190
Trn Xuân Bang - Trườ ng THPT Chuyên Qung Bình Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010 69 ĐỀ SỐ 5 Câu I.: Hàm sy = x mx x 1 2 (1) 1. Khảo sát, vẽ đồ thị hàm số khi m = 0 (Học sinh tự giải). 2. Tìm m để y có cực đại và cực tiểu. y' = 2 2 2 2 ) 1 ( 2 ) 1 ( ) 1 )( 2 ( m m x x x mx x x m x Để y có cực đại và cực tiểu, điều kiện cần đủ là phương trình y’(x) = 0 có hai nghiệm và y’ đổi dấu khi x biến thiên qua mỗi nghiệm. - x 2 + 2x +m = 0 (2) có hai nghiệm phân biệt khác 1. 0 2 1 0 1 ' m m 1 m Gọi M 1 (x 1, y 1 ) là điẻm cực đại điểm cực tiểu thuộc đồ thị hàm s. x 1, x 2 là nghiệm của (2), y 1 ,y 2 có thtính bằng cách thay x 1 , x 2 vào (1), nhưng cũng có thtính bằng cách khác như sau: Hàm s(1) có dạng y = v u , y’ = v uv v u 2 ' ' . Tại x 1, x 2 ta có y’ = 0 x uv v u 2 , 1 ' ' x x x x v u v u uv uv 2 , 1 2 , 1 2 , 1 2 , 1 ' ' ' 0 ' Vậy để tính y 1,2 ta có thdùng ts' ' v u (đơn giản hơn tsv u ). Với nhận xét này ta có: y 1 = x m x 1 1 2 = -(2x 1 + m); y 2 = -(2x 2 + m) M 1 M 2 = 2 2 1 2 2 1 ) ( ) ( y y x x = 2 2 1 ) ( 5 x x = 5 x x x x 2 1 2 2 1 4 = 5 m 4 4 ĐÁP ÁN ĐỀ DB1 TOÁN A 2002

ĐÁP ÁN DỰ BỊ TOÁN

Embed Size (px)

Citation preview

Page 1: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

69

ĐỀ SỐ 5

Câu I.:

Hàm số y = xmxx

1

2

(1)

1. Khảo sát, vẽ đồ thị hàm số khi m = 0 (Học sinh tự giải).

2. Tìm m để y có cực đại và cực tiểu.

y' = 2

2

2

2

)1(2

)1()1)(2(

mmxx

xmxxxmx

Để y có cực đại và cực tiểu, điều kiện cần và đủ là phương trình y’(x) = 0 có hai nghiệm và y’ đổi dấu khi x biến thiên qua mỗi nghiệm. - x2 + 2x +m = 0 (2) có hai nghiệm phân biệt khác 1.

02101'

mm 1 m

Gọi M1(x1,y1) là điẻm cực đại và điểm cực tiểu thuộc đồ thị hàm số. x1, x2 là nghiệm của (2), y1,y2 có thể tính bằng cách thay x1, x2 vào (1), nhưng cũng có thể tính bằng cách khác như sau:

Hàm số (1) có dạng y = vu , y’ =

vuvvu

2

'' .

Tại x1, x2 ta có y’ = 0 xuvvu2,1

''

xxxx vu

vuuvuv 2,12,12,12,1 '

''0'

Vậy để tính y1,2 ta có thể dùng tỷ số ''

vu (đơn giản hơn tỷ số

vu ). Với nhận xét này

ta có:

y1 = xmx11

2 = -(2x1 + m); y2 = -(2x2 + m)

M1M2 = 2

21

221

)()( yyxx = 221 )(5 xx

= 5 xxxx 21

2

21 4 = 5 m44

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2002

Page 2: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

70

Để M1M2 =10 5(4+4m) = 100 m = 4. Câu II : 1. Phương trình 16 log 327 x x – 3log z3 x2 = 0

Điều kiện:

310

x

x

16 log x3 x 31

- 3log z3 x2 = 0

log x3 x 316

- 3log z3 x2 = 0

x 316

= x6 (x > 0)

x 3166

= x 32

= 1

2. a) 31

3cos2sin1cossin2

xxxx

6 sinx + 3 cosx + 3 = sinx – 2 cosx +3 (dễ thấy sinx – 2 cosx +3 > 0 x)

5 sinx + 5 cosx = 0 sinx = - cosx

tgx = -1 x = - k4

b) Tìm a để axxxx

3cos2sin1cossin2

có nghiệm.

phương trình 2 sinx + cosx + 1 = a(sinx – 2cosx + 3) (2 – a)sinx + (2a + 1)2 cosx = 3a – 1.

Để phương trình có nghiệm, điều kiện cần và đủ là: (2 – a)2 + (2a +1)2 (3a – 1)2

5a2 + 5 9a2 - 6a + 1 4a2 – 6a – 4 0, ’ = 9 + 16 = 25

x = 1

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2002

Page 3: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

71

- 221

a .

Câu III: 1. Viết lại (C) dưới dạng (x + 1)2 + (y – 2)2 = 5

Vậy (C) có tâm I(-1;2), bán kính R = 5 .

Theo giả thiết MAB= 600 , suy

ra AMI = 300 MI = 2AI = 2R = 2 5 .

Vậy M thuộc đường tròn tâm I bán

kính 2 5 có phương trình

(x + 1)2 + (y – 2)2 = (2 5 )2 = 20. Do M thuộc (d) nên toạ độ của M là nghiệm của hệ phương trình.

2021

0122 yx

yx

Từ phương trình đầu, rút y theo x, thế vào phương trình thứ hai ta được: (x + 1)2 + (x – 1)2 = 20 x2 = 9 x = 63 Với x = 3 ta có y = 4. Với x = -3 ta có y = 2. Vậy ta có hai điểm M cần tìm là M1 (3; 4); M2 (-3;-2). 2. Viết lại (S): (x + 2)2 + (y – 3)2 + z2 = 13 – m (điều kiện: m< 13). Mặt cầu (S) có tâm I(-2;3;0),

Bán kính m13 = IN, MN = 8 nên HN = 4,

Suy ra: IH = HNIN 22 = 2413 m = 3m

(điều kiện: m< 3) là khoảng cách từ I đến đường thẳng d.

Trong phương trình xác định d, đặt x = t ta được

422122

tzytzy

M

A

B

I x

- y

+ 1

=0

Hình 20

I

N H M

Hình 21

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2002

Page 4: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

72

y = 21 t + 1; z = t -1.

Vậy d có vectơ chỉ phương (1;21 ;1)=

21 (2;1;2).

Dễ nhận thấy rằng M0(0;1;-1) là một điểm của d.

IM 0 = (-2;2;1). Do đó khoảng cách I đến d bằng h =

n

nIM ;0

nIM ;0 =

1222

;2221

;2112

= (3,6,-6)

IH = h =

n

nIM ;0

3981

212

663222

222

Vậy IH = 9333 mm

m = -12 (thoả mãn điều kiện).

3. Có thể giả sử a = min cba ,, .

Trên cạnh AC lấy điểm E, trên AD lấy điểm F sao cho AB = AE = AF = a Tứ diện ABEF có bốn mặt là tam giác đều bằng nhau nên là tứ diện đều cạnh bằng a. Dể dàng tính được thể tích tứ diện đều cạnh a là:

)1(12

23

1aV

Gọi V là thể tích khối tứ diện ABCD. Theo công thức thể tích khói tứ diện ta có: (H là chân đường cao hạ từ B).

)2(60sin.

21

E.AFsin6021

)(.31

F)(.31

2

0

0

1

bca

ADAC

A

ACDSBH

AESBH

VV

A

F

C

D B

E

H

Hình 22

c

b

600

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2002

Page 5: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

73

Từ (1) và (2) suy ra: .12

212

abcVabcV

Câu IV:

1. Tính 2

6 3 5

01 cos .sin .cos .I x x xdx

.cos.sin.cos.cos1 236 32

0xdxxxx

Để ý d(1 – cos3x) = 3cos2x.sinxdx, do đó:

)cos1()cos1(1)cos1(31 336

13

2

0xdxxI

)cos1()cos1(31)cos1()cos1(

31 36

73

2

0

361

32

0xdxxdx

2

0

613

32

0

67

3 )cos1(136.

31)cos1(

76.

31

xx

91

1426132

72

9112

Nhận xét: Cũng có thể tính I nhờ phép đổi biến 1 – cos3x = t đưa 1 về dạng

dtttI )1(31 6

11

rồi tính ra kết quả.

2. Tìm 2

sin2

121133cos1

12132

22

0

23 2

0limlim x

xxx

xxxx

* Tính 3 23 222

2

02

3 2

0 113)13(2

sin2

113

2sin2

113 limlim

xxxx

xx

xx

= 236

113)13(

1.

2sin

263 23 22

2

0lim

xxx

x

x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2002

Page 6: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

74

* Tính 224

1122

sin2

2

2sin2

11222

2

02

2

0limlim

xxx

xx

xx

Suy ra 4cos1

1213 23 2

0lim

xxx

x

Câu V:

Bất đẵng thức 501,50

502

dcbab

bbdc

ba

(a, b, c, d IN) Vì a 1 ; d ≤ 50 và c > b (c, b IN) nên c b + 1 thành thử

.50

5050

11 2

bbbb

bdc

baS

Vậy bất đẵng thức của đề ra đã được chứng minh rất đơn giản.

Vậy .50

502

bbb

dc

baS

Dấu đẳng thức xảy ra khi và chỉ khi: a = 1, d = 50, c = b + 1.

Để tìm min S, ta đặt 5011

5050502

bb

bbb

và xét hàm số có biến số liên tục x

1 1( ) (2 48)50 50xf x x

x 2 2

1 1 50'( )50 50

xf xx x

2 50

( ) 5 22 48x

f x xx

Bảng biến thiên: X 2 5 2 48

f '(x) - 0 + f(x)

min f(x)

Chuyển về biểu thức f(x) =

INbb

bbb 482

50502

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2002

Page 7: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

75

Từ bảng biến thiên suy ra khi b biến thiên từ 2 đến 7, f(7) giảm rồi chuyển sang tăng khi b biến thiên từ 8 đến 48. Suy ra min f(b) = min [f(7); f(8)].

Ta có f(7) = 17553

350106

3505749

f(8) = 17553

20061

400122

4005864

( 427 > 424)

Vậy 17553min S khi

50871

dcba

Nhận xét:

Cũng có thể tìm min f(b) = min

Zbb

bb 482

5011

50

Bằng cách xét dãy số ub = b

bb

b50

50150

2

Lập tỉ số:

INbb

bbbbb

bb

bb

uu

b

b 482)50)(1()512(

5050.

)1(5050)1(

2

2

2

21

50)1(0501 21 bbbbu

u

b

b b 6 (do b nguyên)

.750)1(11 bbbu

u

b

b Từ đó được min ub = u7

min S = .17553

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2002

Page 8: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

63

ĐỀ SỐ 4

Câu I:

1. Giải bất phương trình: 12312 xxx

Điều kiện: x 3.

Bất phương trình 12312 xxx

123122

xxx (vì x +12 > x-3 0)

2

2 9 2 12 3 2 1

12 . 3 4

9 52 0 13 4

x x x x

x x

x x x

Do điều kiện x 3, suy ra 3 4x 2. Giải phương trình

2tan cos cos sin (1 tan tan )2xx x x x x

Điều kiện:

1cos0cos

02

cos

0cos

xx

xx

Ta có: sin sin

21 tan tan 12 cos cos

2

xxxx xx

xxx

xx

xx

xxxx

cos1

2coscos

2cos

2coscos

2sinsin

2coscos

Phương trình 2 sintan cos coscos

xx x xx

cosx(1 - cosx) = 0. Do điều kiện cosx ≠ 0 nên phương trình cosx = 1

x = 2k, (k Z) Câu II: 1. y = (x - m)3 - 3x y' = 3(x-m)2 - 3 = 3[(x - m)2 - 1]

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2002

Page 9: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

64

y'(0) = 3(m2 -1) y" = 6(x - m) y"(0) = -6m Điều kiện cần và đủ để hàm số đạt cực tiểu tại x = 0 là y'(0) = 0 m = 1 hoặc m = -1. Với m = 1 thì y"(0) = -6 < 0, hàm đạt cực đại tại x = 0 Với m = -1 thì y"(0) = 6> 0, hàm đạt cực tiểu tại x = 0 Đáp số: m = -1 . 2. Khảo sát và vẽ đồ thị hàm số khi x = 1( Học sinh tự giải) Đồ thị hàm số y = (x - 1)3 - 3x được cho trên hình 18. 3. Tìm k để hệ bất phương trình có nghiệm

)2(1)1(log31log

21

)1(031

32

22

3

xx

kxx

Điều kiện: (x - 1)3 > 0 x > 1 Khi x > 1, bất phương trình (1) (x - 3)3 - 3k < k (1') Bất phương trình (2) log2x + log2(x - 1) 1 (x > 1). x(x - 1) 2

1

022

xxx

1< x 2 Bài toán quy về xác định kđể bất phương trình (1') có nghiệm thõa điều kiện 1< x 2. Dựa vào đồ thị hàm số đã vẽ ở câu 2, xét chế trên khoảng 1< x 2, ta suy ra tập mọi trị số k cần tìm là k > -5 (k >

(1;2]min ( ) (2) 5f x f )

Câu III: 1. Gọi H là trung điểm BC. Do ABC vuông cân tại A nên AH BC; AB = AC SB = SC SH BC. Do đóAHS = 600.

Hình 18

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2002

Page 10: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

65

Ta có AH = .22aBC

Trong đó SAH vuông tại A nên:

SA = 0 3tan 602 2a a

.

2. a) d1 là giao tuyến của hai mặt phẳng x - az - a = 0 và y - z + 1 = 0 nên đi qua M1(a; - 1; 0) và vuông góc với các véc tơ

1u

= (1; 0; - a), 1v

= ( 0; 1; - 1).

Suy ra một véc tơ chỉ phương của d1 là 1a

= [ 1u

, 1v

] = (a; 1; 1).

d2 là giao tuyến của hai mặt phẳng ax + 3y - 3 = 0 và x - 3z - 6 = 0 nên đi qua M2(0; 1; - 2) và vuông góc các véc tơ 2u

= (a; 3; 0), 2v

= ( 1; 0; - 3). Suy ra một véc

tơ chỉ phương của d2 là 2a

= [ 2u

, 2v

] = (3; - a; 1).

1 1M M

= (- a; 2; - 2), 1 2[ ; ]a a

= (1 + a; 3 - a; - a2 - 3)

Ta có 1 2[ ; ]a a

. 1 1M M

= a2 - 3a + 12 > 0, a. Suy ra, không có a để d1 và d2 cắt nhau.

Ta cũng có kết quả là d1 và d2 chéo nhau, với a. Cách 2. Phương trình tham số của các đường thẳng d1 và d2:

1 2

'x = a + atd : y = - 1 + t d : 1 '

3z = t 12 '

3

x tay t

z t

Xét hệ phương trình:

a + at ' (1)

1 1 ' (2)3

12 ' (3)3

tat t

t t

Từ (2) và (3) suy ra: (1 ) ' 12a t

a = - 1 không thỏa

Hình 19

H

S

C

B

A

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2002

Page 11: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

66

121 '1

a ta

, 421

ta

. Thay vào (1), ta có a2 - 3a + 12 = 0 vô

nghiệm. Vậy, không có a để d1 và d2 cắt nhau. b) Với a = 2 ta có:

1 2

2 2 0 2 3 3 0: ; :

1 0 3 6 0x z x y

d dy z x z

Theo a) d2 là giao tuyến của hai mặt phẳng 2x + 3y - 3 = 0 và x - 3z - 6 = 0 nên đi qua M2(0; 1; - 2) và vuông góc các véc tơ 2u

= (2; 3; 0), 2v

= ( 1; 0; - 3). Suy ra

một véc tơ chỉ phương của d2 là 2a

= [ 2u

, 2v

] = (3; - 2; 1).

d1 là giao tuyến của hai mặt phẳng x - 2z - 2 = 0 và y - z + 1 = 0 nên đi qua M1(2; - 1; 0) và vuông góc với các véc tơ 1u

= (1; 0; - 2), 1v

= ( 0; 1; - 1). Suy ra

một véc tơ chỉ phương của d1 là 1a

= [ 1u

, 1v

] = (2; 1; 1).

Mặt phẳng (P) chứa d2 và song song d1 nên đi qua M2(0; 1; - 2) và có một véc tơ pháp tuyến Pn

= [ 1a

, 2a

] = (3; 1; - 7). Suy ra, phương trình của (P):

3(x - 0) + y - 1 - 7(z + 2) = 0 hay: 3x + y - 7z - 15 = 0 Cách 2. Mặt phẳng (P) chứa d2 nên phương trình có dạng: (2 3 3) ( 3 6) 0x y x z , 2 2 0

(2 ) 3 3 (3 6 ) 0x y z , 2 2 0

Vậy (P) có vectơ pháp 2 2 ;3 ; 3n

Trong phương trình xác định d1 đặt x = 2t ta có z = t - 1, y = t - 2.

Do đó vectơ chỉ phương của d1 là )1;1;2(1 n vì (P) // d2 nên 1 2. 0n n

2. 2 1.3 1.3 0 7 0

Chọn = 1 ta được 7 . Thế vào phương trình xác định (P) ta được phương trình của (P) cần tìm: 9x + 3y - 21z - 45= 0 hay 3x + y - 7z - 15 = 0. (P) chứa d2 và (P)// d1 nên khoảng cách giữa d1, d2 là khoảng cách từ một điểm của d1 đến (P).

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2002

Page 12: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

67

Điểm M(2; - 1; 0) thuộc d1 Vậy khoảng cách cần tìm là

2 2 2

3.2 1 7(0) 15 17593 1 7

d

Câu IV: 1. (1 + x)n = a0 + a1x + a2 x2 +....+akxk + anxn.

Hệ thức 11)1(2492

11 nkaaa kkk .

)!1()!1(

!241

)!(!!

91

)!1()!1(!

21

2492

11

knkn

knkn

knkn

CCC kn

kn

kn

2.(k - 1)!(n - k + 1)!=9.k!(n - k)! = 24.(k + 1)!(n - k - 1)!

2.(n - k + 1)(n - k) = 9k (n - k) = 24 (k + 1)k

1183

1122

)1(24)(99)1(2

nk

nk

kknkkn

Để tồn tại k thoã mãn hệ thức (1), điều kiện ắt có và đủ là 3n - 8 = 2n + 2 n = 10 2. Tính

0

121

32 )1(( IIdxxexI x , trong đó: I1 =

0

1

0

1

32

2 1; dxxxIdxxe x

Tính

dxexedxxeI xxx0

1

220

1

21 1

021

=41

43

41

41

21

10

41

21

22222

eeeee x

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2002

Page 13: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

68

Tính I2 = 0 0

3 3

1 1

1 ( 1 1) 1 ( 1)x x dx x x d x

289

1

0

4)1(3

7)1(3

)1()1()1()1(

34

37

0

1

310

1

34

xx

xdxxdx

Vậy I = I1 + I2 = 289

41

43

2 e

= 74

43

2 e

Câu V: Giả thiết:

2cos

2cos

2cos

2sin

2sin

2sin8

2cos

2cos

2cos)1coscos(cos2

2cos

2cos

2cos8)coscoscos3(2

2cos

2cos

2cos

412

2cos

2cos

2cos 222

ACCBBACBA

ACCBBACBA

ACCBBACBA

ACCBBACBA

8 sinA sinB sinC = (sinA + sinB)(sinB + sinC)(sinC + sinA)

sinA = sinB = sinC A = B = C (chỉ cần áp dụng bất đẳng thức côsi cho vế phải).

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2002

Page 14: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

ĐỀ SỐ 8 Câu I:

1. y =

2 22 1 4 1 1 22 1 2 2

x m x m m mxm x m

(1)

y' =

2

2 2

41 22 2

x mx m x m

Rõ ràng y' luôn luôn có 2 nghiệm x1, x2, -m và đổi dấu qua 2 nghiệm đó hàm số luôn luôn có cực trị với m. Hoành độ x1, x2 là nghiệm của phương trình: (x + m) 2 - 4 = 0 x1 = -m - 2, x2 = -m + 2.

