196. * ‘A journey with Prof. Schöll: From delay oscillators to delay networks,’ Symposium in honor of the 65th birthday of Eckehard Schöll, TU Berlin, Berlin, Germany, Feb. 12, 2016.

195. * ‘Dynamics of autonomous Boolean networks,’ Network Frontier Workshop 2015, Northwestern University, Evanston, IL, Dec. 6, 2015.

194. * ‘High-dimension quantum key distribution,’ Yale University, SSO seminar, New Haven, CT, Oct. 13, 2015.

193. * ‘Dynamics of autonomous Boolean networks,’ Physics Department Seminar, Texas Christian University, Fort Worth, TX, Oct. 9, 2015.

192. * ‘Network Science: A new paradigm for understanding our complex world,’ Dr. Joseph Morgan Memorial Lecture, Texas Christian University, Fort Worth, TX, Oct. 8, 2015.

191. * ‘High-dimension quantum key distribution,’ Bar-Ilan University, Raman-Gan, Israel, Sep. 7, 2015.

190. * ‘Forecasting and Controlling Dragon-King Events in Coupled Dynamical Systems,’ SIAM Conference on Applications of Dynamical Systems (DS15), Snowbird, Utah, May 17-21, 2015.

189. * ‘Dynamics of autonomous time-delay Boolean networks,’ Delay differential equations in physical sciences and engineering, Fields Institute, Toronto, Canada, May 11-15, 2015.

188. * ‘Information on a Photon,’ Special Seminar, Ohio State University, Columbus, OH, Mar. 26, 2015.

187. * ‘Extreme transients in time-delay autonomous Boolean networks, ’ Dynamics Days XXXIV, Houston, TX, Jan. 10, 2015.

186. * ‘Autonomous Boolean networks for experimental network science and chimera states,’ Experimental Chaos and Complexity (ECC) Conference, Aberdeen, Scotland, Aug. 27, 2014.

185. * ‘Superradiance in Driven Ultra-Cold Atoms,’ Physics Department Seminar, Tsinghua University, Beijing, China, Jul. 2, 2014.

184. * ‘Dynamics and control of time-delay Boolean networks,’ Symposium of SFB 910: Applications of Dynamical Networks, Berlin, Germany, Jun. 20, 2014.

183. D.J. Gauthier, ‘Steady-state, cavity-less, multimode superradiance,’ JILA Public Seminar, Boulder, CO, May 15, 2014.

182. * ‘Observation of ultra-low-light-level self-organized pattern formation in driven cold atoms,’ 44st Colloquium on the Physics of Quantum Electronics, Snowbird, UT, Jan. 6, 2014.

181. * ‘Quantum temporal Imaging: The need for advanced dispersion engineering,’ Structured Light in Structureed Media, From classical to quantum optics incubator, Optical Society of America, Washington, DC, Sep. 29 - Oct. 1, 2013.

180. * ‘Superradiance and pattern formation in laser-driven cold atoms,’ Kansas State University, Department of Physics colloquium, Manhattan, KS, Sep. 9, 2013.

2/8/2016

23

179. * ‘Transverse optical patterns for low-light-level optical switching,’ Nonlinear Optics 2013, Kohala Coast, Hawaii, July 21-26, 2013.

178. * ‘Quantum Key Distribution Using Hyperentangled Time-Bin States,’ Quantum Information and Measurement, Rochester, NY, Jun. 19, 2013.

177. ‘Temporal imaging of photonic wavepackets for hybrid quantum memories,’ Quantum Information Processing and Communication International Conference 2013, Florence, Italy, Jun. 30-Jul. 5, 2013.

176. * ‘Tutorial on Autonomous Time-Delay Boolean Networks,’ WISeNet Workshop, Durham, NC, Jun. 6, 2013.

175. ‘Integrating team-based learning across disciplines: Ideas and challenges,’ 2013 Lilly Conference on College and University Teaching, Greensboro, NC, Feb. 16, 2013. Co-presented with R. Vidra and M. Centinkaya-Rundel.

174. * ‘Encoding many bits per photon in high rate quantum key distribution,’ Photonics seminar, Centre for Quantum Technologies, Singapore, Dec. 17, 2012.

173. * ‘Chaos in optoelectronics and applications,’ Photonics Global Conference @ Singapore, Workshop on Breakthroughs in Nonlinear Optics, Singapore, Dec. 16, 2012.

172. * ‘Predictability and control of extreme events in complex systems,’ Applied Dynamics Seminar, University of Maryland, College Park, MD, Dec. 6, 2012.

171. * ‘Steady-state, cavity-less, multimode superradiance,’ 21st International Laser Physics Workshop (LPHYS’12), Modern Trends in Laser Physics, Calgary, Canada, Jul. 23-27, 2012.

170. *‘Dynamics of large-scale autonomous time-delay Boolean networks,’ International Conference on Delayed Complex Systems, Palma de Mallorca, Spain, Jun. 4-8, 2012.

169. * ‘High-Rate Quantum Key Distribution Using High-Dimension Hilbert Spaces,’ MIT EECS/RLE Seminar Series on Optics and Quantum Electronics, Cambridge, MA, Apr. 18, 2012.

168. * ‘Sub-wavelengths position sensing using chaos,’ Institute of Optics Colloquium, University of Rochester, Rochester NY, Apr. 16, 2012.

167. * ‘Dynamics of autonomous Boolean networks,’ Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Spain, Mar. 22, 2012.

165. * ‘Quantum Key Distribution Using Hyperentanglement,’ Quantum Information and Measurement Conference, Berlin, Germany, Mar. 20, 2012.

164. * ‘Sub-wavelength position sensing using chaos,’ Department of Physics Colloquium, Northwestern University, Evanston, IL, Jan. 27, 2012.

163. * ‘Steady-state, cavity-less, multimode superradiance,’ QI/AMO Seminar, Department of Physics, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, Jan. 25, 2012.

162. * ‘Spontaneous symmetry breaking in optical patterns generated by the interaction of light and matter waves, ’ Fifth ‘Rio de la Plata’ Workshop on Lasers Dynamics and Nonlinear Photonics, Colonia del Sacramento, Uruguay, Dec. 6-9, 2011.

161. * ‘Sub-wavelength imaging using chaos,’ Nonlinear Physics and Applications (NOLPA2011), Joao Pessoa, Brazil, Sep. 5-8, 2011.

160. * ‘Cooling-induced optical nonlinearity: Record-breaking fifth-order nonlinear susceptibility observed in laser-driven cold atoms,’ Physics Department seminar, Universidad Federal de Paraiba, Joao Pessoa, Brazil, Sep. 2, 2011.

159. * ‘High rate quantum key distribution,’ Quantum Photonics Seminar, University of Ottawa, Ottawa,

2/8/2016

24

Canada, Feb. 2, 2011.

158. * ‘High rate quantum key distribution,’ 41st Colloquium on the Physics of Quantum Electronics, Snowbird, UT, Jan. 5, 2011.

157. * ‘Toward Single-Photon Nonlinear Optics via Self-Assembled Ultracold Atoms,’ Frontiers in Optics 2010/Division of Laser Science XXVI, Rochester, NY, October 26, 2010.

156. * ‘High throughput, high bit-per-photon quantum communication,’ QIBEC (Quantum Information/BEC) Seminar, NIST, Gaithersburg, MD, Sep. 24, 2010.

155. ‘Observation of chaos in small networks of Boolean-like logic circuits,’ The 11th Experimental Chaos and Complexity Conference, Lille, France, Jun. 1, 2010.

154. * ‘Using self-assembly to enable single-photon nonlinear optics,’ EECS Distinguished Seminar Series, Northwestern University, May 26, 2010.

153. * ‘Nonlinear stability analysis of a time-delay opto-electronic oscillator,’ Center for Nonlinear and Complex Systems Seminar, Duke University, Durham, NC, Apr. 13, 2010.

152. * ‘Observation of chaos in small networks of Boolean-like logic circuits,’ SCCAMM Workshop on Nonlinear Dynamics of Networks, University of Maryland, College Park, MD, Apr. 9, 2010.

151. * ‘Slow light applications of forward stimulated Brillouin scattering,’ Photonics West, San Francisco, CA, Jan. 25, 2010.

150. * ‘Superluminal group velocities (a.k.a., Fast Light),’ Southeastern Conference on Undergraduate Women in Physics, Durham, NC, Jan. 17, 2010.

149. * ‘Boolean Chaos,’ Dynamics Days 2010, Chicago, Il, Jan. 4-7, 2010.

148. * ‘Boolean Delay Systems,’ Workshop on Delayed Complex Systems, Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany, Oct. 5-9, 2009.