Tung độ y1, y2 ta tính bằng tỉ số ''

uv

:

y1 = 1 2

22 2 1 3 2 2 1 5,

2 2 2 2x x

x m x my

Khoảng cách giữa 2 điểm cực trị M1 (x1; y2) và M2(x2; y2) là:

M1 2 22 2 22 1 2 1 2 4 4 32M x x y y

M1M2 = 32 4 2 2. Khảo sát và vẽ đồ thị hàm số khi m = 0

y = 2 4

2x x

x

Câu II: 1. Giải phương trình cos2x + cosx (2tg2x - 1) = 2 Điều kiện: cosx 0

Với điều kiện ấy phương trình cos2x + 22sin cos 2

cosx xx

2

2sin2 cos 2 os2 1 2 sincos

x x c x xx

2 12 sin 1 1 coscos

x xx

2(1-cos2x) (1-cosx) = 1(1+cosx)cosx (1+cosx) [2 (1-cosx)2 - cosx] = 0

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2003

Page 15: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

2

cos 12cos 1 1cos

2 22cos 5cos 23cos 2 (VN)

xx kx

xx kx x

x

2. Giải bất phương trình 1 115.2 1 2 1 2x x x

Đặt 2x = t (t > 0). Bất phương trình 30 1 1 2t t t

i) Nếu 1 4t : bất phương trình 30 1 3 1t t 30t + 1 9t2 - 6t + 1 9t2 - 36t 0 t2 - 4t 0 0 4t , Suy ra: 1 t 4 ii) Nếu 0< t <1:

Bất phương trình tương đương với 30 1 1t t 30t +1 t2 + 2t + 1 t2 - 28t 0 0 28t . Suy ra: 0 t 1 Kết hợp hai trường hợp i) và ii) ta được: 0 < t 4 0 < 2x 4 x 2. Câu III: 1. Gọi H là trung điểm của BC. Do ABC cân tại A nên AH BC. Lại do mp(ABC) mặt phẳng (BCD) nên AH mặt phẳng (BCD). Suy ra hai mặt phẳng trung trực của BD và CD nhận AH làm giao tuyến. Do ABC cân tại A nên hai mặt phẳng trung trực của AB và AC cắt H tại O. Vậy O là tâm mặt cầu ngoại tiếp BCD. Gọi R là bán kính mặt cầu ngoại tiếp BCD. Gọi R là bán kính mặt đó thì R cũng làm bán kính đường tròn ngoại tiếp ABC.

Ta có S ABC = 2 2

4 4a b a bR

R S

Trong ABH ta có AH = 2 2 2

2 2 2 44 2

b a bAB BH a

S ABC = 2 2

2 21 1 4 1. 42 2 2 4

a bBC AH b b a b

A

O

H B

D

C

Hình 31

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2003

Page 16: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Từ dó R = 2 2

2 22 21 44. 44

a b aa bb a b

2. a) Xét hệ:

1 (1)1 2 13 1 0 (2)2 1 0 (3)

x y z

x zx y

Từ (1) và (2) ta có x = 12

, y = -2. Thế vào (3):

2. 1 2 1 4 02

Suy ra d1, d2 không giao nhau. Các vectơ chỉ phương của chúng không song song nên d1, d2 chéo nhau, d1 có vectơ chỉ phương 1n

= (1;2;1).

Trong phương trình xác định d2 cho x = t ta có z = 3t + 1 y = -2t + 1 Do đó d2 có vectơ chỉ phương 2n

= (1;-2;3).

Ta có 1 2.n n

1.1+2 . (-2) + 1 . 3 = 0. Vậy d1, d2 vuông góc với nhau.

b) Lập mặt phẳng (P) chứa d1 và song song với :

có vectơ chỉ phương 3n

= (1;4;-2).

(P) có vectơ pháp n

= (u;v;t). Suy ra: 1 3,n n n n

1 3. 0, . 0n n n n

.

Từ đó: 1 . u + 2 . v + 1 . t = 0,1 . u + 4 . v - 2 . t = 0

u = -4t, v = 3 .2

t

Cho t = 2 ta có u = -8, v = 3. Vậy 8; 6; 2 .n

Dễ nhận thấy điểm (0 ; -1 ; 0) thuộc mặt phẳng (P). vậy mặt phẳng (P) có phương trình: -8(x - 0) + 2(y+1) + 2(z-0) = 0

Hay: -8x + 3y + 2z + 3 = 0 Lập đường thẳng d cắt d1, d2 và song song với Toạ độ giao điểm A của d2 và (P) là nghiệm của hệ:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2003

Page 17: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

3 1 02 1 0

8 3 2 3 0

x zx y

x y z

A (1; -1; 4)

(Rút z, y từ hai phương trình đầu thế vào phương trình thứ 3, giải được x). Trong (P), qua A dựng đường thẳng d // , khi đó d có phương trình chính tắc.

1 1 41 4 2

x y z

Từ đó có d là giao tuyến của hai mặt phẳng: 4x - y - 5 = 0 2x + z - 6 = 0

Suy ra, phương trình tham số của d: 5 46 2

x ty tz t

Câu IV: 1. Tham số của từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạng chữ số 3? Ta coi cặp (2, 3) chỉ là một phần tử "kép", khi đó chỉ có 5 phần tử là 0, 1, (2,3), 4, và 5. Số hoán vị của 5 phần tử này là P5, phải loại trừ số trường hợp phần tử 0 ở trí đầu gồm P4 trường hợp. Chú ý rằng với phần tử kép ta có thể giao hoán nên số trường hợp sẽ được nhân đôi, nên số lượng các số tự nhiên thoả mãn đề bài là: 2. (P5 - P4) = 2. (5! - 4!) = 192 số.

2. Tính I = 1 1

3 2 2 2

0 01 1 .x x dx x x xdx

Đặt 1 - x2 = t dt = -2xdx, xdx = - 12

dt

x = 0 t = 1 x = 1 t = 0

I = 1 31 112 22

0 0

1 112 2

t dt t t dt

= 3 5 12 2

0

1 2 22 3

t

tt t

t

Câu V: Tính các góc của tam giác ABC biết: 4p (p - a) bc (1)

215

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2003

Page 18: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

2 3 3sin sin sin2 2 8A B C

c

(2)

(1) 2 2( )( ) ( )1 1a b c b c a b c a

bc bc

22 (1 cos ) 11 os2 4

bc A Acbc

2 3 3sin sin2 4 2 2A A , do 0

2 2A

(3)

Biến đổi vế trái của hệ thức (2) như sau:

1sin sin sin os os2 2 2 2 2 2A B C B C B Cc c

21 1 1sin 1 sin sin sin2 2 2 2 2 2 2

A A A A

= -2

21 1 1 1sin sin sin2 2 2 2 2 2 4

A A A

= 21 1 1sin

8 2 2 2A

Do (3), suy ra:

2

8 2 3 1 1 1sin sin sin 4 2 32 2 2 1 1 2 2 8 8A B C

2 3 38

Dấu os 1

23sin

2 2

B Cc

A

0

0

12030

AB C

Nhận xét: Câu IV và câu V là những phần "khúc mắc" của vấn đề này.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2003

Page 19: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

80

ĐỀ SỐ 7 Câu I: 1. Khảo sát và vẽ đồ thị hàm số

y =

22 4 32 1x x f x

x

(Học sinh tự giải). Đồ thị (C) như hình vẽ 29. 2. Phương trình. 2x2 - 4x - 3 + 2mx - 1 = 0

g(x) =

22 4 32 1x x m

x

(1)

g(x) = f(x), khi x > 1-f(x), khi x <1

Từ đồ thị hàm số y = g(x) và phương trình (1) suy ra m phương trình có hai nghiệm phân biệt. Đáp số: Câu II: 1. Giải phương trình: 3 - tgx (tgx + 2 sinx) + 6cosx = 0 Điều kiện: cosx 0.

Phương trình 3 - s inxcos x

s inx 2sin x coscos

xx

+ 6cosx = 0

3cos2 x - sin2 x(1+ 2cosx) + 6 cox3x = 0(cosx o) 3cos2 x (1 + 2cosx) - sin2x (1 +2 cosx) = 0 (1 +2cosx) (3cos2x - sin2x) = 0

2

1cos2

14cos4

x

x

cos2x = 14

mR

Hình 29

y = g(x) y = g(x)

y =

f(x)

y =

f(x)

y = -m

x O 1

y = x - 1

y

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2003

Page 20: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

81

1 + cos2x = 12

2x = 2 23

k x = 3

k (thoả mãn điều kiện)

2. Giải hệ phương trình log log

2 2 3y x

x y

xy y

Điều kiện: x > 0, x 1, y > 0; y > 0, y 1. Với điều kiện đó hệ tương đương với

1 log log22 2 3

y x

x y

xy y

21 log (1)log

2 2 3

yy

x y

xx

Phương trình (1) t2 + t - 2 = 0 (t = logyx)

2

11

2

x yt

xty

Kết hợp với phương trình (2)

Nếu y = x, phương trình (2) 2x = 23 3log2 2

x

Nếu x = 21y

, phương trình (2) 2y 21

2 3y (y > 0, y 1).

Ta chứng minh phương trình này vô nghiệm. Thật vậy:

Nếu y > 1 thì 2

2

1 1

10

2 2 22 2 3

2 2 1

y

y y

y

Nếu 0 < y < 1 thì 2

2

0 1

11

2 2 12 2 3

2 2 2

y

y y

y

Kết luận: hệ có nghiệm duy nhất: x = y = 23log2

.

cos2x= 12

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2003

Page 21: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

82

Câu III: 1. Gọi M (xo; yo). N(x1; y1) là hai điểm thuộc (P), khi đó ta có xo = 2 2

1 1,oy x y và

IM

= (xo; yo - 2) = 2 ; 2o oy y

21 1 1 1; 2 ; 2IN x y y y

21 14 4 ;4 8IN y y

Theo giả thuyết:

4IM IN

suy ra:

2 2

0 1

0 1

4 (1)2 4 8 (2)

y yy y

Từ (2) suy ra yo = 2(2y1 - 3) . Thế vào (1) được:

4(2y1 - 3)2 = 214y 1 1 1

1 1 1

2 3 32 3 1

y y yy y y

Với y1 = 1 ta có x1 = 1, yo = -2, xo = 4. Vậy ta có cặp điểm M(4; -2), N(1; 1). Với y1 = 3 ta có x1 = 9, yo = 6, xo = 36. Vậy ta có một cặp điểm nữa là M(36; 6), N(9;3).

2. 4; 4; 4 4 1; 1; 1AB

.

2;10; 8 2(1;5; 4)CD

.

Gọi là góc giữa hai đường thẳng AB và CD, ta có:

2 2 2 2 2 2

1 1; 1; 1 . 1; 5; 4 1.1 1.5 1. 4os 0

1; 1; 1 . 1; 5; 4 1 1 1 1 5 4c

= 900.

Ta có AC = 2 2 2 2 2 23 7 1 59; 1 3 7 59AD .

ACD cân tại A. Từ đó gọi M là trung điểm của CD ta có AM CD, BM CD. Do đó chi vi tam giác ABM là p = AB + AM + BM nhỏ nhất khi AM + BM nhỏ

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2003

Page 22: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

83

nhất (Vì AB không đổi), tức là khi M là trung điểm của CD. 3. Gọi H là trung điểm của BC. Vì ABC cân tại A( (AB = AC = a) nên AH BC do đó góc BAC = 1200 suy ra góc ACH = 300.

Ta có AH = AC sin góc ACH = a sin 300 = 2a .

BC = 2HC = 2acos300 = 2a. 3 32

a .

Do đó 2 2

2 2 2 13' ' 3 .4 4a aIB IC a

AA'B'B là hình vuông cạnh a nên AB' = a 2 .

AI2 = IC2 + AC2 = 2 2

2 5 .4 4

a aa

Ta có AI2 + 2 2

2 2 25 13' 2 ' .4 4a aAB a IB Vậy AB'I vuông tại A.

Ta có 2

'1 1 5 10. ' . . 22 2 2 4AB I

a aS AI AB a .

21 1 3. . 3.

2 2 2 4ABCa aS BC AH a .

Gọi là góc giữa hai mặt phẳng (ABC) và (AB'I) ta có

cos

2

2'

33 304

1010 104

ABC

AB I

aSS a

Câu IV: 1. Có bao nhiêu số tự nhiên chia hết cho 5 mà mỗi số có 4 chữ số khác nhau? Mỗi số tự nhiên bao gồm 4 chữ số khác nhau ứng với một chỉnh hợp chập 4 của 10 chữ số 0, 1, 2, 3, ..., 9 ngoại trừ các chỉnh hợp chập 4 có chữ số 0 đứng đầu. Để số chia hết cho 5 điều kiện cần và đủ là chữ số cuối phải là 0 hoặc 5.

B' C'

C B H

a

a

A'

A

Hình 30

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2003

Page 23: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

84

Khi chữ số 5 đứng cuối, ba chữ số đứng trước ứng với một chỉnh hợp chập 3 của 9 chữ số còn lại ngoại trừ các số trong của chúng có chữ 0 đứng đầu, do đó các số này gồm 3 2

9 8A A số.

Vậy số lượng các số tự nhiên thoả mãn đề ra là

3 3 29 9 8 2.9.8.7 8.7 17.56A A A

2. Tính I = 4 4

20 01 os 2 2 osx xdx dx

c x c x

= 4 44

00 0

1 12 2

xd tgx xtgx tgxdx

= 4 4

00

1 1 sin 1. 1 cos2 2 2 cos 8 2

xdx n xx

= 1 1 1 11 1 2 1 28 2 8 2 8 42

n n n

Câu V: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = sin5x + 3 cosx

Tím max y: y = sin5x + 43 cos sin 3 cosx x x (1)

Ta chứng minh sin4x + 3 cos 3,x x R (2)

Hay chứng minh 43 1 cos sin 0x x

223 1 ox 1 os 0c c x

21 osx 3 1 cos 1 cos 0c x x

Ta có theo bất đẳng thức Côsi:

21 1 4 321 osx . 1 cos 1 osx 2 2cos 1 cos

2 2 3 27c x c x x

< 3

952

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2003

Page 24: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

85

Vậy bất đẳng thức (3) đúng Bất đẳng thức (2) đúng y 3, x , dấu

đẳng thức có khi cosx = 1, tức x = 2 . Vậy max y = 3 .

Để tìm min y, ta có y = sin5x + 43 cos sin 3 cos ,x x x rồi tương tự

như trên ta được min y = 3, đạt được khi x = 2 k .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2003

Page 25: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

ĐỀ SỐ 13

Câu I: 1. Bạn đọc tự giải.

2. Ta có y’ = 4x3- 4m2x = 0 4x(x2- m2) = 02 2

0(*)

xx m

Để đồ thị hàm số có ba cực trị thì pt (*) có hai nghiệm phân biệt khác 0 0m

Khi đó hoành độ của ba điểm cực trị là x1 = 0; x2 = m; x3 = -m. tọa độ của ba điểm cực trị là: A(0;1); B(m;-m4+1); C(-m; -m4+1) Ta có:

4 4

2 8

2 8

( ; ), ( ; )AB m m AC m m

AB m m

AC m m

Hay tam giác ABC luôn cân tại A.

Vậy để ∆ABC vuông cân thì . 0AB AC AB AC

-m2 + m8 = 0 0

1mm

Kết hợp đk suy ra m= ±1 Câu II:

1. Giải pt: 4(sin3x + cos3x) = cosx + 3sinx Với cosx = 0: không thỏa mãn pt. Với cosx ≠ 0: chia hai vế cho cos3x ta được: 4tan3x + 4 = 1 + tan2x + 3tanx(1 + tan2x) tan3x – tan2x -3tanx + 3 = 0 (tanx – 1)(tan2x – 3) = 0

tan 1 4 ,tan 3

3

x kxk

x x k

2. Giải bất phương trình: 2 2 2

2 24

2

log [log ( 2 )]< 0 log ( 2 ) 1 2 2

2 2 (*)

x x x x x x x x x

x x x

Giải (*): đk: 20

2 0 12

xx x

x

Trường hợp 1: nếu x > 2 bpt luôn thỏa mãn với mọi x thỏa mãn đk nên x > 2 Trường hợp 2:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2004

Page 26: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

nếu 2 2 2 4 42 : (*) 2 4 4 3 4 0

1 1 2x x

x x x x x x xx x

Vậy tập nghiệm của bpt là S = ( ; 4) (1; ) Câu III:

1. Gọi tâm đường tròn là I(a;b). Ta có: 2 2 2 2

2 2

2 2 2 2

( 1) ( 1) (1)

1 2( ;( )) (2)

2

a b a bIA IO

a bIO d I d a b

(1) b= a + 1 thế vào (2): a2 + (a + 1)2 = 1 2a2 + 2a = 0 0, 1

1, 0a ba b

Với I(0;1), R = 1 suy ra pt đường tròn là: x2 + (y – 1)2 = 1 Với I(-1;0), R = 1 suy ra pt đường tròn là: (x + 1)2 + y2 = 1 2. a) Ta có: C(2; 0; 0), B1(1; 0; 2 ), D1(0; 1; 2 )

1 1(0;1;0), ( 1;0; 2) [BC; ]=( 2;0;1)BC BA n BA

Phương trình mp(A1BC): 2 2 0x z Gọi (α) là mp chứa B1D1 và vuông góc với (A1BC) Ta có:

1 11 1 1 1( 1;1;0), ( 2;0;1) [ ; ] (1;1; 2)A BD A BDB D n n B D n

Vậy ptmp(α) là: 2 1 0x y z Suy ra pt hình chiếu của B1D1 lên (P) là giao tuyến của hai mặt phẳng:

2 1 0

2 2 0

x y z

x z

nên đường thẳng B1D1 có phương trình:

1

2 2

x ty t

z t

b) Để ý rằng mf đi qua A và vuông góc với A1C thì chứa AC1, do tam giác AA1C vuông cân. Mf này cắt BB1, CC1 tại các trung điểm E, F. AE cắt A1B tại J, AF cắt A1D tại K. Thiết diện là tam giác IJK. Câu IV:

1. 2 3

20

0 0 0

1 os2xsin | cos 2 .2 4 2 4 2

c xV x xdx x dx x xdx I

Ta tính I:

B1

D

D1 C1

A1

B

C

A

B1

D

D1 C1

A1

B

C

A

K

J

I F

E

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2004

Page 27: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đặt 0 00

sin 2 sin 2 os2x| | 0sin 2os2xdx 2 2 42

du dxu x x x cI x dxxdv c v

Vậy V = 3

4 (đvtt)

2. Theo giả thiết, ta có: 7 32 ( , 7)

! !2. ( 3)( 4)( 5)( 6) 2.7.6.5.4( 7)!.7! ( 3)!.3!

n nC C n nn n n n n n

n n

Câu V:

Từ hệ phương trình x - my = 2 - 4mmx + y = 3m + 1

ta có:

Ta có: 2 2 21 - m 2 - 4m - m 1 2 - 4m

D = 1 , D 3 3 2, D 4 1m 1 3m + 1 1 m 3m + 1x ym m m m m

0,D m Hệ luôn luôn có nghiệm duy nhất:

2

2

2

2

3 3 21

4 11

m mxm

m mym

2 22 2 22 2

2 2 2

2 2

2 2 2

2 2

2 2 2 2 2 2 2

3 3 2 4 1 3 3 22 2.1 1 1

3 1 3 3 13 4 2 31 1 1

3 1 9 6 1 3 6 9 3 19 6. 16 8. 2 31 (1 ) 1 (1 ) 1

m m m m m mA x y xm m m

m m mm m mm m m m m m m

m m m m m

2

2 2 2 2

10( 1) 4 28 4 1819 19(1 ) 1 1

m m mm m m

Đặt 22

4 18 4 18 0 (*)1my ym m y

m

+ y = 0: (*) có nghiệm. + y 0: Phương trình có nghiệm khi chỉ khi: ' = 4 - y(y - 18) 0 y2 -18y - 4 0 9 - 85 y 9 + 85 - 9 - 85 - y - 9 + 85 28 - 85 19 - y 28 + 85 . Vậy, maxA = 28 + 85 .

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2004

Page 28: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

ĐỀ SỐ 19 CÂU I.

1. Khaûo saùt vaø veõ ñoà thò

2x x 1y (C)x 1

MXÑ: D R \ 1 .

22

2x 2xy' ,y ' 0 x 2x 0 x 0,x 2x 1

BBT x -2 -1 0 y' + 0 - - 0 + y

-3

1

Tieäm caän:

x 1 laø phöông trình tieäm caän ñöùng y x laø phöông trình tieäm caän xieân 2. Phöông trình tieáp tuyeán qua

M 1,0 ( heä soá goùc k ) coù daïng

: y k x 1

tieáp xuùc vôùi C heä pt sau coù

nghieäm

2

2

2

x x 1 k x 1x 1

x 2x kx 1

phöông trình hoaønh ñoä tieáp ñieåm laø

22

2

x 2x x 1x x 1x 1 x 1

x 1 3k4

Vaäy pt tieáp tuyeán vôùi C qua M 1,0 laø: 3y x 14

CAÂU II.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2005

Page 29: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

131

1. Giaûi heä pt : 2x y 1 x y 1 I3x 2y 4

2x y 1 x y 1I

2x y 1 x y 5

Ñaët u 2x y 1 0,v x y 0

(I) thaønh

1 12 2

2 2

u v 1 u 2 v 1u 1 v 2 loaïiu v 5

Vaäy 2x y 1 2

Ix y 1

2x y 1 4 x 2x y 1 y 1

2. Phöông trình

32 2 cos x 3cosx sinx 0.4

3

2 cos x 3cosx sin x 04

3

3 3 2 2

cosx sinx 3cosx sinx 0

cos x sin x 3cos xsin x 3cosxsin x 3cosx sin x 0 (*)

cosx = 0 sinx = 1: Thỏa phương trình. Do đó x k

2 là nghiệm.

cosx 0: Chia 2 vế (*) cho cos3x:

3 2 2 31 tan x 3tan x 3tan x 3 3tan x tanx tan x 0

tanx 1 x k4

Vậy, nghiêm của phương trình là: x k

2,

x k4

.

CAÂU III

1. 2 22 2C x y 12x 4y 36 0 x 6 y 2 4 .

Vaäy (C) coù taâm I 6;2 vaø R = 2

Vì ñöôøng troøn 1C tieáp xuùc vôùi 2 truïc Ox, Oy neân taâm 1I naèm treân 2 ñöôøng

thaúng y x . Vì (C) coù taâm I 6,2 , R = 2 neân taâm 1I (x; x) vôùi x > 0.

1TH : Taâm 1I ñöôøng thaúng y = x I x;x , baùn kính 1R x .

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2005

Page 30: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

132

1C tieáp xuùc ngoaøi vôùi (C) 1 1I I R R 2 2x 6 x 2 2 x

2 2 2 2x 6 x 2 4 4x x x 16x 4x 36 0

2x 20x 36 0 x 2 hay x 18 . ÖÙng vôùi 1 1R 2hay R 18

Coù 2 ñöôøng troøn laø: 2 2x 2 y 2 4

2 2x 18 y 18 18

2TH : Taâm 1I ñöôøng thaúng y x I x, x ; 1R x

Töông töï nhö treân, ta coù x= 6

Coù 1 ñöôøng troøn laø 2 2x 6 y 6 36

Toùm laïi ta coù 3 ñöôøng troøn thỏa:

2 2

2 2

2 2

x 2 y 2 4;

x 18 y 18 18;

x 6 y 6 36

2. a) Töù giaùc OABC laø hình chöõ nhaät OC AB B(2,4,0)

* Ñoaïn OB coù trung ñieåm laø H 1,2,0 . H chính laø taâm ñöôøng troøn ngoaïi tieáp

tam giaùc vuoâng OBC. Vì A, O, C cuøng nhìn SB döôùi moät goùc vuoâng neân trung

ñieåm I ( 1; 2; 2 ) laø taâm maët caàu vaø baùn kính R = 1 1SB 4 16 16 32 2

,

Vaäy phöông trình maët caàu laø 2 2 2x 1 y 2 (z 2) 9

b) SC 0,4, 4

choïn 0,1, 1 laø véc tơ chỉ phương cuûa SC.

Pt tham soá ñöôøng thaúng (SC): x 0y tz 4 t

Mp (P) qua A 2,0,0 vaø vuoâng goùc vôùi SC coù phöông trình laø:

0 x 2 y z 0 y z 0

Theá x, y, z ở (1) vào phương trình (P), ta coù t = 2 vaø suy ra M 0;2;2

Goïi 1A x,y,z laø ñieåm ñoái xöùng vôùi A qua SC. Coù M laø trung ñieåm cuûa 1AA

neân:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2005

Page 31: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

133

2 x 2.0 x 20 y 2.2 y 40 z 2.2 z 4

Vaäy 1A 2,4,4 .

CAÂU IV:

1. Tính 7

30

x 2I dxx 1

Ñaët 3 23t x 1 x t 1 dx 3t dt 3x 2 t 1 . Ñoåi caän t( 0) = 1 ; t (7 ) = 2.

Vaäy

23 2 5 22 2 41 1

1

t 1 3t t t 231I dt 3 t t dt 3t 5 2 10

2. Ta coù 2n 1 0 1 2 2 3 3 2n 1 2n 1

2n 1 2n 1 2n 1 2n 1 2n 11 x C C x C x C x ... C x

Cho x 1 Ta coù 2n 1 0 1 2 3 4 2n 12n 1 2n 1 2n 1 2n 1 2n 1 2n 12 C C C C C ... C

(1)

Cho x 1 Ta coù 0 1 2 3 4 2n 12n 1 2n 1 2n 1 2n 1 2n 1 2n 10 C C C C C ... C

(2)

Laáy (1) - (2) 2n 1 1 3 5 2n 12n 1 2n 1 2n 1 2n 12 2 C C C ... C

2n 1 3 5 2n 1 102n 1 2n 1 2n 1 2n 12 C C C ... C 1024 2

. Vaäy 2n=10

Ta coù 10

10 k kk 10 k10

k 02 3x 1 C 2 3x

Suy ra heä soá cuûa 7x laø 7 7 310C 3 .2 hay 3 7 3

10C 3 .2

CAÂU V: Ta coù: 3

43

x x x x1 x 1 43 3 3 3

3

43 3

y y y y y1 1 4x 3x 3x 3x 3 .x

3

4 39 3 3 3 31 1 4y y y y y

2 6

43

9 31 16y y

Vaäy

2 3 3 64

3 3 3 3y 9 x y 31 x 1 1 256 256x y 3 3 .x y

.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2005

Page 32: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

142

ĐỀ SỐ 22

CAÂU I 1. Khaûo saùt 3 2y x 2m 1 x m 1 khi m=1

Khi m = 1 thì 3 2y x 3x 2 MXÑ: D=R

2y' 3x 6x 3x x 2 ,y ' 0 x 0 hayx 2 y'' 6x 6,y '' 0 x 1

BBT x 0 2 y' - 0 + - y 2 -2

Đồ thị:

2. Tìm m ñeå mC tieáp xuùc vôùi y 2mx m 1 d

(d) tieáp xuùc vôùi mC

3 2

2

x 2m 1 x m 1 2mx m 1

3x 2 2m 1 x 2m coù nghieäm

2

2

x 0 x 2m 1 x 2m

3x 2 2m 1 x 2m coù nghieäm

1 3 1 3 1

x

y

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2005

Page 33: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

143

2

2 2

x 2m 1 x 2mm 0

3x 2 2m 1 x x 2m 1 x coù nghieäm

2

2

x 2m 1 x 2mm 0

2x 2m 1 x 0 coù nghieäm

2x 2m 1 x 2mm 0 2m 1x

2

coù nghieäm

222m 1 1m 0 2m 1 2m

2 2

1m 0 m2

CAÂU II: 1. Giaûi bất phương trình: 2x 7 5 x 3x 2 (1)

Ñieàu kieän:

2x 7 025 x 0 x 53

3x 2 0

(1) 2x 7 3x 2 5 x

2x 7 3x 2 5 x 2 3x 2 5 x

2 3x 2 5 x 23x 17x 14 0

14x 1 x3

Kết hợp với điều kiện, ta có nghiệm: 2 14x 1 x 53 3

2. Giaûi phöông trình 3 sin xtg x 22 1 cos x

(2)

(2) sin x cosx sin xcot gx 2 21 cosx sinx 1 cosx

2 2cosx cos x sin x 2sin x 2sinx cosx vaø sin x 0

cosx 1 2sin x cosx 1 vaø sin x 0

2sin x 1 x k2

6 hay

5x k26

.

Ghi chuù: Khi sinx 0 thì cos x 1 CAÂU III.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2005

Page 34: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

144

1. Ñöôøng troøn (C) coù taâm I 2,3 , R = 5

M M M M M MM x ,y d 2x y 3 0 y 2x 3

2 2M MIM x 2 y 3 10

2 2 2M M M M

M M

M M

x 2 2x 3 3 10 5x 4x 96 0

x 4 y 5 M 4, 5

24 63 24 63x y M ,5 5 5 5

2. a) Vì 1 1AA Oxy A 2,0,4

1 1BB Oxy B 0,4,4

Vieát pt maët caàu (S) qua O, A, B, O1: Giả sử phương trình mặt cầu (S):

2 2 2x y z 2ax 2by 2cz d 0 Vì O S d 0

Vì A S 4 4a 0 a 1

Vì B S 16 8b 0 b 2

Vì 1O S 16 8c 0 c 2

Vaäy (S) coù taâm I(1; 2; 2) Ta coù 2 2 2 2d a b c R 2R 1 4 4 9

Vaäy phương trình maët caàu (S) laø: 2 2 2x 1 y 2 z 2 9

b) Tính KN. Ta coù M 1;2;0 ,

1O A 2;0; 4

mf(P) qua M vuoâng goùc vôùi 1O A neân nhaän 1O A

hay (1;0; -2) laøm véc tơ pháp

tuyến. phương trình (P): 1 x 1 0 y 2 2(z 0) 0

x 2z 1 0

Phương trình tham soá của đường thẳng (OA) laø

x ty 0z 0

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2005

Page 35: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

145

Theá vaøo phương trình (P): t 1 0 t 1 OA P N 1;0;0

Vôùi

1OA 2;0;4 nên a

= (1;0;2) laø véc tơ chỉ phương của ( 1OA ). Suy ra phương

trình tham soá của đường thẳng ( 1OA ) laø:

x ty 0z 2t

Theá vaøo phương trình (P): 1t 4t 1 0 t3

11 2OA P K ,0,3 3

Vaäy 2 2

21 2 20 20 2 5KN 1 0 0 03 3 9 3 3

CAÂU IV:

1. Tính 3 2e

1

ln xI dxx ln x 1

Ñaët t ln x 1 2 dxt ln x 1 2tdtx

vaø 2t 1 ln x

Ñoåi caän: 3t(e ) 2; t(1) 1

3 2 4 2e 2 2 4 2

1 1 1

ln x t 2t 1I dx 2tdt 2 t 2t 1 dttx ln x 1

25 3

1

t 2t 762 t5 3 15

2. k2005C lôùn nhaát

k k 12005 2005k k 12005 2005

C C

C C

k N

2005! 2005!k! 2005 k ! k 1 ! 2004 k ! k 1 2005 k

2005! 2005! 2006 k kk! 2005 k ! k 1 ! 2006 k !

k 10021002 k 1003, k N

k 1003

k 1002hayk 1003

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2005

Page 36: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

146

CAÂU V: Tìm m ñeå heä phöông trình sau coù nghieäm:

2x x 1 2 x 1

2

7 7 2005x 2005 (1)

x m 2 x 2m 3 0 (2)

Ñieàu kieän laø x 1. Ta coù 2x x 1 2 x 17 7 0, x 1;1 .

Ta coù: (1) x 1 2x 27 7 7 2005 1 x : ñuùng x 1;1 vaø sai khi x > 1

Do ñoù (1) 1 x 1 . Vaäy, heä bpt coù nghieäm 2f x x m 2 x 2m 3 0 coù nghieäm 1,1

[ 1;1]max ( )f x

0 max f( 1),f(1),f(m 2) 0 max f( 1),f(1) 0

max 3m 6,m 2 0 m 2 .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2005

Page 37: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

152

ĐỀ SỐ 24

Câu I: 1. Khảo sát hàm số (Bạn đọc tự giải) 2. Yêu cầu của bài toán 4 < m2 + 2m + 5 < 5 - 2 < m < 0 và m 1 Câu II:

1. Pt đã cho tương đương: cos3x4cos3x - sin3x 4sin3x = 2 3 22

cos3x(cos3x + 3cosx) - sin3x (3sinx - sin3x) = 2 3 22

cos23x + sin23x + 3(cos3xcosx - sin3xsinx) = 3 212

cos4x = 22

2. Khi y = 0 hệ đã cho trở thành: 2

2

1 0( 1)( 2) 0xx x

: Vô nghiệm

Khi 0y , chia từng vế của hệ cho y:

22

2

2 2

1 2 2 1 1 11 2 0( 2) 1 2 1

x y x x x yyy

x x xy x y xy

2

1 2 121

x x xyy x

hoặc 2

5xy

Câu III: 1. Ta có:

' (0;2; 2), ' ( 2;2;2) ' . ' 0

(2;0;0) ' . 0

A C BC A C BC

AB A C AB

'A C

là véc tơ pháp tuyến của mf(ABC') Phương trình mf(ABC'): y - z = 0 2. Ta có ' ' ( 2;2;0).B C BC

Gọi (P) là mf chứa B'C' và vuông góc mf(ABC'). Khi đó hình chiếu của B'C' trên mf(ABC') là giao tuyến của (P) và mf(ABC'). (P) có véc tơ pháp tuyến B'C', ' ( 4; 4; 4)Pn A C

Suy ra phương trình (P) là x + y + z - 4 = 0. Hình chiếu của đường thẳng B'C' trên mf(ABC') có véc tơ chỉ phương:

ĐÁP ÁN ĐỀ DỰ 1 TOÁN A 2006

Page 38: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

153

' , ( 16;8;8)Pu A C n

hay ' (2; 1; 1)u

và đi qua điểm M(4; 0; 0) .

Suy ra phương trình hình chiếu của đường thẳng B'C' trên mf(ABC') là:

42 1 1

x y z

Câu IV:

1. Đặt 4 1t x 2 14

tx ,

2tdtdx

Suy ra I = 55 5 5

2 233 3 3

( 1 1) 1 3 1ln( 1) ln( 1) 1 ( 1) 1 2 12

t dt dt dt tt t t t

2. Đặt A = x2 + xy + y2, B = x2 - xy - 3y2. Nếu y = 0 thì A = B = x2 3 . Do đó 4 3 3 0 3 4 3 3B (đpcm)

Nếu y 0 thì đặt x = ty, ta có: B = A. 2 2 2

2 2 2

3 3.1

x xy y t tAx xy y t t

Đặt 2

2

31

t tut t

thì 3 4 3 3 4 33 3

u (Tìm tập giá trị của u)

Vì 0 3A và B = A.u nên 4 3 3 4 3 3B Câu Va:

1. (E): 2 2

112 2x y

có hai tiêu điểm 1 2( 10;0), ( 10;0)F F

(H) có cùng tiêu điểm với (E) (H): 2 2

2 2 1x ya b

, với a2 + b2 = c2 = 10.

(H) có hai tiệm cận 2 2 2b by x x b aa a

.

Suy ra a2 = 2, b2 = 8 (H): 2 2

12 8x y

2. Ta có: 1002 0 100 1 99 2 99 198 100 200

100 100 100 100

0 100 1 101 99 199 100 200100 100 100 100

... .

...

x x C x C x x C x x C x

C x C x C x C x

Đạo hàm hai vế: 992 0 99 1 100 99 198 100 199

100 100 100 100100 1 2 100 101 ... 199 200x x x C x C x C x C x

Cho x = - 12

: 99 100 198 199

0 1 99 100100 100 100 100

99 100 198 1990 1 99 100100 100 100 100

1 1 1 10 100 101 ... 199 2002 2 2 2

1 1 1 10 100 101 ... 199 2002 2 2 2

C C C C

C C C C

ĐÁP ÁN ĐỀ DỰ 1 TOÁN A 2006

Page 39: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

154

Nhân hai vế với - 1:

99 100 198 199

0 1 99 100100 100 100 100

1 1 1 10 100 101 ... 199 2002 2 2 2

C C C C

Câu Vb: 1. Giải bất phương trình 1log ( 2 ) 2 (1)x x ĐK: - 1 < x < 0 Từ ĐK suy ra 0 < x + 1 < 1

Bpt 2 2 22 ( 1) 2 1 4 1 0

2 3 2 3

x x x x x x

x x

Nhưng - 1 < x < 0 nên 2 3 0x 2. Gọi O là tâm của hình thoi ABCD, S là điểm đối xứng của A qua A'. Khi đó S, M, D thẳng hàng và M là trung điểm của SD; S, N, B thẳng hàng và N là tung điểm của SB.

Tam giác BAD có AB = AD = a, BAD = 600 nên đều 32

aAO

AC = 2AO = 3a = SA

CC' = 32

a =AO.

Hai tam giác vuông SAO và ACC' bằng nhau. Suy ra SAO = CAC' ' (1)AC SO

Do , ' ( ' ') ' (2)BD AC BD AA BD mf ACC A BD AC Từ (1) và (2) suy ra ' ( )AC mf BDMN

Do đó: 2 33 3 1 1 3 3. . 3

4 4 3 4 4 16ABDMN SABD ABDa aV V SA S a .

S

MD'

C' B'

N

A'

D

C B

A

O

ĐÁP ÁN ĐỀ DỰ 1 TOÁN A 2006

Page 40: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

155

ĐỀ SỐ 25

Câu I: 1. Khảo sát hàm số (Bạn đọc tự giải) 2. Đường thẳng d đi qua A(0; 2) có phương trình dạng: y = kx + 2 d tiếp xúc (C) khi chỉ khi hệ sau có nghiệm:

42

3

2 2 22

2 4

x x kx

x x k

Thay k ở phương trình thứ hai vào phương trình thứ nhất, suy ra 3x4 - 8x2 = 0 80,3

x x .

+ Khi x = 0 thì k = 0, ta có phương trình tiếp tuyến là y = 2.

+ Khi 83

x thì k = 8 23 3

, ta có phương trình tiếp tuyến là y = 8 23 3

x + 2.

Câu II: 1. Phương trình tương đương với:

23 sin 2 os2x + sin4x + 1 = 0 2 2 s inxcosx + 4sinx + 2sin 0x c x s inx( 3 os + sinx + 2) 0c x

s inx = 0

3 osx + sinx + 2 = 0c

x = k

7x= 26

k

2. Hệ phương trình đã cho tương với: 3 3

2 2

2(4 ) (1)x 3 6 (2)x y x y

y

3 3 3 3 2 2

2 2 2 2

3( ) 6(4 ) 3( ) (x 3 )(4 ) (3)x 3 6 x 3 6 (4)

x y x y x y y x yy y

(3) 3 2 2

012 0 3

4

xx x y xy x y

x y

x = 0 - 3y2 = 6 : Vô nghệm x = 3y 9y2 - 3y2 = 6 Hai nghiệm (3; 1), (- 3; - 1).

x = - 4y 16y2 - 3y2 = 6 Hai nghiệm 6 6 6 64 ; , 4 ;13 13 13 13

.

Câu III: 1. Toạ độ giao điểm của đường thẳng AB và mặt phẳng ( ):

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2006

Page 41: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

156

Đường thẳng (AB) là giao tuyến hai mặt phẳng: 4

0x yz

Toạ độ giao điểm của (AB) và mặt phẳng ( ) là nghiệm của hệ:

4

03 2 4 0

x yzx y z

Suy ra toạ độ giao điểm M(- 12; 16; 0). 2. Vì I là trung điểm của AB nên I(2; 2; 0). Gọi K(x; y; z) thì KI

cùng phương

với véc tơ pháp tuyến n

của mặt phẳng ( ) và KO = d(K, ( )) (1)

Phương trình (KI): 2 32 2

x ty tz t

(2)

(1) 2 2 2 3 2 414

x y zx y z

(3)

Thay (2) vào (3) suy ra 34

t 1 1 3; ;4 2 4

K

.