147. * ‘Stored Light and Photonic Signal Processing via Stimulated Brillouin Scattering,’ Conference on Slow and Fast Light (SL), Honolulu, HI, Jul. 13, 2009.

146. * ‘Slow Light, Fast Light, Backward Light: What does it all mean?,’ College of Charleston Physics Department Colloquium, Charleston, SC, April 2, 2009.

145. * ‘Room-Temperature Spectral Hole Burning via SBS,’39th Winter Colloquium on the Physics of Quantum Electronics, PQE-2009, Snowbird, UT, Jan. 7, 2009.

144. ‘Room-Temperature Spectral Hole Burning via SBS,’ Frontiers in Optics 2008, Rochester, NY, Oct. 23, 2008.

143. * ‘Slow and stopped light in optical waveguides,’ DTU Fotonik Seminar, Danmarks Tekniske Universitet, Bygning, Denmark, Aug. 29, 2008.

142. * ‘Slow and stopped light in optical waveguides,’ Keynote Lecture, PHOTON 08, Edinburg, UK, Aug. 26-29, 2008.

141. * ‘Chaos in simple high-speed logic-based devices,’ 25 Years of Nonlinear Dynamics at ONR (a celebration of Mike Shlesinger’s 60th Birthday), Amelia Island, FL, Jul. 21, 2008.

140. * ‘Three lectures on the Physics and Application of Slow Light,’ Masters in Photonics Program (Photonics BCN), Barcelona, Spain, Jun. 25-27, 2008.

139. * ‘Boolean delay devices,’ U. Maryland, MURI Seminar, U. Maryland, College Park, MD, Apr. 17, 2008.

138. * ‘Evidence for an unfolded border-collision bifurcation in paced cardiac muscle,’ Nonlinear

2/8/2016

25

Dynamics Seminar, U. Maryland, College Park, MD, Apr. 17, 2008.

137. * ‘Observation of Stopped Light in an Optical Fiber via Stimulated Brillouin Scattering,” 38th Winter Colloquium on the Physics of Quantum Electronics, PQE-2008, Snowbird, UT, Jan. 7, 2008.

136. * ‘Slow Light, Fast Light, Backward Light: What does it all mean?,’ Physics Department Colloquium, Bates College, Lewiston, ME, Nov. 30, 2007.

135. * ‘Observation of Stopped Light in an Optical Fiber,’ 2007 Fitzpatrick Institute of Photonics Annual Meeting, Oct. 11, 2007.

134. * ‘Slow Light, Fast Light, Backward Light: What does it all mean?,’ Physics Department Colloquium, Wake Forest University, Winston-Salem, NC, Sep. 27, 2007.

133. * ‘Progress on stopped light and large-delay slow light in optical fibers,’ Optical Society of America, Topical meeting on Slow and Fast Light, Salt Lake City, UT, Jul. 11, 2007.

132. * ‘Tutorial: Slow-light in room-temperature optical waveguides,’ International Quantum Electronics Conference (IQEC) 2007, Munich, Germany, Jun. 19, 2007.

131. * ‘Broadband chaos in time-delay photonic and electronic devices: Potential implications for sensor networks,’ Nonlinear Dynamics Seminar, University of Maryland, College Park, MD, May 23, 2007.

130. ‘Optimizing Broadband SBS Slow Light in an Optical Fiber,’ Laser Science XXII, Rochester, NY, Oct. 9, 2006.

129. * ‘Ultra-low-light-level all-optical switching,’ Physics Department Colloquium, Ohio University, Athens, OH, Sep. 15, 2006.

128. * ‘Discovery of a new type of bifurcation in paced cardiac muscle,’ Third Workshop Promotionskolleg, Helmholtz Center for Mind and Brain Dynamics, Libenwalde, Germany, July 14, 2006.

127. * ‘Slow-Light in Optical Fibers: From Fundamentals to Applications,’ Physics Department Colloquium, University of Ottawa, Ottawa, Canada, June 20, 2006.

126. * ’Toward Single-Photon Switching for Quantum Information Networks,’ Physics Department Colloquium, Oklahoma State University, Stillwater, OK, Feb. 2, 2006.

125. * ‘Using dissipative spatial structures to achieve ultra-low-light-level optical switching,’ Dynamics Days 2006, Bethesda, MD, Jan. 4-7, 2006.

124. * ‘Toward Single-Photon Switching for Quantum Information Networks,’ Physics Department Colloquium, North Carolina A&T University, Greensboro, NC, Nov. 28, 2005.

123. * ‘Optical Visualization of Nonlinear Pattern Dynamics in Biological Systems,’ Frontiers in Optics 2005/Laser Science XXI, Tucson, AZ, Oct. 18, 2005.

122. * ‘Toward single-photon switching for quantum information networks,’ Eastern Carolina University, Physics Department Colloquium, Greenville, NC, Sep. 23, 2005.

121. * ‘Using dissipative spatial structures to achieve ultra-low-light-level optical switching,’ University of Maryland AMO Seminar, College Park, MD, Sep. 6, 2005.

120. * ‘Using dissipative spatial structures to achieve ultra-low-light-level optical switching,’ XXV Dynamics Days Europe, Berlin, Germany, July 25 -28, 2005.

119. * ‘Characterizing and controlling cardiac dynamics,’ International Seminar and Workshop on Nonlinear Dynamics in Biophysics, Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany, Jun. 27-Jul. 1, 2005.

2/8/2016

26

118. * ‘New approaches for modeling heart dynamics,’ Applied Math Seminar, Duke University, Durham, NC, Mar. 21, 2005

117. * ‘Ultra-low-light-level all-optical switching using dissipative optical patterns,’ NC Photonics Seminar Series, Durham, NC, Jan. 28, 2005.

116. * ‘New techniques for ultra-low light-level nonlinear optics,’ XXXV Winter Colloquium on the Physics of Quantum Electronics, Snowbird, UT, Jan. 3, 2005.

115. * ‘Superluminal light, subluminal information transmission,’ 2004 Annual Meeting of SESAPS, Oak Ridge, TN, Nov. 13, 2004.

114. * ‘The information velocity,’ Center for Photonic Communication and Computing, Northwestern University, Evanston, IL, Oct. 18, 2004.

113. * ‘Tutorial on: Fast and Slow Light,’ 2004 Optical Society of America Annual Meeting, Rochester, NY, Oct. 10-14, 2004.

112. * ‘Superluminal light pulses, subluminal information transmission,’ 2004 Nonlinear Optics, Waikoloa, Hawaii, Aug. 2-6, 2004.

111. * ‘Information Velocity,’ Workshop on Slow Light, University of North Carolina - Charlotte, Charlotte, NC, Jul. 12, 2004.

110. ‘Observation of fast information velocity in a slow-light medium,’ 2004 Annual Meeting of DAMOP, May 26-29, 2004.

109. * ‘Measuring the information velocity in fast-and slow-light media,’ North Carolina State University Physics Department Colloquium, Raleigh, NC, Mar. 15, 2004.

108. * ‘Measuring the information velocity in fast-and slow-light media,’ MIT/Harvard Center for Ultracold Atoms Seminar, Cambridge, MA, Feb. 24, 2004.

107. * ‘Measuring the information velocity in fast-and slow-light media,’ University of Virginia Physics Department Colloquium, Charlottesville, VA, Feb. 13, 2004.

106. * ‘Measuring the information velocity in fast-and slow-light media,’ XXXIV Winter Colloquium on the Physics of Quantum Electronics, Snowbird, UT, Jan. 6, 2004.

105. * ‘Measuring the information velocity in fast-and slow-light media,’ University of Rochester, Institute of Optics Colloquium, Dec. 9, 2003.

104. * ‘Controlling chaos in fast dynamical systems,’ Laser Science Conference XIX, Tucson, AZ, Oct. 8, 2003.

103. * ‘Measuring the effect of a “fast light” medium on the information velocity,’ Physics Seminar, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Spain, Jul. 2, 2003.

102. * ‘Controlling cardiac dynamics,’ Seminaire Général de Physique, Institut Non Linéaire de Nice, Sophia Antipolis, France, Jun. 27, 2003.

101. * ‘Instability limits to “fast light” optical pulse propagation,’ European Quantum Electronics Conference, Munich, Germany, Jun. 24, 2003.

100. ‘Information velocity in ‘fast light’ optical pulse propagation,’ 2003 Annual Meeting of DAMOP, Boulder, CO, May 21-24, 2003.

99. ‘A new electro-optic device for generating high-speed chaos,’ 2003 Annual Meeting of DAMOP, Boulder, CO, May 21-24, 2003.