Câu IV: 1. Phương trình cho biết hoành độ giao điểm 2 3 2 1 1, 2.x x x x x

2 3 2 1 1 2.x x x x

Do đó, diện tích hình phẳng S = 2

2

1

12 1 ( 3)6

x x x dx

2. Chứng minh bất đẳng thức: Chứng minh rằng:

9 9 9 3 3 33 3 3 3 3 3 4

x x x x y z

x y z y z x z x y

, trong đó 3 3 3 1x y z

Đặt a = 3x, b = 3y, c = 3z. Theo giả thiết a > 0, b > 0, c > 0 và ab + bc + ca = abc (1)

Bất đẳng thức cần chứng minh tương đương:2 2 2

4a b c a b c

a bc b ac c ab

3 3 3

2 2 2 4a b c a b c

a abc b abc c abc

(2)

Thay abc ở (2) vào (1): 3 3 3

( )( ) ( )( ) ( )( ) 4a b c a b c

a b a c b c b a c a c b

Theo Cauchy: 3 3

333

( )( ) 8 8 64 4a a b a c a a

a b a c

(3)

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2006

Page 42: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

157

3 3

333

( )( ) 8 8 64 4b b c b a b b

b c b a

(4)

3 3

333

( )( ) 8 8 64 4c c a c b c c

c a c b

(5)

Cộng từng vế các bất đẳng thức trên ta có đpcm. Câu Va: 1. Tìm toạ độ A, B, C. Vì ACBH nên có hệ số góc bằng - 1 nên hệ số góc của AC bằng 1. Vì M(1; 1) thuộc AC nên phương trình AC: y = (x - 1) + 1 hay y = x.

Toạ độ A(x;y) là nghiệm của hệ: 4 2 0 2 2 2;

3 3 3x y

x y Ay x

Vì M là trung điểm AC nên 8 8;3 3

C

.

Cạnh BC//d và quaC nên phương trình (BC): 8 84 0 4 8 03 3

x y x y

Toạ độ B(x;y) là nghiệm của hệ: 3 04;1

4 8 0x y

Bx y

.

2. Gọi số cần tìm là 4 3 2 14 3 2 1 0 4 3 2 1 0.10 .10 .10 .10n a a a a a a a a a a .

Suy ra có 4 cách chọn 4a , có 4 cách chọn 3a , có 3 cách chọn 2a , có 2 cách chọn 1a , có 1 cách chọn 0a . Như thế có 4.4.3.2.1 = 96 số. Cách 2: Có 4 cách chọn 4a và có 4! cách chọn các chữ số còn lại. Như thế có 4.4! = 96 số Tổng 96 số được thiết lập: Có 24 số có dạng 4 3 2 10n a a a a ,

18 số có dạng 4 3 2 11n a a a a ,

18 số có dạng 4 3 2 12n a a a a ,

18 số có dạng 4 3 2 13n a a a a ,

18 số có dạng 4 3 2 14n a a a a .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2006

Page 43: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

158

Tổng các chữ số hàng đơn vị là 18(1 + 2 + 3 + 4) = 180; tổng các chữ số hàng chục bằng 1800, tổng các chữ số hàng trăm bằng 18000, tổng các chữ số hàng ngàn bằng 180000. Có 24 số có dạng 3 2 1 01n a a a a ,

24 số có dạng 3 2 1 02n a a a a ,

24 số có dạng 3 2 1 03n a a a a ,

24 số có dạng 3 2 1 04n a a a a , Suy ra tổng các chữ số hàng chục ngàn bằng 24(1 + 2 + 3 + 4).104 = 240000. Vậy tổng 96 số được lập nên là: 180 + 1800 + 18000 + 180000 + 240000 = 2599980. Cách 2. Có 24 số có dạng 4 3 2 1 0 ,n a a a a a với 4 1, 2,3, 4a

18 số có dạng 4 3 2 1 0 ,n a a a a a với 1,2,3, 4 , 0,1,2,3.ia i Vậy tổng 96 số được lập nên là: 4 3 2 1 0(1 2 3 4) 24.10 18(10 10 10 10 ) 2599980.

Câu Vb: 1. Phương trình đã cho:

2 222 2 2

1 4 6log 2 2log 4 log 8 log 1 2log 1 log 1 logx x x x x

x x x

.

2. Thể tích hình chóp SBCMN. mf(BCM)//AD nên nó cắt (SAD) theo giao tuyến MN//AD. Ta có ,BC AB BC SA BC BM . Như thế, tứ giác BCNM là hình thang vuông có BM là đường cao. Ta có SA = ABtan600 = 3a .

33 43 .233

aaMN SM aMN aAD SA a

.

2

2 2 2 23 3a aBM AB AM a

Gọi S là diện tíchcủa BCNM, ta có 2

421 2 103( )2 2 3 3 3

aa a aS BC MN BM

.

Gọi H là hình chiếu của S trên đường thẳng BM. Khi đó SH BC (do BC vuông góc mf(SAB) cũng là mf(SBM)). Suy ra ( )SH mf BCNM .

S

H

N M

A D

C B

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2006

Page 44: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

159

Suy ra: 1 . ( )3SBCNMV SH dt BCNM (1)

Mặt khác, trong tam giác SAB: 0

12os60 2AB AB AMSB a

c SB MS BM là phân

giác góc SBA. Do đó 030SBH . Suy ra 1 1 .22 2

SH SB a a .

Thay vào (1): 2 31 10 10 3.

3 273 3SBCNMa aV a .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2006

Page 45: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

177

ĐỀ SỐ 30

Câu I: 1. Khảo sát và vẽ đồ thị (Bạn đọc tự làm) 2. Gọi (C ) là đồ thị của hàm số.

M(x,y) ( C ) 7y x 2x 2

Phương trình tiệm cận xiên y x 2 x y 2 0

Khoảng cách từ M đến tiệm cận xiên là 1x y 2 7 d

2 2 x 2

Khoảng cách từ M đến tiệm cận đứng là 2d x 2

Ta có 1 27 7d d x 2

2 x 2 2

: hằng số.

Câu II:

1. Giải phương trình : 1 1sin 2x sin x 2cot g2x2sin x sin 2x

(1)

(1) cos22x cosxcos2x = 2cos2x, sin2x 0

2cos2x 0 2 cos x cosx 1 0(VN) cos2x = 0

2x k x k

2 4 2

2. Đặt 2t x 2x 2 t2 2 = x2 2x

Bất phương trình đã cho

2t 2m (1 t 2),do x [0;1 3]t 1

Khảo sát 2t 2g(t)t 1

với 1 t 2

g'(t) 2

2t 2t 2 0

(t 1)

. Vậy g tăng trên [1,2]

Bất phương trình

2t 2 mt 1

có nghiệm t [1,2]

t 1;2

2m max g(t) g(2)3

Câu III: 1. Ta có

AB ( 2;4; 16) cùng phương với

a ( 1;2; 8)

mp(P) có véc tơ pháp tuyến n (2; 1;1)

Ta có

[ n ,a] = (6 ;15 ;3) cùng phương với (2;5;1) Phương trình mặt phẳng chứa AB và vuông góc với mf(P) là :

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2007

Page 46: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

178

2(x + 1) + 5(y 3) + 1(z + 2) = 0 2x + 5y + z 11 = 0 2. Tìm M (P) sao cho MA + MB nhỏ nhất. A, B ở cùng phía đối với mf (P). Gọi A' là điểm đối xứng với A qua (P)

Phương trình đường thẳng ( AA') : x 1 y 3 z 22 1 1

AA' cắt (P) tại H, tọa độ H là nghiệm của hệ:

2x y z 1 0H(1;2; 1)x 1 y 3 z 2

2 1 1

Vì H là trung điểm của AA' nên ta có :

H A A'

H A A'

H A A '

2x x x2y y y A '(3;1;0)2z z z

Ta có A'B ( 6;6; 18) (cùng phương với (1;-1;3) )

Phương trình đường thẳng (A'B) :

x 3 y 1 z

1 1 3

Vậy tọa độ điểm M là nghiệm của hệ phương trình

2x y z 1 0M(2;2; 3)x 3 y 1 z

1 1 3

Câu IV: 1. Đặt 2t 2x 1 t 2x 1 2tdt 2dx dx tdt Đổi cận t(4) = 3, t(0) = 1

Vậy 4 3 32

0 1 1

2x 1 t 1I dx dt t 1 dt1 t t 11 2x 1

= 32

1

t t ln t 1 2 ln 22

2. Giải hệ phương trình

2 y 1

2 x 1

x x 2x 2 3 1(I)

y y 2y 2 3 1

Đặt u = x 1, v = y 1

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2007

Page 47: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

179

(I) thành:

2 v

2 u

u u 1 3

v v 1 3 (II)

Xét hàm f(x) 2x x 1

f ´(x)

2

2 2 2

x xx x 1 x1 0x 1 x 1 x 1

Vậy f đồng biến trên R. Nếu u > v f(u) > f(v) v u3 3 v > u ( vô lý ) Tương tự nếu v > u cũng dẫn đến vô lý. Suy ra u = v.

Do đó hệ (II)

u 22 u 1 3 u 1 uu u 1 3u v u v

Đặt: g(u) u 23 ( u 1 u)

u 2 u2

ug '(u) 3 ln3( u 1 u) 3 1u 1

Ru,01u

13lnu1u3u'g2

2u

Vậy g(u) đồng biến trên R. Ta có g(0) = 1. Vậy u = 0 là nghiệm duy nhất của (1) Nên (II) u = 0 = v Vậy (I) x = y = 1. Chú ý: Để chứng tỏ u = v có thể biến đổi:

v 22 v

u 2 v 2

2 u u 2

1 3 u u 1u u 1 33 v v 1 3 u u 1

v v 1 3 1 3 v v 1

2 2

u vu u 1 v v 1

3 3 (*)

Xét hàm số

2

tt t 1f(t)

3 đồng biến, nên (*) suy ra u = v.

Câu Va: 1. Đường thẳng OI nối 2 tâm của 2 đường tròn (C), (C') là đường phân giác y = x . Do đó, đường AB đường y = x hệ số góc của đường thẳng AB bằng 1. Vì AB 2 A, B phải là giao điểm của (C) với Ox, Oy.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2007

Page 48: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

180

Suy ra

A(0;1),B(1;0)A '( 1;0),B'(0; 1)

Suy ra phương trình AB : y = x + 1 hoặc y = x 1. Cách khác: phương trình AB có dạng: y = x + m. Pt hoành độ giao điểm của AB là x2 + ( x + m)2 = 1 2 22x 2mx m 1 0 (2)

(2) có / 22 m , gọi x1, x2 là nghiệm của (2) ta có :

2 2 21 2 1 2AB 2 2(x x ) 2 (x x ) 1

/2

24 1 2 m 1 m 1a

Vậy phương trình AB : y = x 1 . 2. Gọi 1 2 3 4n a a a a là số cần lập. TH1 : a4 = 0, ta có 8 cách chọn a1 (vì a1 2) 8 cách chọn a2

7 cách chọn a3

(1 cách chọn a4 ) Vậy ta có 8.8.7.1 = 448 số n. TH2 : a4 0 vì a4 chẵn. Ta có : 4 cách chọn a4

7 cách chọn a1

8 cách chọn a2

7 cách chọn a3 Vậy ta có 4.7.8.7 = 1568 số n Vậy cả 2 trường hợp ta có : 448 + 1568 = 2016 số n. Câu Vb: 1. Điều kiện x > 0 , x 1

(1)

4 2

8

1 12 log x log 2x 0log x 2

2 22

1 log x log x 1 01 log x3

2 2 22

2 2

2 2

log x 1 log x 1(log x 3) 0 0

log x log x

1log x 1 log x 0 0 x v x 12

2.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2007

Page 49: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

181

Chọn hệ trục Axyz sao cho: A O, C 2a;0;0 , 1A (0;0;2a 5)

a a 3A(0;0;0),B ; ;02 2

và M( 2a;0;a 5)

1

5 3BM a ; ; 5 , MA a(2; 0; 5 )2 2

Ta có: 2

1 1BM.MA a ( 5 5) 0 BM MA Ta có thể tích khối tứ diện AA1BM là :

3

21 BMA 11

1 a 15 1V AA . AB,AM ; S MB,MA 3a 36 3 2

Suy ra khoảng cách từ A đến mp (BMA1) bằng 3V a 5d .S 3

Cách khác: + Ta có: 2 2 2 2

1 1 1 1 9A M AC C M a 2 2 2 0 22 . .cos120 7BC AB AC AB AC a 2 2 2BM BC CM

2 2 2 2 2 21 1 1A B A A AB 21a A M MB

MB vuông góc với 1MA + Hình chóp MABA1 và CABA1 có chung đáy là tam giác ABA1 và đường cao bằng nhau nên thể tích bằng nhau.

3MABA CABA 1 ABC1 1

1 1V V V AA .S a 153 3

1MBA 11

3V 6V a 5d(a,(MBA ))S MB.MA 3

.

M

C1

B1

A1

C

B

A

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2007

Page 50: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

182

ĐỀ SỐ 31 Câu I: 1. Khảo sát và vẽ đồ thị (bạn đọc tự làm) 2. Tìm m:

Ta có: 2

2 2m m (x 2) my x m y ' 1

x 2 (x 2) (x 2)

Đồ thị hàm số có 2 điểm cực trị y' = 0 có 2 nghiệm phân biệt (x 2)2 m = 0 có 2 nghiệm phân biệt 2 m > 0 Gọi A (x1, y1) ; B (x2, y2) là 2 điểm cực trị

1 1

2 2

x 2 m y 2 m 2 my' 0

x 2 m y 2 m 2 m

Phương trình đường thẳng (AB) : x (2 m ) y (2 m 2 m) (m 0)2 m 4 m

2x y 2 + m = 0 (AB) đi qua gốc O (0; 0) 2 + m = 0 m = 2. Cách khác:

2x (m 2)x m uyx 2 v

; 2

my' 1(x 2)

y' = 0 có 2 nghiệm phân biệt m > 0

Khi m > 0, pt đường thẳng qua 2 cực trị là /

/uy 2x m 2v

Do đó, yêu cầu của bài toán m 2 = 0 m 2 . Câu II:

1. Giải phương trình: 22cos x 2 3sinxcosx 1 3(sinx 3cosx) (1) (1) 2 cos 2x 3 sin 2x 3(sin x 3 cos x)

1 3 1 32 2 cos2x sin2x 6 sinx cosx2 2 2 2

2 2 cos 2x 6 cos x3 6

1 cos 2x 3cos x3 6

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2007

Page 51: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

183

22 cos x 3cos x6 6

3cos x 0 v cos x (loaïi)6 6 2

k3

2xk26

x , k Z.

2. Giải hệ: 4 3 2 2

3 2

x x y x y 1

x y x xy 1

(I)

(I)

2 2 3

2 3( x xy) x y 1

( x xy) x y 1

Đặt u = x2 + xy, v = x3y

(I) thành

2

2

v u 1 u 0 u 1u v 1v 1 v 0u v 1 u u 0

Do đó hệ đã cho tương đương: 2 2

4 23 3

y x y 0x xy 0 x xy 1

x 1 x 1(vn)x y 1 x y 0

x 1 x 1y 1 y 1

Cách 2. Phương trình thứ hai biến đổi thành tích.

Câu III: 1. Ta có một véc tơ chỉ phương của đường thẳng AB là ( 2;4;0) hay

a ( 1;2;0)

Ta có một véc tơ chỉ phương của đường thẳng OC là (2;4;6) hay b (1;2;3)

Ta có OA (2;0;0) cùng phương với

c (1;0;0)

Ta có a,b .c 6 0 AB và OC chéo nhau.

2. Đường thẳng d có một véc tơ chỉ phương 12; 0; 36 hay u 1; 0; 3

Ta có a, u 6;3;2

Mặt phẳng () đi qua A, có một véc tơ pháp tuyến là a, u

( chứa AB) nên có phương trình: 6(x – 2) + 3(y – 0) + 2 (z - 0) = 0 6x + 3y + 2z – 12 = 0 ()

Ta có b, u 6; 6;2

Mặt phẳng () qua O, có có một véc tơ pháp tuyến là là (3; - 3; 1) ( chứa OC) nên có phương trình:

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2007

Page 52: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

184

3x - 3y + z = 0 () Vậy, đường thẳng song song với d cắt các đường thẳng (AB), (OC) là giao tuyến của hai mặt phẳng:

6x 3y 2z 12 03x 3y z 0

Dễ thấy đường thẳng đi qua 4(0; ;4)3

M và có cặp chỉ phương n 6;3;2

n 3; 3;1

. Từ đó suy ra phương trình .

Câu IV: 1. Tọa độ giao điểm của hai đường là nghiệm của hệ

2x x 0 x 4y v4 y 0 y 4

y x

15

12880x

3xdx

16xxV

4

0

4

0

5342 (đvtt)

2. Với x, y, z > 0 ta có 4(x3 + y3) (x + y)3 () Dấu = xảy ra x = y Thật vậy () 4(x + y)(x2 – xy + y2) (x + y)3 4(x2 – xy + y2) (x + y)2 do x, y > 0 3(x2 + y2 – 2xy) 0 (x – y)2 0 (đúng) Tương tự ta có 4(y3 + z3) (y + z)3 Dấu = xảy ra y = z 4(z3 + x3) (z + x)3 Dấu = xảy ra z = x

Do đó 3 3 3 3 3 3 33 3 34 x y 4 y z 4 z x 2 x y z 6 xyz

Ta lại có 3222 xyz

6xz

zy

yx2

Dấu = xảy ra x = y = z

Suy ra: 12xyz1xyz6P

33

Dấu = xảy ra

zyx1xyz

x = y = z = 1 Vậy minP = 12. Đạt được khi x = y = z = 1 Câu Va:

1. Tọa độ A là nghiệm của hệ 4x y 14 0 x 42x 5y 2 0 y 2

A(–4, 2)

Vì G(–2, 0) là trọng tâm của ABC nên

x

A

O

y

x

4

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2007

Page 53: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

185

2yy2xx

yyyy3xxxx3

CB

CB

CBAG

CBAG (1)

Vì B(xB, yB) AB yB = –4xB – 14 (2)

C(xC, yC) AC 52

5x2y C

C ( 3)

Thế (2) và (3) vào (1) ta có

0y 1x2y3x

252

5x214x4

2xx

CC

BBC

B

CB

Vậy A(–4, 2), B(–3, –2), C(1, 0) 2. Nếu n 2 thì n + 6 8. Do đó số tam giác có ba đỉnh được lấy từ n + 6 điểm đó không vượt qua 43956C3

8 (loại). Vậy n 3 Vì mỗi tam giác được tạo thành ứng với 1 tổ hợp 3 chập n + 6 phần tử. Nhưng trên cạnh CD có 3 đỉnh, trên cạnh DA có n đỉnh nên số tam giác tạo thành là:

4396

n1n2n16

6n5n4nCCC 3n

33

36n

(n + 4)(n + 5)(n + 6) – (n – 2)(n – 1)n = 2540 n2 + 4n – 140 = 0 n 2 144 loaïi vì n 3 v n 2 144 10 Đáp số: n = 10

Câu Vb:

1. Giải phương trình: 4 22x 1

1 1log (x 1) log x 2log 4 2

(1)

Điều kiện x >1

(1) 212xlog1x2log1xlog 444

4

x 1 2x 1 1logx 2 2

x > 1

22x x 1 2x 2

và x > 1 2x2 – 3x – 5 = 0 và x > 1 5x2

2. Gọi M là trung điểm của BC. thì SM BC,

AM BC o60ABC ,SBCSMA

Suy ra SMA đều có cạnh bằng 2

3a

Do đó oSMA 60sin.AM.SM.

21S

S

A C

B

M

N

60

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2007

Page 54: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

186

16

3a323.

4a3.

21 22

Ta có SABC SBAM SAM1V 2V 2. .BM.S3

16

3a16

3a.a.31 32

Gọi N là trung điểm của đoạn SA. Ta có CN SA

a 13CN4

(vì SCN vuông tại N)

2

SCA1 1 a 3 a 13 a 39S .AS.CN . .2 2 2 4 16

Ta có SAC ,Bd.16

39a.31SAC ,Bd.S.