2/8/2016

27

98. * ‘Controlling cardiac dynamics,’ General Physics Colloquium, Department of Physics, Cornell University, Apr. 21, 2003.

97. * ‘ “Fast” and “Slow” light,’ Department of Physics Colloquium, Davidson College, Davidson, NC, Oct. 24, 2002.

96. * ‘Controlling cardiac arrhythmias,’ Workshop on Nonlinear Waves in Biology, Aspen Center for Physics, Aspen, CO, Aug. 5, 2002.

95. * ‘Large fast-light pulse advancement,’ Quantum Optics Mini Program, Institute for Theoretical Physics, Santa Barbara, CA, Jul. 18, 2002.

94. ‘Instability limits to “fast light” propagation,’ 2002 Annual Meeting of the DAMOP, College of William and Mary, Williamsburg, VA, Jun. 1, 2002.

93. * ‘ “Fast” and “Slow” light,’ Department of Physics and Physical Oceanography Colloquium, University of North Carolina at Wilmington, Wilmington, NC, Apr. 26, 2002.

92. * ‘Modulation-instability limits to “fast” light pulse propagation’, XXXII Winter Colloquium on the Physics of Quantum Electronics, Snowbird, UT, Jan. 10, 2002.

91. * ‘The two-photon laser,’ E.O. Hulburt Center & Remote Sensing Division Joint Colloquium Series, Naval Research Laboratory Seminar, Washington, DC, Nov. 29, 2001.

90. * ‘ “Slow” and “Fast” Light,’ 68th Annual Meeting Southeastern Section Meeting of the APS, Charlottesville, VA, Nov. 5, 2001.

89. * ‘Suppressing Alternans in Small Pieces of Periodically-Paced Myocardium,’ Annual Fall Meeting of the Biomedical Engineering Society, Durham, NC, Oct. 4, 2001.

88. ‘Existence of Bistability and Correlation with Arrhythmogenesis in Paced Sheep Atria,’ Biophysics Seminar, Vanderbilt University, Nashville, TN, Jul. 24, 2001.

87. * ‘Polarization dynamics of a two-photon Raman laser,’ Eighth Rochester Conference on Coherence & Quantum Optics, Rochester, NY, Jun. 16, 2001.

86. ‘Pulse propagation in a high-gain bichromatically-driven Raman amplifier,’ Eighth Rochester Conference on Coherence & Quantum Optics Rochester, NY, Jun. 13-16, 2001.

85. * ‘A Flexible Source of Optical Chaos for Use in Communications,’ Center for Engineering Science Advanced Research, Advances in Computational Nonlinear Science Seminar, Oak Ridge National Laboratory, Oak Ridge, TN, May 1, 2001.

84. ‘A Flexible Source of Optical Chaos for Use in Communications,’ Weapons Sciences Directorate, AMSAM-RD-WS-ST Missile Research, Development and Engineering Center, U. S. Army Aviation and Missile Command, Redstone Arsenal, AL, Apr. 23, 2001.

83. * ‘Progress toward controlling fibrillation in sheep atria using small electrical stimuli and chaos-control protocol,’ Workshop on Mapping and Control of Complex Arrhythmias, Université de Montréal, Montréal, Canada, Oct. 29, 2000.

82. * ‘Slow light and the vacuum Rabi splitting,’ Workshop on Physics and Applications of ‘Slow’ light, Institute for Theoretical Atomic and Molecular Physics at the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, Apr. 4, 2000.

81. * ‘Delay-Induced Instabilities in Semiconductor Lasers,’ IEEE Colloquium and Nonlinear Systems Program Seminar, School of Electrical Engineering, Cornell University, Ithaca, NY, Feb. 1, 2000.

80. ‘Preliminary Attempts to Control Experimentally a Fibrillating Sheep Atrium,’ 19th Annual International Conference on Chaos and Nonlinear Dynamics, Dynamics Days 2000, Santa Fe, NM,

2/8/2016

28

Jan. 5-8, 2000.

79. * ‘Controlling Heart Dynamics Using Small Perturbations,’ Simpson Forum, Simpson College, Indianola, IA, Mar. 31, 1999.

78. * ‘Experimental realization of the two-photon Raman laser,’ 29th Winter Colloquium on the Physics of Quantum Electronics, Snowbird, UT, Jan. 6, 1999.

77. * ‘Controlling the Dynamics of Cardiac Tissue using Electrical Stimuli,’ Mathematical Biology Seminar, Duke University, Dec. 2, 1998.