31

163aV

2

SCA

3

SABC

3

2

3 3ad B,(SAC) a 3a 39 13

.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2007

Page 55: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

208

ĐỀ SỐ 36 Câu I. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số Với m = -1 hàm số trở thành y = x3 – 3x2 + 1 10. Tập xác định: 20. Sự biến thiên : * Giới hạn: limx

y

; limx

y

* Lập bảng biến thiên: y ’= 23 6x x

0' 0

2x

yx

Bảng biến thiên x - 0 2 + y’ + 0 - 0 + y 1 +

- -3

30. Đồ thị Giao Oy: (0,1).

f(x)=x^3-3x^2+1

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-8

-6

-4

-2

2

4

6

8

x

y

2. Gọi M là điểm thuộc đồ thị hàm số (1) có hoành độ x = -1, suy ra M(-1; 2m-1) Ta có y’ = 3x 2 + 6mx + (m +1); y’(-1) = 4 – 5m. Tiếp tuyến d của đồ thị hàm số

đã cho tại M(-1; 2m - 1) có phương trình là: y = (4 - 5m)( x + 1) + (2m - 1)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2008

Page 56: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

209

Tiếp tuyến d đi qua A(1; 2) khi và chỉ khi 2 =5(4 5 )2 2 18

m m m

Câu II. 1. Giải phương trình:

Điều kiện: sin x. cos x 0. Phương trình đã cho tương đương với:

tgx – cotgx = 4cos2 2x 2 2s inx osx 2 os2x4 os 2 4 os 2 0cosx sinx sin2x

c cc x c x

1os2x 2 os2x 0 os2x(1+sin4x)=0sin2x

c c c

c os 2 x =0 4 2x k

sin4x = -1 8 2

x k

So với điều kiện suy ra nghiệm của phương trình đã cho là:

4 2

x k và

8 2x k

2. Giải phương trình : 2(2x - 1)2x + 1 + 3 - 2x =

2

Điều kiện x 1 3;2 2

Ta có : 2( 2 1 3 2 ) 4 2 2 1 3 2x x x x 4 2 1 3 2 2x x (1)

Mặt khác 22 2 1

2 2 1 2 0 2 1 4 0 22

xx x

(2)

Từ (1) và (2) suy ra phương trình tương đương với:

2

12 1 3 2 2 2

3(2 1) 42

xx xx x

So với điều kiện ta được nghiệm của phương trình là:

12

32

x

x

Câu III. 1. Chứng minh d 1 và d 2 cắt nhau: Giải hệ phương trình:

3 3 32 2 1

5 6 6 13 06 6 7 0

x y z

x y zx y z

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2008

Page 57: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

210

ta được x = y = 1, z = 2. suy ra d 1 và d 2 cắt nhau tại I (1; 1; 2). 2. Tìm toạ độ các điểm A, B: Véc tơ chỉ phương của d 1 là 1 (2;2;1)u

Ta có 2 'u

= 6 -6 6 5 5 -6; ; ; 72; 36; 24

6 6 6 1 1 -6

. Suy ra 2 (6;3;2)u

cùng

phương với 2 'u

là véc tơ chỉ phương của d 2 .

Gọi là góc giữa d 1 và d 2 ta có cos 1 2

1 2

. 20 41sin21 21

u u

u u

Ta có 4142

= S IAB = 2 21 41sin 12 42

IA IA IA IB

Vì A thuộc d 1 nên toạ độ của A(1+2t; 1+2t; 2+t) IA = 3 t = 1 13

t

5 5 7; ;3 3 3

A

hoặc 1 1 5; ;3 3 3

A

vì B thuộc d 2 nên toạ độ của B (1+6k; 1+3k; 2+2k)

7IB k =1 17

t 13 10 16; ;7 7 7

B

hoặc 1 4 12; ;7 7 7

B

.

Câu IV.

1. Tính tích phân 3

312

2 2xdxIx

Đặt t = 3 2 2x 3 22 3 1; 1; 3 22 2 2

t t dtx dx x t x t

suy ra I =

3 2

2 2 2 54 2 2

11 1 1

2 3. 3 32 2 ( 2 )4 4 5

t t dttt t dt t

t

= 125

2. Giải phương trình: Điều kiện cos x 0 . Dễ thấy sinx = 0 không thoả mãn phương trình . Phương trình đã cho tương đương với

2 2s i n x c o s x2 ( s i n x - c o s x ) 2 22 s i n x e ee = =

c o s x s i n x c o s x (1)

Xét hàm số f(t) =

2 t2et

, với t [ 1;0) (0;1]

f ’(t) =

2 t 22 t2

2 2

2 t - 1 e 2t - 2 e2 = < 0

t 2t

.

Suy ra hàm số nghịch biến trên các khoảng [ 1;0), (0;1]

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2008

Page 58: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

211

Từ (1) suy ra sinx, cosx cùng dấu. Suy ra u, v cùng thuộc nữa khoảng [-1; 0) hoặc cùng thuộc nữa khoảng (0; 1].

(1) f(sinx) = f(cosx) sinx = cosx tgx = 1 4

x k

So với điều kiện ta được nghiệm của phương trình đã cho là :

4

x k với k .

PHẦN RIÊNG. Câu V.a. Theo chương trình không phân ban 1. Số tự nhiên chẵn gồm 4 chữ số khác nhau của E có dạng: abcd , trong đó a 0, d {0, 2, 4}. Xét d = 0. Khi đó các số có 3 chữ số abc bằng A 3

6 = 120 .

Xét d = 2 (hoặc d = 4), khi đó a có 5 cách chọn, ứng với mỗi cách chọn a ta có 5 cách chọn b, ứng với mỗi cách chọn hai chữ số a, b ta có 4 cách chọn chữ số c. Suy ra, khi d = 2, có tất cả 5.5.4 = 100 số. Tương tự cho d = 4. Vậy số tất cả các số là: 120 + 100.2 = 320 2. Gọi d1, d2 lần lượt là đường cao kẻ từ đỉnh B và đường phân giác trong của góc A, M’(a; b) là điểm đối xứng của M qua d2 và I là trung điểm của MM’.

Ta có 'MM = (a; b -2) Vectơ chỉ phương của d2 là u

= (1; 1) Hệ :

2

2 0 1' 02 11 0

2 2

a b aMM ua b bI d

Khi đó M’(1; 1) thuộc đường thẳng AC. Mặt khác vectơ chỉ phương v

4; 3 của đường cao d1 chính là vectơ pháp tuyến của đường thẳng AC. Do đó phương trình đường thẳng AC là 4(x - 1) – 3(y - 1) = 0 4x – 3y – 1 = 0.

Tọa độ A = 2d AC xác định bởi hệ:

33 4 10 013 4 8 04

xx yx y y

Vậy B(-3;- 1)

4. Đường thẳng AC: 4x - 3y - 1= 0; do đó C 4 1;

3cc

MC =2 1

2

2

(1;1)14 12 2 2 31 3331 ;3

25 2525

Cccc

Cc

ta thấy 1AC và 2AC cùng chiều.

Kết luận A(4;5), B 1 31 333; , ;4 25 25

C

Câu V.b.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2008

Page 59: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

212

1. Giải bất phương trình: 1 22

2x + 3log log 0x + 1

Bpt đã cho tương đương với:

0 < 22 3 2 3log 1 1 2

1 1x xx x

22 3 21 011

2 3 12 0 01 1

xx xxx

xx x

Suy ra, nghiệm của bpt là x < -2. 2. IJ //SE ( ) ( )IJ ABC IJ EHI

1 .3EHIJV IJ dt EHI

vì SE ( ) ,ABC SE MC SH MC MC EH

EC= 2 2 2 24 5BE BC a a a ECsin =a 5 s inEH

HC=EC os =a 5 osc c . Gọi K là hình chiếu của H trên EC,

2. 5 s in .cos 5 sin 2

25HE HC a aHK

EC a

EI= 21 5 1 5. sin 22 2 2 8

aEC dt EHI HK EI a 2

31 1 5 5. . sin 2 sin 23 3 8 24EHIJ

aV IJ dt EHI a a 35

24EHIJaV

Dấu “ = ” xảy ra khi sin 2 1 45o

H

J

I

C

B A

S

K M

E

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN A 2008

Page 60: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

213

ĐỀ SỐ 37 Câu I. Hàm số y = x4 - 8x2 + 7 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số. - Tập xác định: R - Sự biến thiên của hàm số. + Giới hạn của hàm số tại vô cực.

limx

y = + và limx

y = +

+ Bảng biến thiên. Ta có: y' = 4x3 - 16x = 4x(x2 - 4) y' = 0 x = 0 hoặc x = 2 hoặc x = -2. x - -2 0 2 + y' - + - + + 7 + y -9 -9 Hàm số nghịch biến trên mỗi khoảng (- ; -2) và (0 ; 2). Hàm số đồng biến trên mỗi khoảng (-2 ; 0) và (2 ; + ). Hàm số đạt cực đại tại x = 0, yCĐ = y(0) = 7. Hàm số đạt cực tiểu tại x = 2 , yCT = y( 2) = -9. - Đồ thị.

+ Điểm uốn: y'' = 12x2 - 16; y'' = 0 x1 = 23

và x2 = - 23

.

y' đổi dấu khi qua x1, x2 nên điểm uốn là: U12 17;

93

; U22 17;

93

+ Giao điểm của đồ thị với trục tung là điểm (0 ; 7). Ta có y = 0 x = 1 hoặc x = 7 . Vậy đồ thị cắt trục hoành tại 4 điểm (1;0) ; (-1;0) ; ( 7 ;0) và (- 7 ;0). 2. Đường thẳng y = mx - 9 tiếp xúc với đồ thị hàm số (1) khi và chỉ khi hệ

phương trình 4 2

3

8 7 9(2)4x 16 (3)x x mx

x m

có nghiệm.

Thay (3) vào (2), rút gọn, ta được: 3x4 - 8x2 - 16 = 0 x = 2. • x = 2 m = 0 • x = -2 m = 0 Vậy chỉ có 1 giá trị m = 0 duy nhất để đường thẳng y = mx - 9 tiếp xúc với đồ thị hàm số (1). Câu II. 1. Điều kiện: x R.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2008

Page 61: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

214

2sin(2 ) sin( )4 4 2

x x sin(2 ) sin sin( )

4 4 4x x

2sin( )cos sin( )4 4

x x x

sin( )(2cos 1) 04

x x

sin( ) 04

(2cos 1) 0

x

x

4

23

x k

x k

4

23

x k

x k

2. Điều kiện: 1 1x

2 2

1 311 1

xx x

2

2 2

32 01 1

x xx x

(1)

Đặt 21

x tx

, ta có 2

( )1

xt f xx

; 2 3

1'( ) 0, ( 1;1)(1 )

f x xx

.

Do đó tR.

(1) viết thành: t2 - 3t + 2 > 0 21

tt

• t > 2: 2

21

xx

2 24(1 )1 1

x xx

2 4

51 1

x

x

215

2 15

x

x

• t < 1: 2

11

xx

21

1 1x x

x

2 2

1 0

10 1

x

x xx

1 01 12 2

0 1

x

x

x

1 0

102

x

x

112

x

Kết hợp 2 trường hợp, x có giá trị thuộc các khoảng (-1; 12

) và ( 25

;1).

Cách 2. Điều kiện: 1 1x

2 22 2

1 31 2 3 11 1

x x x xx x

(1)

i) 1 0x : Thỏa (1). ii) 0 < x < 1:

22 2 2 4 2 2 4 4 2(1) 2 9 1 4 4 9 9 10 13 4 0

x x x x x x x x x

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2008

Page 62: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

215

2

2

1 112 22

4 2 25 5 5

xx

x x x

Nhưng 0 < x < 1 nên

102

2 15

x

x

Vậy, nghiệm của bất phương trình đã cho là các khoảng (-1; 12

) và ( 25

;1).

Câu III. 1. Phương trình mặt cầu có dạng x2 + y2 + z2 + 2ax + 2by + 2cz + d = 0 (a2 + b2 + c2 > d) Tâm I(-a;-b;-c) thuộc mặt phẳng (P) nên: -2a -3b + 3c +1 = 0 (1) Mặt cầu đi qua A nên: 16 + 9 + 8a + 6c + d = 0 (2) Mặt cầu đi qua B nên: 1 + 1 + 9 -2a - 2b + 6c + d = 0 (3) Mặt cầu đi qua C nên: 9 + 4 + 36 + 6a + 4b + 12c + d = 0 (4)

Từ (1); (2); (3); (4) ta có hệ phương trình

-2a -3b + 3c +1 = 0 16 + 9 + 8a + 6c + d = 0 1 + 1 + 9 -2a - 2b + 6c + d = 0 9 + 4 + 36 + 6a + 4b + 12c + d = 0

Giải hệ, ta được:

123

1

abcd

.

Thỏa mãn điều kiện, vậy phương trình mặt cầu cần tìm là: x2 + y2 + z2 - 2x - 4y - 6z +1 = 0.

2. Đường thẳng d: 3 52 9 1

x y z

x = 3 y = 0 ; z = -5 x = 5 y = 9 ; z = -4 Điểm M(3; 0; - 5) và N(5; 9; - 4) thuộc đường thẳng d, suy ra M, N thuộc mặt phẳng (Q). Ta có mặt phẳng (Q) cắt mặt cầu (S) theo đường tròn có bán kính lớn nhất khi và chỉ khi (Q) đi qua tâm mặt cầu (S), tức (Q) qua I(1;2;3). IM

= (2;-2;-8) ; IN

= (4;7;-7) là cặp chỉ phương của mặt phẳng (Q). Véc tơ pháp tuyến của mặt phẳng (Q): n

= ;IM IN

= (70;-18;22).

Phương trình mặt phẳng (Q) là: 70(x - 1) - 18(y - 2) + 22(z - 3) = 0 hay 35x - 9y + 11z - 50 = 0.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2008

Page 63: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

216

Câu IV. 1. Tính tích phân:

2

0

sin 23 4sin cos 2

xdxIx x

=

2 2

2 20 0

sin cos sin (sin )1 2sin sin 1 2sin sin

x xdx xd xx x x x

Đặt sinx = t . x =2 t = 1 ; x = 0 t = 0.

11 1 1 11

2 2 000 0 0 0

1 1 1ln 1 ln 21 2 ( 1) 1 1 1 2 2

tdt tdt t dtI td tt t t t t t

Cách 2. 11 1 1 1

2 2 20 0 0 0 0

1 1 1 1ln 1 ln 21 2 ( 1) 1 ( 1) 1 2

tdt t dt dt dtI tt t t t t t

2. Phương trình: 4x(4x2 + 1) = 1 (1). Đặt f(x) = 4x(4x2 + 1) - 1.

Ta thấy x = 0 và x = - 12

là nghiệm vì f(0) = f(- 12

) = 0.

2 2'( ) 4 ln 4.(4 1) 8 .4 4 (4 ln 4 8 ln 4)x x xf x x x x x Nhận xét 4x > 0. Đặt 24 ln 4 8 ln 4x x = g(x).

2' 16 4 ln 4 0 , nên g(x) có 2 nghiệm phân biệt x1, x2; mà x1x2 = 14

> 0 và x1

+ x2 = 2ln 4 < 0 nên x1 < 0; x2 < 0.

Do đó f '(x) có 2 nghiệm phân biệt x1; x2 < 0: f '(x) > 0 với mọi x < x1 hoặc x > x2 ; f '(x) < 0 với mọi x1 < x < x2.

Ta có f(- 12

) = f(0) nên xảy ra 2 trường hợp.

TH1: - 12

< x1 < x2 < 0

Khi đó: 0 = f(- 12

) < f(x1) ; f(x2) < f(0) = 0. Vậy tồn tại a(x1; x2) sao cho f(a) = 0,

a là duy nhất vì f(x) nghịch biến trên (x1; x2).

TH2: x1 < - 12

< x2 < 0

f(x1) > f(- 12

) = 0, mà f(x) đồng biến trên ( ; x1) nên tồn tại a( ; x1) sao cho

f(a) = 0, a cũng là duy nhất. Tóm lại, phương trình (1) có đúng 3 nghiệm thực phân biệt. Cách 2. Phương trình: 4x(4x2 + 1) = 1 (1). Xét hàm số f(x) = 4x(4x2 + 1) - 1. TXĐ: R

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2008

Page 64: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

217

2 2'( ) 4 ln 4.(4 1) 8 .4 4 (4 ln 4 8 ln 4)x x xf x x x x x Nhận xét 4x > 0. Đặt 24 ln 4 8 ln 4x x = g(x). 2' 16 4 ln 4 0 , nên g(x) có 2 nghiệm phân biệt x1, x2; f '(x) > 0 với mọi x < x1 hoặc x > x2 ; f '(x) < 0 với mọi x1 < x < x2. Do đó phương trình f(x) = 0 có nhiều lắm là 3 nghiệm thực phân biệt.

Mặt khác, f(0) = f(- 12

) = 0, f(- 3).f(-2) < 0. Suy ra đpcm.

Câu V.a.

1. 3 2 ! 2 !2 ( 1)( 2) 2 ( 1) 100( 3)! ( 2)!n n

n nA A n n n n nn n

3 2 100 0 5n n n (do nN)

Ta có:2

22

0(1 3 ) (3 )

nn k k

nk

x C x

Số hạng chứa x5 ứng với k = 5, và n = 5. Hệ số của x5 là : 5 5

10.3 61236C . 2. Đường tròn (C): x2 + y2 = 1 có tâm là góc tọa độ O, bán kính R = 1. Trong mặt phẳng tọa độ Oxy, lấy 1 điểm M sao cho góc giữa 2 tiếp tuyến kẻ từ M tới đường tròn tâm O là 60o , ta có OM = 2. Vậy M thuộc đường tròn tâm O bán kính bằng 2. Số điểm M nằm trên đường thẳng y = m mà từ đó kẻ được đến đường tròn (C) hai tiếp tuyến tạo với nhau góc 60o là số giao điểm của đường tròn (O;2) và đường thẳng y = m. • m < -2: Có 0 giao điểm. • m = 2: Có 1 giao điểm. • - 2 < m < 2: Có 2 giao điểm. • m = 2: Có 1 giao điểm. • m > 2: Có 0 giao điểm. Vậy có giá trị của m thỏa mãn bài ra là: -2 < m < 2. Câu V.b.

1. Điều kiện: 2

3

0 0 02

6 6 29 0 9 331log 0 1 1

x x xx

x x xx x

xx x x

Biến đổi ta có: 3 4 2

2 2

6 2 23 log 3 log (9 ) log (3 ) 3 3 3 2 0

( 1)( 2) 0

x x xx x x x x xx x x

x x

1

2

x

x

Kết hợp với điều kiện, chỉ có giá trị

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2008

Page 65: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

218

x = 2 là thỏa mãn. Nghiệm của phương trình là x = 2 . 2. • Chứng minh SIAD Gọi giao điểm của MN và AE là K. Trong mặt phẳng SAD, kẻ SK cắt AD tại I. Vì SK thuộc mp(SMN) nên, I là giao của (SMN) và AD. Ta có SA = SB = SC = a và chúng đôi một vuông góc nên, các tam giác SAC, SAB, SBC là các tam giác vuông cân tại S, cạnh

bằng a. Suy ra: SM = SN = SE = 22

a ;

AB = AC =BC = a 2 , do đó tam giác ABC đều.

MN là đường trung bình của tam giác ABC nên MN = AB2

= 22

a . Suy ra MN =

SN = SM = 22

a nên tam giác SMN đều.

Tam giác ABC đều, E trung điểm BC nên K trung điểm MN. Suy ra SKMN, mà SK (ASD) MN (ASD)MNAD(1) SB SCSB SA

( )SB SAC , mà DC // SB nên DC (SAC)DC SN, kết hợp với

SNAC, ta có SN (ADC)SNAD(2) Từ (1) và (2), suy ra: AD (SMN), mà SI (SMN)AD SI (đpcm). • Tính thể tích khối tứ diện MBSI SD = 2SE = a 2 Tam giác SAD vuông tại S: AD = 2 2SA SD = a 3 .

Có SI là đường cao nên: 2 .SA AI AD AI = 2 2

3 3SA a aAD a

13

AIAD

.

Ta có: 1 1 1.2 3 6

ASMI

ASBD

V AM AIV AB AD

ASMIV = 16 ASBDV ;

13

ASBI

ASBD

V AIV AD

13ASIB ASBDV V

13AMBI ASBI ASMI ASBDV V V V

Tính ASBDV : 2

2SBD SBCaS S ;

2 31 1. .3 3 2 6ASBD SBD

a aV S AS a

VAMBI = 3

18a .

E

K I

M

N

C

D

B

A

S

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN A 2008

Page 66: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

56

ĐỀ SỐ 3

Câu I:

1. a) Khảo sát và vẽ đồ thị hàm số khi m = 12

.

(Học sinh tự giải). Gọi (C) là đồ thị hàm số. b) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến ấy song song với đường thẳng y = 4x + 2.

Ta có hàm số y = 3 21 1 423 2 3

x x x

y' = x2 + x - 2 Theo giả thiết tiếp tuyến thì phải tìm có hệ số góc k =4. Vậy có:

2 22 4 6 0xx x x 1 1

2 2

22;313;6

x y

x y

Vậy, có 2 tiếp tuyến thoả mãn điều kiện đề bài.

Tiếp tuyến (d1): 2 264 2 43 3

y x y x

Tiếp tuyến (d2): 1 734 3 46 6

y x y x

2. Do 0 < m < 56

nên:

1 1(0) 2 03 3

y m

8 1 5(2) 2 4 2 03 3 3

y m m

Lại có: y' = x2 + 2mx - 2 y" = 2x + 2m > 0, x [0; 2]

Suy ra đồ thị hàm số 3 21 12 22 3

y x mx x m lõm trên đoạn [0; 2]. Kết hợp

với y(0) < 0; y(2) < 0 suy ra y < 0, x [0; 2]. Do đó:

2 2 2

2 3

0 0 0

1 12 23 3

S y dx ydx x mx x m dx

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2002

Page 67: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

57

4 3 2

23 12 012 3 x

x xm x m x

4 8 2 4 104 43 3 3 3 3

mm m

Theo giả thiết S = 4 m = 12

(thoả mãn điều kiện 0 < m < 56

)

Chú ý: Không cần dùng tính "lõm" của đồ thị hàm số trên [0; 2] để chứng minh y < 0, x [0; 2] như sau:

1 1(0) 2 03 3

y m

8 1 5(2) 2 4 2 03 3 3

y m m

Lại có: y' = x2 + 2mx - 2 y" = 2x + 2m > 0, x [0; 2] Suy ra y' đồng biến, liên tục trên [0; 2], với tập giá trị [-2; 2 + 2m], nên đổi dấu từ âm sang dương trên [0; 2]. Do đó hàm số đã cho nghịch biến rồi chuyển sang đồng biến, liên tục trên [0; ]. Đồng thời với g(0) < 0 và g(2) < 0, ta có đpcm. Câu II: Giải hệ phương trình:

4 2

4 3 (1)

log log 0 (2)

x y

x y

Điều kiện: 4

2

log 0 1log 0 1

x xy y

Với điều kiện đó phương trình (2) log4x = log2y log2x = log2y2 x = y2 Phương trình (1) y2 - 4y + 3 = 0 (do y 1) y = 1; y = 3 x = 1; x = 9 Vậy, phương trình có hai nghiệm (1;1) và (9;3)

2. Phương trình tg4x + 1 = 2

4

2 sin 2 sin 3os

x xc x

Điều kiện: cos 0 sinx 1 Phương trình sin4x + cos4x = (2 - sin22x) sin3x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2002

Page 68: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

58

2 211 sin 2 2 sin 2 sin 32

x x x

2 22 sin 2 2 sin 2 .2sin 3x x x

sin3x = 12

(dễ thấy thoả mãn điều kiện)

3 2

653 26

x k

x k

218 35 218 3

kx

kx

(k Z)

Câu III: 1. Kẻ AH BE. Do SA (ABC) nên BE SH. Do đó SH là khoảng cách từ S

đến BE. Kéo dài BE cắt AD tại M. E là trung điểm của CD nên ED = 2 2a AB D

là trung điểm của AM AM = 2a ABM vuông tại A ta có: SAH vuông tại A ta có:

SH = 2

2 2 2 4 3 55 5a aSA AH a

a B C

E

D M

S

A

a

H

Hình 16

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2002

Page 69: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

59

2. (d) là hình chiếu vuông góc của trên (P) thì (d) là giao tuyến của (P) và mặt phằng (Q) chứa và vuông góc với (P). Để ý rằng, mặt phẳng (Q) chứa có phương trình dạng: 2 1 2 0x y z x y z , 2 2 0 (1)

Thật vậy, tất cả các điểm M(x; y) thuộc đều có tọa độ thỏa: 2 1 0

2 0x y z

x y z

và do đó thỏa (1).

(1) 2 2x y z , 2 2 0

suy ra (Q) có véctơ pháp tuyến 2 ; ;Qn

Do (Q) (P) nên . 0 4. 2 2 1 0 7 3 0Q Pn n

Chọn 3 ta có 7 Vậy, (Q) có phương trình x + 4y + 4z + 11 = 0 Như thế, (d) là giao của hai mặt phẳng:

4 2 1 0

4 4 11 0x y z

x y z

(d) có véc tơ chỉ phương [ , ]P Qa n n

= (4; 5; -6), trong đó, Pn

=(4; - 2; 1), Qn

=(1; 4;

4) và đi qua điểm (1; 0; - 3).

Từ đó, suy ra phương trình (d): 1 34 5 6

x y z

Cách 2. (d) là hình chiếu vuông góc của trên (P) thì (d) là giao tuyến của (P) và mặt phằng (Q) chứa và vuông góc với (P). Mặt phẳng (Q) đi qua Mo (1; -3; 0) là một điểm thuộc và có cặp chỉ phương gồm một véc tơ là véc tơ chỉ phương của , một véc tơ là véc tơ pháp tuyến của (P).

1 2 1 2(2;1;1), (1;1;1) [ , ] (0; 1;1)n n n n

Véc tơ chỉ phương của là (0, 1;1)a

.

Suy ra, véc tơ pháp tuyến của (Q) là [ , ]Q Pn a n

=(1; 4; 4).

Vậy phương trình (Q): 1(x - 1) + 4(y + 3) + 4z = 0 x + 4y + 4z + 11 = 0. Cách 3. Trên () chọn điểm Mo nào đó chẳng hạn Mo (1; -3; 0). Gọi H là hình chiếu của M0 trên (P). Gọi I là giao điểm của () với (P). Suy ra phương trình đường thẳng IH chính là phương trình hình chiếu của () lên mặt phẳng (P):

1 3

4 5 6x y z

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2002

Page 70: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

60

Câu IV:

1. Tìm 3

0

1 11x

x ximx

3 3

0 00

1 1 1 1 1 11 lim limx xx

x x x ximx x x

Xét từng số hạng:

00

11 lim21 1 1 1xx

x ximx x x

3

00 23 3

1 11 11 lim[1 1 1 ]

xx

xximx x x x

20 3 3

1 1131 1x

imx x x

3

0

1 1 1 112 3x

x ximx

5

6

2. (C1): x2 + y2 - 4y - 5 = 0 x2 (y-2)2 = 9 (C2): x2 + y2 - 6x + 8y + 16 = 0 (x-3)2 + (y + 4)2 = 9 (C1) có tâm I1 (0; 2) bán kính R1 = 3 (C2) có tâm I2 (3; -4); bán kính R2 = 3

Vì I1I2 = 221 23 6 45 3 5 R R nên (C1) và (C2) nằm ngoài nhau, do

đó có 4 tiếp tuyến chung. Vì R1 = R2 = 3 nên d1 // d2 // I1I2

Phương trình đường thẳng I1I2 = 0 2 2 2 2 03 6

x y x y

Phương trình d1, d2 có dạng 2x + y + c = 0

Khoảng cách từ I1 đến d1, d2 bằng 2 2

23

2 1

c

1

2

3 5 2 2 3 5 2 02 3 5

3 5 2 2 3 5 2 0

c x yc

c x y

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2002

Page 71: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

61

Hình 17

Do tính đối xứng, d3 và d4 cắt nhai tại trung điểm I của đoạn I1I2 có toạ độ(3/2;1).

Phương trình d3, d4 có dạng y + 1 = k 3 31 02 2

kx kx y

Khoảng cách từ I1 tới d3, d4 bằng 2

32 12 3

1

k

k

Giải ra ta được : 1

2

0 144 333

k y

y xk

Câu V:

Cho , 0

54

x y

x y

Tìm min S với S = 4 14x y

Cách 1: S = 5

1 1 1 1 1 5 5.5 25 54 4 5. . . .4x x x x y x x x x yx x x x y

min S = 5

1 14

454

x yx y

x y

114

x

y

Cách 2: S = 4 1 ( )5 4

f xx x

0 < x < 5

4

I1 I2 I

d1

d2

d3

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2002

Page 72: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

62

f(x) = 22

4 4 05 4x x

22 5 4

1504

x xx

x

Lập bảng dấu f '(x) suy ra min S = 5

Cách 3: 1 2 1 4 12 . . .2 42

x y x yx yx y

(3)

Dấu "=" ở (3) khi

54

2 1 4 1. 2 . 5 1

4 4

x y xx x y y

x y yx y

(3) 25 5 4 1 4 1 5

2 4 4 4x y x y

Vậy min S = 5.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2002

Page 73: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

51

ĐỀ SỐ 2 Câu I: 1. Tìm n N* thoã mãn bất phương trình 3 22 9n

n nA C n

Điều kiện: n N*, n 3. Bất phương trình n(n - 1) (n - 2) + 22 9nC n

n(n - 1) (n - 2) + n(n - 1) 9 (n - 1)(n - 2) + n - 1 9

2 2 8 03 4 ( *)

n nn n N

Kết hợp điều kiện n 3 suy ra n = 3 hoặc n = 4.

2. Phương trình 84 22

1 1log 3 log 1 log (4 )2 4

x x x

Điều kiện:01

xx

Phương trình 84 22

1 1log ( 3) log ( 1) log (4 )2 4

x x x

2 2 2log ( 3) log 1 log (4 )

( 3). 1 4

x x x

x x x

i. Nếu x > 1, phương trình (x + 3)( x -1) - 4x = 0

2 2 3 0

31

x xx

x

ii. Nếu 0 < x < 1, phương trình (x + 3)( 1 - x) - 4x = 0

2 6 3 0

3 2 20 1x x

xx

Đáp số: phương trình có 2 nghiệm 3

3 2 3

x

x

Câu II:

1.2 2

2 2x x m my x

x x

2

2 2

4 4' 1( 2) ( 2)

m x x myx x

Để hàm số nghịch biến trên đoạn 1;0 , điều kiện cần và đủ là

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2002

Page 74: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

52

' 0 [ 1;0y x

2

[ 1;0 ]

( ) 4 4 , 1; 0max ( ) ( 1) 9g x x x m x

g x m g m m

2. khảo sát và vẽ đồ thị hàm số khi m = 1. ( Học sinh tự giải) 3. Phương trình.

2 2

2

1 1 1 1

2

1 1

9 ( 2)3 2 1 0

2 1 ( 2) (1)

3

t t

t

a a

X X a X

X

Do 21 1 1 2,t t mà 1 - t2 0. Suy ra miền giá trị của 21 13 tX là đoạn 3;9 .

2 2 1

(1) 23 9

X X aXX

Từ đồ thị vẽ ở câu 2, hạn chế trong đoạn 3;9 suy ra, để phương trình có nghiệm,

điều kiện cần và đủ là: 6447

a

* Chú ý: Bạn có thể thấy thú vị hơn, nếu tìm a để phương trình sau có nghiệm: 2 2t + 1 - t t + 1 - t9 - (a + 2).3 + 2a + 1 = 0 Câu III:

1. Giải phương trình 4 4s in os 1 1cot 25sin 2 2 8sin 2

x c x xx x

Điều kiện: sin2x 0 Với điều đó phương trình:

2 21 2in cos 1 1os25 2 8x x c x

2 9os 2 5 os2 04

9os2 12 2 6 21 3cos 22

c x c x

c xx k

x

2. trong tam giác ABC hệ thức: bsinC (bcosC + ccosB) = 20

(loại)

6x k

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2002

Page 75: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

53

4R2sinBsinC (sinBcosC + sinCcosB) = 20 4R2sinBsinCsinA = 20

Mà 3

28 sin Asin sin 2 sin Asin sin4 4abc RS B C R B C

R R

Vậy ta được: S = 10 (đơn vị diện tích) Câu IV: 1. Để cho gọn, ký hiệu BC = a, AC = b, AC = c, OA = x, OB = y, OC = z. Theo giả thiết ta có:

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

a y zb x zc x y

a b cb c ac a b

Suy ra, ABC là tam giác nhọn, nên trực tâm H nằm trong tam giác. Gọi AM, BK, CN là 3 đường cao của tam giác ABC. Theo giả thiết OA (OBC)

.BC OA

BC OMBC AM

Suy ra OMA = , OKB = ,ONC =

Ta có: cos = OMAM

.

Trong tam giác vuông BOC ta có: 2 2 2 2 2

1 1 1 1 1OM OB OC y z

Suy ra: OM2 = 2 2

2 2

y zy z

OM = 2 2

yzy z

Trong tam giác vuông AOM:

AM2 = OA2 + OM2 = x2 + 2 2

2 2

y zy z

B

C

O

A

N

A K

H

Hình 15

M

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2002

Page 76: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

54

2 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2

x y y z x z x y y z z xAM AMy z y z

Vậy, cos = 2 2 2 2 2 2

OM yzAM x y y z z x

Lập luận tương tự ta cũng có:

cos = 2 2 2 2 2 2

xzx y y z z x

cos = 2 2 2 2 2 2

xyx y y z z x

Suy ra, cos + cos + cos =

2 2 2 2 2 2 2

313

xy yz xz xy yz xzx y y z z x xy yz xz

(đpcm)

Cách khác: cos + cos + cos = 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

3( )3

x y y z z xxy yz xzx y y z z x x y y z z x

2. a) (P) có vectơ pháp 1; 1;1n

. Đường thẳng (d) qua A và (P) có phương

trình:

1 3 21 1 1

x y z

Gọi I là giao điểm của (d) và (P), khi có toạ độ của I là nghiệm của hệ:

3 0

1 3 21 1 1

x y zx y z

Suy ra I(-2; -2; -3). A' là điểm đối xứng của A qua (P) (d) và I là trung điểm của AA'. Do đó A' có toạ độ(xo; yo; zo)

01 22

x , 03 2

2y

, 02 32

z

x0 = -3; y 0 = -1, zo = 4. Vậy A' (-3; -1; -4).

b) 'BA

= (2; -8; -16) = 2(1; -4; -8). BA' có phương trình:

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2002

Page 77: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

55

3 1 41 4 8

x y z

Gọi M là giao điểm của BA' với (P) thì toạ độ của M là nghiệm của hệ

3 03 1 4 4;3;4

1 4 8

x y zx y z M

Ta có: MA + MB = MA' + MB A'B. Do đó MA + MB đạt giá trị nhỏ nhất khi MA' + MB đạt giá trị nhỏ nhất bằng A'B. Vậy giá trị nhỏ nhất của biểu thức MA +

MB là A'B = 2 2 22 8 16 18 , khi M là giao điểm của đường thẳng A'B với mặt phẳng (P). Câu V:

Ta có: I =

1 3 1 3 1 3 3

233 20 0 0

11 1

1 1

xn n nxx x

x

d ee dx e d eex e

= 1

1 32 1 11 3 02 2

0

12[ 1 1 ]1

2

x nxn

x

ee e

= 1 12 2 1 12 4 2 2 2 1

2 2

.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2002

Page 78: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

91

ĐỀ SỐ 9 Câu I: Cho hàm số y = (x - 1) (x2 + mx + m) (1) 1. Tìm m để đồ thị hàm số (1) cắt trục Ox tại 3 điểm phân biệt Phương trình (x - 1) (x2 + mx + m) có 3 nghiệm phân biệt Phương trình x2 + mx + m = 0 có 2 nghiệm phân biệt 1

2 0 4

4 011 2 02

m mm mmm

2. Khảo sát và vẽ đồ thị hàm số (1) khi m = 4 (Học sinh tự giải). Câu II: 1. Giải phương trình 3cos4x - 8 cos6x + 2cos2x + 3 = 0 Phương trình 3(1 + cos 4x) - 2cos2 x(4cos4 x - 1) = 0 6 cos2 2x - 2cos2 x (2cos2 x + 1) (2cos2x - 1) = 0 6 cos2 2x - 2cos2 x (2cos2 x + 1) . cos2x = 0 cos2x [3cos2x - cos2 x (2cos2 x + 1)] = 0

a) cos2x = 0 2x = 2

k x= 4 2

k

b) 3 (cos2 - 1) - 2 cos4x - cos2x = 0

-2 cos4x +5cos2x - 3 = 0

cos2 x = 1 hoặc cos2 x = 32

(VN)

x= k 2. Tìm m để phương trình 4 (log2 x )2 - 1

2

log x + m = 0 có nghiệm thuộc

khoảng (0;1) Điều kiện: x > 0 Với điều kiện đó phương trình 2

2log x + m = 0 (1)

Đặt log2x = t Phương trình t2 + t + m = 0 (2)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2003

Page 79: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

92

Để phương trình (1) có nghiệm x (0; 1) điều kiện cần và đủ là phương trình (2) có nghiệm t (- ; 0). Do t1 + t2 = -1 nên nếu (2) có nghiệm thi sẽ có nghiệm âm (-; 0).

Vậy chỉ cần = 1 - 4m 0 m 14

.

Câu III:

1. Hệ số góc của đường thẳng (d): 117

k . Theo giả thuyết (d) là tiếp tuyến với

đường tròn tại điểm A(4; 2) nên tâm I của đường tròn phải thuộc đường thẳng (d1) qua A và vuông góc với (d). Hệ số góc của (d1): k = -7. Phương trình đường thẳng (d1): y - 2 = 7(x - 4) y = - 7x + 30 Vì I () nên toạ độ của I là nghiệm của hệ phương trình: 2x + y = 0 y = -7x + 30 Bán kính R của đường tròn là khoảng cách IA

R = IA = 2 22 14 200 10 2 Vậy phương trình của đường tròn là: (x - 6)2 + (y + 12)2 = 200 2. Vì các mặt đối diện nhau của hình lập phương song song nên mặt phẳng (BD'M) cắt mp (CDC'D') tại N với CN = A'M. Thiết diện BMD'N là hình bình hành có diện tích S bằng. S = 2S (BD'M) = MI.BD' Trong đó MI là đường cao kẻ từ M của tam giác BD'M. Suy ra S bé nhất khi MI bé nhất, tức MI là đoạn vuông góc chúng của hai đường thẳng chéo nhau AA' và BD'. Ta chứng minh rằng đoạn vuông góc chung đó chính là MoO trong đó Mo là trung điểm đoạn BD'. Thật vậy, các tam giác vuông BAMo và D'A'M' bằng nhau nên BMo = D'Mo suy ra trung tuyến MoO cũng là đường cao của tam giác BMD', vậy MoO BD'.

Mặt khác AO = A'O = 1 '2

BD nên OMo AA'.

I(6; -12)

D'

D

B C

N

O A

A'

M0 M B'

I

Hình 35

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2003

Page 80: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

93

Vậy thiết diện của khối lập phương cắt bởi mp (BMD') có diện tích bé nhất khi M là trung điểm của đoạn AA'. 3. Khoảng cách giữa hai đường thẳng AB và OM bằng chiều cao hình hộp dựng trên các vectơ ,OM AB

và ,OB

do đó:

h = , .

,

OM AB OB

OM AB

Ta có:

OB

= (a; 0; 0); 3; ; 0 ; ( ;0; 3)2 2a aOM AB a a

Suy ra 3 3

0 02 2 2 2

0 0 03 3, ; ;

a a a a

aa aO M A B

= 2 2 23 3 3; ;

2 2 2a a a

2

4 4 49 3 3 15,4 4 4 2

aOM AB a a a

33, . ; 0; 0

2aOM AB OB

6 39 3, . 0 04 2

OM AB OB a a

h = 3

2

33 152 .