76. * ‘The Two-Photon Laser,’ Southeastern Section of the American Physics Society Annual Meeting, Miami, FL, Nov. 14, 1998.

75. * ‘Nonlinear Dynamics of the Heart,’ Center for Emerging Cardiovascular Technologies Industrial Associates Meeting, Durham, NC, Oct. 22, 1998.

74. * ‘Controlling Heart Dynamics Using Small Perturbations,’ Biophysics Seminar, Vanderbilt University, Nashville, TN, Oct. 8, 1998.

73. * ‘Controlling Cardiac Dynamics,’ Department of Zoology Colloquium, Duke University, Durham, NC, Sep. 14, 1998.

72. * ‘Experimental Control of Cardiac Dynamics Using Small Perturbations,’ Minisymposium on Unstable Periodic Orbits in Biology: Identification and Control, Annual Meeting of the Society for Industrial and Applied Mathematics, Toronto, Canada, Jul. 16, 1998.

71. * ‘Robust Control and Synchronization of Chaos,’ U.S. Army Research Office Seminar, Research Triangle Park, NC, July 1, 1998.

70. * ‘Spatio-Temporal Complexity and Fast Synchronization in a Neuronal Network,’ Annual March Meeting of the American Physics Society, Los Angeles, CA, Mar. 18, 1998.

69. * ‘Controlling Heart Dynamics Using Small Perturbations,’ Center for Emerging Cardiovascular Technologies Video Seminar, Duke University, Durham, NC, Feb. 24, 1998.

68. * ‘Controlling Heart Dynamics Using Small Perturbations,’ Biomedical Engineering Center for Dynamic Control Seminar, Boston University, Boston, MA, Jan. 29, 1998.

67. ‘Controlling Heart Dynamics Using Small Perturbations,’ Dynamics Days, Chapel Hill, NC, Jan. 9, 1998.

66. * ‘Linear and Nonlinear Chaos Control without Reference States,’ Workshop on Theory, Diagnostics and Control of Chaos, Redstone Arsenal, Huntsville, AL, Dec. 5, 1997.

65. * ‘The Two-Photon Laser,’ Department of Physics Colloquium, Georgia Institute of Technology, Atlanta, GA, Nov. 12, 1997.

64. * ‘Controlling Heart Dynamics Using Small Perturbations,’ Nonlinear Dynamics Seminar, Georgia Institute of Technology, Atlanta, GA, Nov. 11, 1997.

63. * ‘Controlling Chaos in Fast Optical Systems,’ Southeastern Section of the American Physics Society Annual Meeting, Nashville, TN, Nov. 6, 1997.

62. * ‘Synchronization of Chaotic Systems,’ 4th Experimental Chaos Conference, Boca Raton, FL, Aug. 8, 1997.

61. * ‘Dynamics and Control of High-Speed Instabilities and Chaos in Semiconductor Lasers,’ Fundamentals and Modeling of Lasers and Ultra Short Pulse Interactions, University College, Cork, Ireland, Jul. 23, 1997.

2/8/2016

29

60. ‘Laser Beam Amplification due to Collective Atomic Recoil,’ Quantum Electronics and Laser Science Conference, Baltimore, MD, May 22, 1997.

59. * ‘Controlling Chaos in Fast Optical Systems,’ American Physics Society Annual March Meeting, Kansas City, MO, Mar. 21, 1997.

58. * ‘Dynamics of Hearts and Brains,’ Nonlinear Dynamics Seminar, Naval Research Laboratory, Washington, DC, Feb. 20, 1997.

57. * ‘Controlling the Dynamics of the Heart Using Small Perturbations,’ Condensed Matter Seminar, University of North Carolina at Chapel Hill, Chapel Hill, NC, Feb. 5, 1997.

56. * ‘The two-photon laser,’ Department of Physics Colloquium, Wake Forest University, Winston-Salem, NC, Sep. 26, 1996.

55. * ‘Issues in controlling chaos in fast optical systems,’ Workshop on Communication by Chaos: Digital Signal Generation by Simple Nonlinear Devices, U.S. Army Research Office, Research Triangle Park, NC, Jun. 5, 1996.

54. * ‘Two-photon lasers and amplifiers,’ Center for Laser Research Colloquium, Stillwater, OK, Mar. 11, 1996.

53. * ‘Controlling chaos in fast optical systems,’ 26th Winter Colloquium on the Physics of Quantum Electronics, Snowbird, UT, Jan. 8, 1996.

52. * ‘Intermittent loss of synchronization in coupled dynamical systems,’ Nonlinear Dynamics Seminar, Department of Physics, University of Maryland, College Park, MD, Dec. 14, 1995.

51. * ‘Intermittent loss of synchronization in coupled dynamical systems,’ Nonlinear Dynamics Seminar, Naval Research Laboratory, Washington, DC, Dec. 13, 1995.

50. * ‘Controlling chaos in fast optical systems,’ IEEE Lasers and Electro-Optics Society Washington/Northern Virginia Monthly Meeting, College Park, MD, Dec. 12, 1995.

49. * ‘Tutorial on chaos and fractals,’ Workshop on Chaos, Fractals and Wavelets in Data Links, Redstone Arsenal, AL, Nov. 14, 1995.

48. * ‘Controlling chaos in fast optical systems,’ IEEE Lasers and Electro-Optics Society Annual Meeting, San Francisco, CA, Oct. 30, 1995.

47. * ‘Control enhanced synchronization: toward controlling spatio-temporal chaos,’ Workshop on Controlling chaos in Hearts and Brains, Pisa, Italy, Jun. 23, 1995.

46. ‘Controlling the unstable steady-states of lasers using continuous feedback,’ Conference on Nonlinear Dynamics in Optical Systems, Rochester, NY, Jun. 7, 1995.

45. ‘Observation of 30% continuous-wave two-photon amplification,’ Seventh Rochester Conference on Coherence and Quantum Optics, Rochester, NY, Jun. 8, 1995.

44. * ‘Large continuous-wave two-photon gain in laser driven alkali atoms,’ National Institute of Standards and Technology Seminar, Boulder, CO, Apr. 7, 1995.

43. * ‘Synchronizing chaos: Application to control of cardiac arrhythmias,’ Duke Electrophysiology Seminar, Durham, NC, Feb. 21, 1995.

42. * ‘Intermittent loss of synchronization in coupled chaotic oscillators,’ Dynamics Days, Houston, TX, Jan. 5, 1995.

41. * ‘Synchronizing chaos - The next step in mastering chaos,’ Nonlinear and Complex Systems Seminar, Duke University, Durham, NC, Nov. 8, 1994.

2/8/2016

30

40. * ‘On-off intermittency in synchronized chaotic systems,’ Optics group seminar, Phillips Laboratory, Albuquerque, NM, Oct. 28, 1994.

39. * ‘Synchronizing chaos - The next step in mastering chaos,’ Condensed Matter Seminar, Pennsylvania State University, State College, PA, Oct. 24, 1994.

38. * ‘Synchronizing chaos - The next step in mastering chaos,’ Condensed Matter Seminar, University of North Carolina at Chapel Hill, Chapel Hill, NC, Oct. 4, 1994.

37. * ‘Controlling chaos in fast dynamical systems,’ Application of Chaos, Fractals, and Complex Spatio-Temporal Systems, Redstone Arsenal, AL, May 27, 1994.

36. * ‘Controlling chaos in fast dynamical systems,’ Dynamics Days, Durham, NC, Jan. 5, 1994.

35. * ‘Controlling chaos in fast dynamical systems,’ Department Colloquium, University of Alabama, Huntsville, AL, Dec. 5, 1993.

34. * ‘Controlling chaos using time-delay auto synchronization,’ Optics group seminar, Phillips Laboratory, Albuquerque, NM, Nov. 19, 1993.

33. * ‘Mastering chaos,’ Department Colloquium, Duke University, Durham, NC, Nov. 10, 1993.

32. * ‘Controlling chaos: the real world,’ Nonlinear and Complex Systems Seminar, Duke University, Durham, NC, Oct. 1993.

31. ‘Two-photon Raman laser,’ Optical Society of America Annual Meeting, Toronto, Canada, Oct. 8, 1993.

30. ‘Electromagnetically enhanced two-photon gain and absorption’, Optical Society of America Annual Meeting, Toronto, Canada, Oct. 7, 1993.

29. * ‘Instabilities in two-photon lasers,’ SPIE Conference on Chaos in Optics, San Diego, CA, Jul. 15, 1993.

28. * ‘The two-photon laser,’ International School of Atomic and Molecular Spectroscopy, Erice, Sicily, Jun. 19, 1993.