55 152

a a aa

Câu IV: 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = x6 + 4 (2 - x2)3 trên đoạn [-1;1] Đặt x2 = t (0 t 1). y = x6 + 4(1 - x2)3 = t3 + 4(1 - t)3 = -3t3 + 12t2 - 12t + 4 Bài toán quy về tìm minf(t); max f(t) với: f(t) = -3t3 + 12t2 - 12t + 4 (0 1)

D'

x B

M C

O

A

z

a

y a 3

Hình 36

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2003

Page 81: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

94

f'(t) = -9t2 + 24t - 12 = 3(-3t2 + 8t - 4)

' = 16 - 12 = 4 ; t1 = 4 2 23 3

; t2 = 4 2 2

3

Do 0 t 1:

f(0) = 0, f(1) = 1, f 2 43 9

Vậy có: min y = min f (t) = f 2 43 9

, đạt khi x = 263

.

Max y = max f(t) = f(0) = 4 khi x = 0

2. Tính tích phân I = 25

2 1

xin

xin

e dxe

Đặt 1xe t ex = t2 + 1; exdx = 2tdt 1n2 t 2

I =

22 22

1 1

1 .22 1

t tdtt dt

t

= 3 2

1

8 12 2 2 13 3 3t t

= 7 202 13 3

Câu V: Các số tự nhiên gồm 6 chữ số khác nhau được chọn từ tập 6 chữ số đã cho có dạng. 1 2 3 4 5 6 ( 1, 2, 3, 4, 5, 6 ; )i i ja a a a a a a a a

Sao cho a1 + a2 + a3 = a4 + a5 + a6 - 1 a1 + a2 + a3 + a4 + a5 +a6 = 2(a4 + a5 + a6) - 1 21 = 1 + 2 + 3 + 4 + 5 + 6 = 2(a4 + a5 a6) - 1 a4 + a5 + a6 = 11, suy ra: a1 + a2 + a3 = 10 (1) Vì a1 + a2 + a3 {1, 2, 3, 4, 5, 6} nên hệ thức (1) chỉ có thể thoả mãn trong ba khả năng sau (a1, a2, a3 phân biệt nhau): a1 = 1, a2 = 3, a3 = 6 và các hoán vị của ba số 1, 3, 6 a1 = 1, a2 = 4, a3 = 5 và các hoán vị của ba số 1, 4, 5 a1 = 2, a2 = 3, a3 = 5 và các hoán vị của ba số 2, 3, 5 Mỗi bộ số a1, a2, a3 nêu trên tạo ra 3! hoán vị, mỗi hoán vị dó lại được ghép với 3! Hoán vị của bộ số a4, a5, a6, vì vậy tổng cộng các số tự nhiên gồm 6 chữ số thoả mãn đòi hỏi của đề bài là: 3.3!3! = 3.6.6 = 108 số.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2003

Page 82: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

95

ĐỀ SỐ 10 Câu I:

Cho hàm số y = 2 11

xx

1. Khảo sát và vẽ đồ thị (C) của hàm số (1) . (Học sinh tự giải). 2. Phương trình đường tiệm cận đứng: x = 1 Phương trình đường tiệm cận ngang: y = 2

y' (x) = 2 2

2 1 2 1 11 1

x x xx x

Gọi xo là hoành độ của điểm M (C). Theo giải thuyết tiếp tuyến của (C) tại điểm M vuông góc với đường thẳng IM nên phải có: y'(xo).kIM = -1 Trong đó kIm là hệ số góc của đường thẳng IM

kIM =

12

1

( ) 2 11 1

oM

M o o

y xy yy x x x

Thế vào (2) ta được: 2 2

1 1. 1( 1)1 ooxx

(xo - 1)4 = 1 xo - 1 = 61

0 , 1

2 , 3

o o

o o

x y

x y

Vậy có hai điẻm M1 (0;1) và M2(2;3) thoả mãn yêu cầu của đề bài. Câu II: 1. Giải phương trình

22 3 cos 2 sin

2 4 12 cos 1

xx

x

Điều kiện: cosx 12

.

Với điều kiện đó phương trình:

(2 - 3 ) cos x - 1 os2

c x = 2cos x - 1

3 cos sin 0x x

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2003

Page 83: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

96

1 3sin cos 02 2

x x

sin 03 3

x x k

3 (2 1)1 3cos2

x kx n

x

2. Giải bất phương trình log 1 1 22 4

2 log ( 1) log 6 0x x

Điều kiện: x > 1.

Ta có log 1 2 1 22 4

1log ;log ( 1) log ( 1)2

x x x x

Do dó bất phương trình tương đương với: 2 2 2log log ( 1) log 6 0x x

2 2log 1 log 6x x

2 6 ( 1)x x x

2 6 0

1x xx

x 3

Câu III: 1. a) Phương trình d1,d2: Gọi (x0,y0) là toạ độ điểm tiếp xúc, ta có phương trình d1,d2 có dạng

00 1

4x x y y

D1,d2 qua M(-2;3) nên 00 0 0

( 2) .3 1 2(3 1).4

x y x y

(x0,y0) là tiếp điểm của d1, d2 với (E) nên: 2

200 1

4yx (1)

Thế x0 = 2(3y 0 1) vào (1) ta được

2 220 00 0

3 1 1 10 6 0y yy y

0 030,5

y y

Với y0= 0 ta có x0 = -2 và được d1: x = -2.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2003

Page 84: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

97

Với y0 = 35

ta có x0 = 85

và được d2:

2 x + 3y - 5 = 0. b) Dễ nhận thấy rằng tiếp tuyến d qua N(5;n) không song song với d1; do đó để d1//d2 theo tính chất đối xứng của (E) thì d có phương trình 2 x + 3y - 5 = 0 ( vì qua điểm đối xứng của (-2;3) qua O là (2;-3)). d đi qua N (5; n) nên 2.5 + 3.n + 5 = 0 n = 5. 2. Gọi H là trung điẻm của BC. Do S.ABC đều là ABC nên chân đường cao O của S.ABC trùng với giao điểm 3 đường cao ABC và SBC cân tại S. Suy ra BCSH, BCAH nên ABC = .

a). Ta có AH = 3 1 32 3 2

a aHO AH .

Trong SHO có SO = HOtag = 36

a tag,

SH = 6os 6 cosHO a

c

Diện tích ABC: S = 2 34

a .

Vậy thể tích của hình chóp S.ABC là:

V = 2 21 1 3 3. . .

3 3 4 6 24a a a tagS SO tag

b) Diện tích ABC là

1 1 6. .2 2 6 osABC

aBC SH acS

.

Gọi h là khoảng cách từ A đến mp (SBC) ta có:

3

2

31 3 3 sin24.3 23

12 os

ABVCABC

a tagV aV S h h

ac

S

.

Cách khác: Chân dường cao của tứ diện S.ABC nằm trên SH. Từ đó h = AH

sin = 3 sin2

a .

3. Ta viết mặt phẳng (P) đi qua I, K và lập với mp (xOy) một góc 300 dưới dạng đoạn chắn, tức (P) có phương trình:

B

C

O

h A

S

a

Hình 37

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2003

Page 85: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

98

13 1x y z

b

(dễ thấy nếu (P) qua I, K và // Ox thì nó tạo với mp (xOy) một góc 300). Mặt phẳng (xOy) có vectơ pháp 1n

= (0;0;1).

Mặt phẳng (P) có vectơ pháp 21 1; ;13

nb

.

Suy ra: 1 2 0

2 2

. 3os3 02.

n nc

n n

2 2 2

2 2

1 10. 0. 1.133

21 10 0 1 13

b

b

2 2

2 2

1 3 1 1 411 1 4 3 313

bb

2 2

1 4 1 213 3 9b

3 2

2b

Vậy phương trình các mặt phẳng qua I, K cần tìm là:

3 2 13 2 1x z , 1

3 13 22

x y z

Câu IV: 1. Có 3 khả năng:

5 Nam và 1 nữ có 1

7C cách chọn

4 nam và 2 nữ có 4 2

5 7.C C cách

3 nam và 3 nữ có 3 3

5 7.C C cách

Tổng số cách chọn 6 em trong đó số nữ ít hơn 4 là 1 4 2 3 3

7 5 7 5 7. . 7 5.21 10.35C C C C C 462 cách

2. f' (2) =2

63 ( 1) ( )( 1)

x xxa b e x ex

2

3 ( 1)( 1)

xa be xx

F'(0) = -3a + b

1 1 1

3

0 0 0

( ) ( 1) ( 1) ( )xf x dx a x d x b xd e

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2003

Page 86: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

99

12

0

1 1( 1).0 02

x xxa b xe e dx

1 1 . ( 1)2 4a b e b e

38a b

Ta có hệ: 3 22

3 58

a ba b

82

ab

Câu V:

Chứng minh rằng 2

cos 22

x xe x x x IR (1)

Để chứng minh bất đẳng thức (1) ta lần lượt chứng minh hai bất đẳng thức sau: a) 1 ,xe x x R

b) cos x2

12x x R

Chứng minh a)Lập hàm số f(x) = e 1x x f' (x) = e 1x f' (x) = 0 x = 0 Chiều biến thiên:

x - 0 + f'(x) - 0 + f(x) Min f(x)

Từ bảng biến thiên ta có min ( ) (0) 0

k Rf x f

Suy ra 1xe x x R

Chứng minh b) Lập hàm g(x) = cosx + 2

12x

g(x) là hàm chẵn, chỉ cần xét x 0 g'(x) = - sinx = x g"(x) = -cosx +1 0 g'(x) đồng biến trên khoảng [0; + ] g'(x) g'(0) = 0 x 0

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2003

Page 87: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

100

g(x) đồng biến trên khoảng [0; + ] g (x) g(0) = 0 x 0.

Vì g(-x) = g(x) g(x) 0 x IR cosx 1-2

2x x IR

Từ a) và b) ta dược điều phải chứng minh. Chú thích: các bất đẳng thức a) và b) có nhiều ứng dụng trong nhiều bài toán khác.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2003

Page 88: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

113

ĐỀ SỐ 14

Câu I:

1. Bạn đọc tự giải. 2. y' = 3x2 - 4mx + m2

Phương trình y' = 0 có một nghiệm x = 1 m2 - 4m + 3 = 0

m = 1 hoặc m = - 3. khi đó nghiệm kia x = 43m .

Với x1 < x2 là hai nghiệm của phương trình y' = 0 thì hàm số đạt cực tiểu tại x2. Suy ra m = 1 không thỏa, m = - 3 thỏa. Câu II:

1. Đk: ,2

kx k

1 12( osx-sinx)+ 0sinx osx

1( osx-sinx)(2+ ) 0sinx.cosx

osx-sinx=0 os(x+ ) 041sinx.cosx=- sin 2 12

4 ,

4

pt cc

c

c c

x

x kk

x k

2. Đk: 2x bpt 2x-1 + 6x – 11 > 4x – 8 2x-1 > 3 – 2x Với x > 2: Ta thấy bpt luôn thỏa mãn. Với x 2: bpt 2x-1 < 3- 2x (1) Xét f(x) = 2x-1 là hàm đồng biến trên R g(x) = 3-2x là hàm nghịch biến trên R. Bất phương trình (1) tương đương f(x) > g(x) (2) Nếu x < 1: f(x) < f(1) = g(1) < g(x): bpt không thỏa (2). Nếu 1 < x 2: f(x) > f(1) = g(1) > g(x): thỏa (2). Nếu x = 1: f(x) = f(1) = g(1) = g(x): không thỏa (2). Vậy tập nghiệm của bpt là S = (1; +∞)

Cách 2. bpt 2x-1 + 6x – 11 > 4x – 8 2x-1 - 3 + 2x > 0 (3) Xét f(x) = 2x-1+ 2x - 3. f '(x) = 2x-1ln2 + 2 > 0, x. (3) f(x) > 0 = f(1) x > 1. Câu III:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2004

Page 89: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

114

1. Gọi A(a; 2a + 5).

Do 2IA IB

nên B là trung điểm của IA suy ra B 2 2 5( ; )2 2

a a

Vì 22 2 5 3 0 1

2 2a aB d a

. Vậy A(1;7)

Ta có (3;7) ( 7;3)IA n

. Vậy ptđt (d) là: -7(x – 2) + 3y = 0 hay -7x + 3y +14 = 0. 2. Chọn M(3; 6; 1) (d) và ( 2;2;1)du

Ta có:

( 4; 2;5); ( 2;2;1) [AB; ]=(-12;-6;-12)

[AB; ].AM 0d d

d

AB u u

u

Vậy đt (d) và AB đồng phẳng.

Ta có pt tham số đt (d) là: 3 26 21

x ty tz t

Gọi C(3 – 2t; 6 + 2t; 1+ t), do ∆ABC cân tại A nên AB = AC Suy ra: (1 + 2t)2 + (4 + 2t)2 + (1 – t)2 = (3- 2t)2 + (6 + 2t)2 + (6 – t)2

72

t

Vậy C(-4; 13; 9/2) 3. Kẻ ( )AM BC BC SMA Trong ∆SAM kẻ ( )AH SM AH SBC Ta có:

2 2 2 2 2 2

1 1 1 1 1 4 39 3 9 2

aAHAH SA AM a a a

Câu IV: 1.

3 3 3 23

3 2 2 11 1 1

1 ln(1 )( ) (ln )(1 ) 1 2

ln 4 ln 2 1 3ln 3 ln2 2 2 2

dx dx x xI dx xx x x x x x

2. (2 + x)10 = a0 + a1x + a2x +….+ a100x .

Ta có: 100

100 100100

0(2 ) .2 .k k k

kx C x

Mặt khác:

S

C

B

M

H A

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2004

Page 90: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

115

2 981002 100100 100

100 3 970 3 100

98 972 3

.2(2 ) .2

.2100! 100!.2 .2 6 9898!.2! 97!.3!

k kk

k

a Cx a C

a C

a a

Như vậy a2 < a3 Ta có:

100 100 11

100! 100!.2 .2(100 )!. ! (100 1)!.( 1)!

98( 1).2 100 .3

k kk ka a

k k k k

k k k

Vậy 0 32k

Câu V: 2xs inx+

2xy e

Ta có: ' "( ) osx+x; f ( ) s inx+1>0, xx xf x e c x e Suy ra f ’(x) là hàm đồng biến. Nếu x > 0: f ’(x) > f ’(0) = 0 hay f(x) là hàm đồng biến trên (0; +∞). Nếu x < 0: f ’(x) < f ’(0) = 0 hay f(x) là hàm nghịch biến trên (-∞; 0). Ta có bảng biến thiên:

x -∞ 0 +∞

f ’(x) - 0 + f(x) +∞

+∞ 0

Từ bảng biến thiên suy ra giá trị nhỏ nhất của f(x) = 0 khi x = 0 và pt f(x) = 3 luôn có hai nghiệm phân biệt.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2004

Page 91: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

116

ĐỀ SỐ 15

Câu I:

1. Bạn đọc tự giải.

2. Ta có: 2 2

2 2

(2 2 )( 1) 2 2 2 2 2'( 1) ( 1)

x m x x mx x x myx x

Để hàm số có 2 cực trị thì pt y’ = 0 có 2 nghiệm phân biệt 2 2 2 2 0x x m có 2 nghiệm phân biệt ≠ 1

' 1 2 2 0 32 3 2

mm

m

Ta có pt đường thẳng đi qua các cực trị là y = 2x – 2m hay 2x – y – 2m = 0. Suy ra đpcm.

Câu II: 1. sin4x.sin7x = cos3x.cos6x cos3x – cos11x = cos3x + cos9x cos9x + cos11x = 0 2.cos10x.cosx = 0

os10x = 0 20 10osx = 0

2

kxcc x k

2. 3log log 3xx (Đk: x > 0; x ≠ 1)

Đặt t = log3x, bpt trở thành: 2 1 01 1 10 0

1ttt t

tt t t

Suy ra: 3

3

11 log 0 13

log 1 3

x xx x

Vậy tập nghiệm của bpt là: S = (1/3;1) (3; +∞) Câu III: 2. a) Ta có: ( 1;1;1)AM

Từ đó suy ra pt đường thẳng AM là: 2x t

y tz t

Gọi H là hình chiếu vuông góc của O lên AM, ta có H(2 – t; t; t) (2 ; ; )OH t t t

Mà 2 4 2 22 0 ( ; ; )3 3 3 3

OH AM t t t t H

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2004

Page 92: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

117

Mặt khác H là trung điểm của OO’ nên 8 4 4'( ; ; )3 3 3

O

b) Theo giả thiết A,M,B,C đồng phẳng nên [ ; ].AM 0AB AC

. Ta có: ( 2; ;0); =(-2;0;c); AM ( 1;1;1)

[AB; ] = (bc; 2c; 2b) [AB; ].AM 2 2 0

2

AB b AC

AC AC bc c bbcb c

Ta có: 2 2 2 2 2 21 1( ) 4 4 2 82 2

dt ABC b c b c b c bc

Theo trên 2 4 162bc b c bc bc bc

Khi đó: 2 2 21 1 1( ) 2 8 2( 2) 8 384 4 62 2 2

dt ABC b c bc bc

Vậy dt(ABC) nhỏ nhất là 4 6 khi b =c = 4. Câu IV:

1. 3 3

osx osx

0 0

sin 2 2 . osx.sinc cI e xdx e c xdx

Đặt t = cosx sin dx.dt x

Với x = 0 t = 1; với 1

3 2x t

1

12

2. .tI e tdt

Đặt

11 11 12 21

2

2 2

2 . 2. 2 2

t t

t t t

u t du dtdv e dt v e

I t e e dt e e e e

2. 0 0

(1 2 ) .(2 ) .2 .n n

n k k k k kn n

k kx C x C x

Với .2k kk na C

*) a2 < a3 2 2 3 3.2 .2 3 2( 2)n nC C n (hiển nhiên đúng với n > 3) *) Gọi ak là hệ số lớn nhất, suy ra:

1 11

1 11

.2 .2 1 (6 ).2 3 114

(6 1).2 3 14.2 .2

k k k kk k n n

k k k kk k n n

a a C C k k kk

a a k k kC C

Vậy hệ số lớn nhất là a4. Câu V:

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2004

Page 93: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

118

2sin 2sin .sin .tan os sin .sin2 2

1 osA=cos(B - C) - cos(B + C)cos(B - C) = 1 B = C

A AA B C c B C

c

Vậy từ giả thiết 2 2 Aos sin os sin2 2Ac B c B

Khi đó: A1-sin2S = Acos

2

Đặt At = cos2

vì 0 0 20 90 12

A t

Ta có 21- 1 - t 2S = f(t) = , [ ;1)

t 2t

2

2

1- 1 - t 2f '(t) = 0, [ ;1)t 2

t

Vậy Smin = f( 22

) = 2 1 khi đó A = 900, B = C = 450.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2004

Page 94: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

147

ĐỀ SỐ 23 CAÂU I:

1. Khaûo saùt 2x 3x 3y C

x 1

MXÑ: D R \ 1

22

2x 2xy' ,y ' 0 x 2x 0 x 0 hay x 2x 1

BBT. x -2 -1 0 y' + 0 - - 0 + y

-1

3

Tieäm caän: x = - 1 là tiệm cận ñöùng

y = x + 2 laø tiệm cận xieân

2. Tìm m ñeå pt 2x 3x 3 m

x 1

coù 4 nghieäm phaân bieät.

Ta coù:

2

2

2

x 3x 3 neáux 1x 1x 3x 3y

x 1 x 3x 3neáux 1

x 1

Do ñoù ñoà thò

2x 3x 3yx 1

coù ñöôïc baèng caùch:

Giöõ nguyeân phaàn ñoà thò (C) coù x > -1 Laáy ñoái xöùng qua Ox phaàn ñoà thò (C) coù x< -1

Nhôø ñoà thò 2x 3x 3y

x 1

, ta coù kết quả:

Phương trình 2x 3x 3 m

x 1

coù 4 nghieäm phaân bieät m > 3

-1

-1

2

y

x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2005

Page 95: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

148

CAÂU II. 1. Giaûi baát phöông trình 2

22x x

x 2x 19 2 3 13

Ta coù (1) 2 2x 2x x 2x9 2.3 3 . Ñaët

2x 2xt 3 0 , (1) trở thaønh: 2t 2t 3 0 1 t 3 .