27. ‘Dressed-state spectroscopy,’ Optical Society of America Annual Meeting, Albuquerque, NM, Sep. 27, 1992.

26. * ‘New developments in two-photon lasers,’ Multiphoton Processes Gordon Research Conference, New London, NH, Jun. 9, 1992.

25. * ‘Controlling optical chaos,’ Naval Surface Weapons Laboratory, College Park, MD, Nov. 10, 1991.

24. *‘Dressed-state two-photon laser,’ Conference on Quantum Electronics and Laser Science, Baltimore, MD, May 14, 1991.

23. * ‘Realization of a two-photon laser,’ Duke University, Durham, NC, Mar. 21, 1991.

22. * ‘Progress on the two-photon laser,’ University of Toronto, Toronto, Canada, Feb. 1, 1991.

21. * ‘Linewidth narrowing due to stabilization of quantum fluctuations,’ University of Rochester, Rochester, NY, Jan. 28, 1991.

20. ‘Observation of subnatural fluorescence linewidths due to coherent stabilization of quantum fluctuations,’ Optics Society of America Annual Meeting, Boston MA, Nov. 7, 1990.

19. * ‘Two-photon lasers,’ Sixth Annual University of Oregon Chemical Physics Institute Retreat, Charleston, OR, Sep. 14, 1990.

2/8/2016

31

18. * ‘Strongly driven two-level atoms in optical cavities,’ U.S.-Japan Seminar on Quantum Electronic Manipulation of Atoms and Fields, Kyoto, Japan, Sep. 4, 1990.

17. ‘Time-and frequency-domain studies of multiatom vacuum-Rabi splitting in a large cavity,’ International Quantum Electronics Conference, Ananheim, CA, May 23, 1990.

16. * ‘Will chaos plague optical computers?,’ University of Oregon, Eugene, OR, Feb. 26, 1990.

15. * ‘Bistability and chaotic instabilities of laser beams counterpropagating through sodium vapor,’ Ninth International Conference on Laser Spectroscopy, Brentton Woods, NH, Jun. 1989.

14. ‘Instabilities in four-wave mixing with counterpropagating laser beams,’ Sixth Rochester Conference on Coherence and Quantum Optics, Rochester, NY, May 1989.

13. * ‘The effects of instabilities on the performance of nonlinear optical devices,’ Dartmouth College, Hanover, NH, Apr. 10, 1989.

12. * ‘Instabilities in optics,’ New York University, New York, NY, Mar. 6, 1989.

11. * ‘Chaos in optics,’ Lawrence Livermore National Laboratory, Livermore, CA, Feb. 9, 1989.

10. ‘Observation of polarization instabilities and chaos,’ Optical Society of America Annual Meeting, Santa Clara, CA, Nov. 1, 1988.

9. ‘Suppression of N-photon absorption by the four-wave mixing process,’ Fourth International Conference on Multiphoton Processes, Boulder, CO, Jul. 16, 1987.

8. ‘Is a correlation dimension less than two physical?,’ International Workshop on Instabilities, Dynamics and Chaos in Nonlinear Optical Systems, Il Ciocco, Lucca, Italy, Jul. 8, 1987.

7. * ‘Competition effects among nonlinear optical processes,’ Eighth International Conference on Laser Spectroscopy, ˚Are, Sweden, Jun. 22, 1987.

6. * ‘Competition effects in nonlinear optics,’ Norwegian Defense Research Establishment Seminar, Oslo, Norway, Jun. 17, 1987.

5. ‘Chaos in self-pumped four-wave mixing,’ Optical Society of America Annual Meeting, Seattle, WA, Oct. 26, 1986.

4. ‘Observation of deterministic chaos in a passive nonlinear optical system,’ XIV International Quantum Electronics Conference, San Francisco, CA, Jun. 10, 1986.

3. ‘Competition between coherent and incoherent nonlinear optical processes,’ Optical Society of America Annual Meeting, Washington, D.C., Oct. 15, 1985.

2. ‘Continuously tunable sum-frequency generation involving sodium Rydberg states,’ XIII International Quantum Electronics Conference, Anaheim, CA, Jun. 20, 1984.

1. ‘A novel technique for resonantly enhanced sum-frequency generation involving Rydberg atomic states,’ Fifth Rochester Conference on Coherence and Quantum Optics, Rochester, NY, Jun. 13, 1983.