Do ñoù, (1) 2 2x 2x x 2x 11 3 3 0 3 3

2 2x 2x 1 x 2x 1 0 1 2 x 1 2 2. Giaûi phöông trình sin2x cos2x 3sinx cosx 2 0 2

(2) 22sin xcosx 1 2sin x 3sin x cosx 2 0 22sin x 2cosx 3 sin x cosx 1 0

22sin x 2cosx 3 sinx cosx 1 0 ( 3 )

(phöông trình baäc 2 theo sinx)

2 22cosx 3 4 2 cosx 1 2cosx 1

Vaäy (2)

2 cos x 3 2 cos x 1 1sin x4 2

2 cos x 3 2 cos x 1sin x cos x 14

1sin x cosx 1 hay sin x2

2 1sin x sin hay sin x4 2 4 2

5x k2 hay x k2 hay x k2 hay x k22 6 6

.

Caùch 2. (3) (2sinx 1) sinx cosx 1 0

CAÂU III. 1. Goïi I a,b laø taâm cuûa ñöôøng troøn (C)

Phương trình đường tròn (C), taâm I, baùn kính R 10 laø:

2 2x a y b 10

2 2 2 2A C 0 a 5 b 10 a b 10b 15 0 (1)

2 2

2 2

B C 2 a 3 b 10

a b 4a 6b 3 0 (2)

(1) vaø ( 2)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2005

Page 96: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

149

2 2 a 1 a 3a b 10b 15 0 hayb 2 b 64a 4b 12 0

Vaäy ta coù 2 ñöôøng troøn

2 2

2 2

x 1 y 2 10

x 3 y 6 10

2. i) Xét trường hợp:

A 0;0;0 ;B 2;0;0 ;C 2;2;0 ;D(0;2;0)

1 1 1 1A 0;0;2 ;B 2;0;2 ;C 2;2;2 ;D 0;2;2

Mf 1 1AB D coù caëp véc tơ chỉ phương laø:

1AB 2;0;2

1AD 0;2;2

mp 1 1AB D coù một véc tơ pháp tuyến laø

1 11u AB ,AD 1, 1,14

mp 1AMB coù caëp véc tơ chỉ phương laø:

AM 2;1;0 , M(2; 1; 0)

1AB 2;0;2

mp 1AMB coù 1 PVT laø

1v AM,AB 1; 2; 12

Ta coù: u.v 1 1 1 2 1 1 0 u v 1 1 1AB D AMB

ii) Xét trường hợp: A 0;0;0 ;B 2;0;0 ;C 2;0;2 ;D(0;0;2)

b)

1AC 2;2;2 Pt tham soá

1

x tAC : y t

z t, 1N AC N t;t;t

Pt 1 1AB D : x 0 y 0 z 0 0 x y z 0

1 1 1

t t t td N, AB D d

3 3

Pt 1AMB : x 0 2 y 0 z 0 0 x 2y z 0

1 2t 2 t t 2 t

d N , A M B d1 4 1 6

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2005

Page 97: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

150

1

2

ttd 6 6 23

2 td 2 t 23 2 36

Vaäy tæ soá khoaûng caùch töø 1N AC N A t 0 tôùi 2 maët phaúng 1 1AB D vaø

1AMB khoâng phuï thuoäc vaøo vò trí cuûa ñieåm N.

CAÂU IV:

1. Tính / 2 / 22

0 0

1 cos2xI 2x 1 cos xdx 2x 1 dx2

2/ 2/ 2 21 0 0

1 1I 2x 1 dx x x2 2 8 4

/ 22 0

1I (2x 1)cos2xdx2

1 1Ñaët u (2x 1) du dx,dv cos2xdx choïn v sin2x2 2

/ 2/ 2 / 22 0 00

1 1 1 1I (2x 1)sin2x sin2xdx cos2x4 2 4 2

Do ñoù 2/ 2 2

0

1I 2x 1 cos x8 4 2

2. Tacoù: 2 2n n n n2P 6A P A 12 n N,n 1

6n! n!2n! n! 12

n 2 ! n 2 !

n! 6 n! 2 6 n! 0n 2 !

n!6 n! 0hay 2 0

(n 2)! n! 6 hay n(n 1) 2 0

2n 3hay n n 2 0 n 3hay n 2(vì n 2)

CAÂU V. Cho x, y, z laø 3 soá döông thoûa maõn xyz = 1

Chứng minh rằng: 2 2 2x y z 3

1 y 1 z 1 x 2

Ta coù: 2 2x 1 y x 1 y2 . x

1 y 4 1 y 4

Tương tự: 2 2y 1 z y 1 z2 y

1 z 4 1 z 4

, 2 2z 1 x z 1 x2 z

1 x 4 1 x 4

Coäng ba baát ñaúng thöùc treân veá theo veá ta coù:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2005

Page 98: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

151

2 2 2x 1 y y 1 z z 1 x x y z

1 y 4 1 z 4 1 x 4

2 2 2x y z 3 x y z x y z

1 y 1 z 1 x 4 4

3 x y z 34 4

3 3 9 3 6 3.34 4 4 4 4 2

( vì 3x y z 3 xyz 3 )

Vaäy 2 2 2x y z 3

1 y 1 z 1 x 2

.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2005

Page 99: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

125

ĐỀ SỐ 18

CÂU I:

1. Khi m = 1 thì 2x 2x 2y

x 1

(1)

TXÑ: D = R \ {1}

2

2x 2xy 'x 1

, y ' 0 x 0 hay x 2

BBT:

x 0 1 2 y' 0 0 y

2 6

Tieäm caän:

x 1 laø pt t/c ñöùng y = x + 3 laø pt t/c xieân 2. Tìm m :

Ta coù

2 2

2x 2mx m 1y'

x m

Haøm soá (*) coù 2 cöïc trò naèm veà 2 phía truïc tung: y ' 0 coù 2 nghieäm traùi daáu

21 2x x P m 1 0 1 m 1

CÂU II: 1. Heä phöông trình:

2 2x y x y 4x x y 1 y y 1 2

2 2

2 2

x y x y 4

x y x y xy 2 xy 2

Đặt 2 2 2 2 2 2S x y;P xy S x y 2xy x y S 2P

Vaäy

2

2

S 2P S 4 P 2I

S 0,S 1S P S 2

2

2 x

y

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2005

Page 100: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

126

1S x y 0

TH :P xy 2

x, y laø nghieäm cuûa phöông trình:

2X 2 0 2X

Suy ra 2 nghiệm x 2

x 2

hoặc

x 2

y 2

2S x y 1

TH :P xy 2

x, y laø nghieäm cuûa phöông trình:

2X X 2 0

X 1X 2

.

Suy ra 2 nghieäm x 1y 2

;

x 2y 1

Toùm laïi heä Pt (I) coù 4 nghieäm: x 2

y 2

;

x 2

y 2

;

x 1y 2

;

x 2y 1

Cách 2: Phương trình đã cho:

2 2

2 2

x y x y 4

x y x y xy 2

2 2x y x y 4xy 2

2(x y) x y 0xy 2

2

2

x y x yx y 0x y 0

xy 2 x 2 x 2x y 1

x y 1 y 1 x y 1 xxy 2xy 2 x 1,x 2x x 2 0

Suy ra 4 nghiệm: x 2

y 2

;

x 2

y 2

;

x 1y 2

;

x 2y 1

2. Tìm nghieäm 0,

Ta coù 2 2x 34sin 3 cos2x 1 2 cos x2 4

(1)

(1) 32 1 cosx 3 cos2x 1 1 cos 2x2

2 2 cosx 3 cos2x 2 sin 2x 2 cosx 3 cos2x sin 2x . Chia hai veá cho 2:

3 1cosx cos2x sin 2x

2 2

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2005

Page 101: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

127

cos 2x cos x6

5 2 7x k a hay x k2 b18 3 6

Do x 0, neân hoï nghieäm (a) chæ choïn k = 0, k =1, hoï nghieäm (b) chæ choïn

k = 1. Do ñoù ta coù ba nghieäm x thuoäc 0, laø 1 2 35 17 5x ,x ,x18 18 6

CAÂU III:

1. Toïa ñoä ñænh B laø nghieäm cuûa heä pt

x 2y 4 0B 0; 2

7x 4y 8 0

Vì ABC caân taïi A neân AG laø ñöôøng cao cuûa ABC

Vì GA BC pt GA: 4 12(x ) 1(y ) 0 2x y 3 03 3

2x y 3 0

GA BC = H

2x y 3 0H 2; 1

x 2y 4 0

Ta coù AG 2GH

vôùi A(x,y).

4 1 4 1AG x; y ;GH 2 ; 13 3 3 3

x 01 8y3 3

A 0;3

Ta coù : A B C A B C

G Gx x x y y yx vaø y

3 3 C 4,0

Vaäy A 0;3 ,C 4;0 ,B 0; 2

2. a) Ta coù BC 0; 2;2

mp (P) qua O 0;0;0 vaø vuoâng goùc vôùi BC coù phöông trình laø

0.x 2y 2z 0 y z 0

Ta coù AC 1; 1;2 , phöông trình tham soá cuûa AC laø

x 1 ty 1 tz 2t

.

Theá pt (AC) vaøo pt mp (P). Ta coù 11 t 2t 0 t3

. Theá 1t3

vaøo pt (AC)

ta coù

2 2 2M ; ;3 3 3

laø giao ñieåm cuûa AC vôùi mp (P)

b) Vôùi A 1;1;0 B 0;2;0 C 0;0;2 .Ta coù: AB 1;1;0 ,

AC 1; 1;2

AB.AC 1 1 0 AB AC ABC vuoâng taïi A

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2005

Page 102: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

128

Ta deã thaáy BOC cuõng vuoâng taïi O. Do ñoù A, O cuøng nhìn ñoaïn BC döôùi 1 goùc vuoâng. Do ñoù A, O naèm treân maët caàu ñöôøng kính BC, seõ coù taâm I laø

trung ñieåm cuûa BC. Ta deã daøng tìm döôïc I 0;1;1 2 2R 1 1 2

Vaäy pt maët caàu ngoaïi tieáp töù dieän OABC laø : 2 22x y 1 z 1 2

CAÂU IV:

1. Tính

/ 3 / 3

2 2

0 0

sin xI sin xtgxdx sin x. dxcosx

2/ 3

0

1 cos x sinxI dx

cosx

, Ñaët u cosx du sin xdx

Ñoåi caän

1u ,u 0 13 2

21/ 2

1

1 u duI

u

=

11 2

1/ 2 1/ 2

1 u 3u du ln u ln2u 2 8

2. Goïi 1 2 3 4 5 6n a a a a a a laø soá caàn laäp 3 4 5ycbt: a a a 8 3 4 5 3 4 5a ,a ,a 1,2,5 hay a ,a ,a 1,3,4

a) Khi 3 4 5a ,a ,a 1,2,5

Coù 6 caùch choïn 1a , 5 caùch choïn 2a , 3! caùch choïn 3 4 5a ,a ,a , 4 caùch choïn 6a

Vaäy ta coù 6.5.6.4 = 720 soá n b) Khi 3 4 5a ,a ,a 1,3,4 töông töï ta cuõng coù 720 soá n

Theo qui taéc coäng ta coù 720 + 720 = 1440 soá n Cách 2: Khi 3 4 5a ,a ,a 1,2,5

Coù 3! = 6 caùch choïn 3 4 5a a a . Coù 36A caùch choïn 1 2 6a ,a ,a

Vaäy ta coù 6. 4.5.6 = 720 soá n Khi 3 4 5a ,a ,a 1,3,4 töông töï ta cuõng coù 720 soá n

Theo qui taéc coäng ta coù 720 + 720 = 1440 soá n CAÂU V: Ta coù: Với a, b, c, d không âm. Theo Cauchy:

a + b 2 ab , dấu đẳng thức xảy ra khi chỉ khi a = b.

c + d 2 cd , dấu đẳng thức xảy ra khi chỉ khi c = d.

Suy ra a + b + c + d 2 ab + 42 cd 4 abcd

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2005

Page 103: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

129

Áp dụng: 4x x x3 4 1 1 1 4 4 4

84x x x3 4 2 4 2. 4 . Töông töï 84y y y3 4 2 4 2. 4

8z z3 4 2 4

Vaäy 8 8 8x y z x y z3 4 3 4 3 4 2 4 4 4

3 8 x y z6 4 .4 .4 24 x y z6 4 6 .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2005

Page 104: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

160

ĐỀ SỐ 26 Câu I: 1. Khảo sát hàm số. 10. TXĐ: \ 1R 20. Chiều biến thiên:

2

2

2' ; ' 0 0 2( 1)x xy y x xx

.

Tiệm cận đứng: x = - 1, tiệm cận xiên y = x - 2 30. Đồ thị (Bạn đọc tự vẽ đồ thị). 2. Gọi d là đường thẳng đi qua A(0; 5). Khi đó phương trình của d có dạng: y = kx + 5. d là tiếp tuyến của (C) khi và chỉ khi hệ phương trình sau có nghiệm:

2

12 5 (1)1

11 (2)( 1)

x kxx

kx

Thay k ở (2) vào(1), ta có: 2 23 8 4 0 23

x x x x

Thay vào (2): x = -2 ta có k = 0. Suy ra phương trình tiếp tuyến y = - 5.

x = - 23

ta có k = - 8. Suy ra phương trình tiếp tuyến y = - 8x - 5.

Câu II: 1. ĐK: os2x 0c . Phương trình đã cho tương đương với:

2 2 os2xtan 2 3 os2x = 0 tan 2 06 2

c x c x x k ( thoả điều kiện)

2. Phương trình đã cho tương đương với: 3 2 1 (3 2) ( 1) 6 2 (3 2)( 1)x x x x x x

x - - 2 - 1 0 + y'

y

- 5 + + - - - 1

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2006

Page 105: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

161

23 2 1 3 2 1 6x x x x

23 2 1 3 2 1 6 0x x x x

3 2 1 2 (1)

3 2 1 3 (2)

x x

x x

(1) vô nghiệm

(2) 3 2 1 2 (3 2)( 1) 91

x x x xx

(3 2)( 1) 6 21x x x

x

2 2(3 2)( 1) (6 2 ) 19 34 0

21 3 1 3

x x x x xx

x x

Câu III: 1. 1 đi qua M1(1; - 1; 2) và có véc tơ chỉ phương (1; 1; 0)a

.

2 đi qua M2(3; 1; 0) và có véc tơ chỉ phương ( 1; 2; 1)b

.

Mặt phẳng (P) đi qua 1 và song song 2 nên (1; 1; 0)a

, ( 1; 2; 1)b

là cặp

chỉ phương. Suy ra véc tơ pháp tuyến của (P) là : , ( 1; 1; 1)n a b

.

Vậy phương trình (P) là: (x - 1) + (y + 1) - ( z- 2) = 0 x + y - z + 2 = 0. 2. AB ngắn nhất khi chỉ khi AB là đoạn vuông góc chung của 1 và 2 . Cách 1. Viết phương trình đường vuông góc chung của 1 và 2 . Xác định tọa độ các giao điểm với 1 và 2 . Gọi (P) là mặt phẳng đi qua 2 và song song 1 . Khi đó, (P) đi qua M2(3; 1; 0) và có cặp chỉ phương 1a

= (1; - 1; 0), 2a

= (- 1; 2; 1), nên có một véc tơ pháp

tuyến Pn

= (1; 1; - 1). Suy ra phương trình mf(P): x - 3 + y - 1 - z = 0, hay x + y - z - 4 = 0. Gọi (Q) là mặt phẳng đi qua 1 và vuông góc (P) . Khi đó, (Q) đi qua M1(1; - 1; 2) và có cặp chỉ phương 1a

= (1; - 1; 0), Pn

= (1; 1; - 1), nên có một véc tơ pháp

tuyến Qn

= (1; 1; 2). Suy ra phương trình (Q): x - 1 + y + 1 + 2(z - 2) = 0, hay x + y + z - 4 = 0. Gọi d1' là hình chiếu của d1 trên (P) thì d1' là giao của (P) và (Q). Do vậy, d1' đi qua M'(2; 2; 0) và có một véc tơ chỉ phương [ , ]P Qa n n

=(2; - 2; 0). Suy ra, d1' có

phương trình:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2006

Page 106: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

162

220

x ty tz

B là giao điểm của d1' và 2 .

Phương trình tham số của 2 :3 '1 2 ''

x ty tz t

Xét hệ phương trình 3 ' 21 2 ' 2

' 0

t tt t

t

Suy ra B(3; 1; 0)

A là giao điểm của dường thẳng d qua B, vuông góc với (P) với 1 .

d có một véc tơ chỉ phương Pn

= (1; 1; - 1), nên có phương trình:

3 '1 '

'

x ty tz t

Hệ phương trình:

3 ' 11 ' 1

' 2

t tt t

t

A(1; - 1; 2)

Cách 2. Phương trình tham số của 2 :3 '1 2 ''

x ty tz t

A thuộc 1 nên A(1 + t; - 1 - t; 2), B thuộc 2 nên B(3 - t'; 1 + 2t'; t').

Suy ra (2 ' ;2 2 ' ; ' 2)AB t t t t t

.

AB là đoạn vuông góc chung của 1 và 2 . 0

. 0

AB a AB a

AB b AB b

' 0t t .

Vậy A(1, - 1; 2), B(3; 1; 0).

Cách 3. Ta có: 2 2 2(2 ' ) (2 2 ' ) ( ' 2)AB t t t t t . Suy r

Cách 4. Ta có M1(1; - 1; 2), M2(3; 1; 0) 1 1M M

= (2; 2; - 2). AB nhỏ nhất khi t = t' = 0. Thấy ngay 1 2M M a

, 1 2M M b

. Suy ra: 1 2,M A M B . Câu IV:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2006

Page 107: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

163

1. Trong 10

5 2 1dxI

x x

đặt t = 21 1 2x x t dx tdt .

3 3 3 32

2 2 2 22 2 2 2

2 (2 2 2) ( 2 1) 22 1 2 1 2 1 ( 1)tdt t dt d t t dtI

t t t t t t t

= 3

3

22

22ln 1 2ln 2 11

tt

2. Tìm giá trị nhỏ nhất của:

2

11 74 12

y xx x

, x > 0

Ta có: 22

2 2

7 7 7 73 3.1 7. (9 7) 1 16 1x x x x

2

7 1 74 1 32x x

, dấu đẳng thức xảy ra khi chỉ khi 3 71 7

x (1)

Suy ra: 11 1 7 3 9 3 9 3 153 2 . 62 2 2 2 2 2

y x x xx x x x

, dấu đẳng thức

xảy ra khi chỉ khi 9 3x xx

(2).

Từ (1) và (2) suy ra y = 152

khi x = 3. Vậy miny = 152

.

Câu Va: 1. Tam giác ABC cân tại B nên B thuộc trung trực của đoạn AC có phương trình x + 3y - 8 = 0. Do đó:

3 8 0 8 16( ; ) : ;

2 0 7 7x y

B x y Bx y

Phương trình đường thẳng AB: 1 18 161 17 7

x y

23x - y - 24 = 0.

Phương trình đường thẳng BC: 19x - 13y + 8 = 0. 2. Số cách chọn hai chữ số lẻ đứng cạnh nhau từ ba chữ số 1, 3, 5 là 2

3A = 6. Xem mỗi cặp số lẻ như thế là một phần tử x. Như thế, mỗi số cần lập là gồm x và 3 trong 4 số 0, 2, 4, 6 . Gọi 4 3 2 1 0n a a a a a . a0 = 0: Có 3 cách đưa x vào 4 vị trí đầu. Có 2

3A cách đưa 2 số chẵn từ 2, 4, 6 vào hai vị trí còn lại. Suy ra có 3. 2

3A = 18 cách. a0 chẵn khác 0 và x ở hai vị trí a4a3: có 3. 2

3A = 18 cách. a0 chẵn khác 0 và x ở hai vị trí a3a2 hoặc a2a1 : có 24 cách.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2006

Page 108: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

164

Vậy, có tất cả là: 6(18 + 18 + 24) = 360 số. Câu Vb: 1. Phương trình đã cho tương đương với:

2 2 2 2 2log ( 1) log (3 ) log ( 1) log ( 1)(3 ) log ( 1)1 3 1 3

( 1)(3 ) 11 3

x x x x x xx xx x x

x

2 4 0 1 17

21 3x x

xx

.

2. Hình thoi ABCD có 060BAD nên tam giác BAD đều có cạnh bằng a.

3 2 3

2aAO AC AO a

2 2 2 24SC SA AC a SC = 2a. Tam giác SAC vuông ở A, trung tuyến

'2

SCAC = a SAC' đều cạnh a.

Gọi O là giao điểm của AC và BD, I là giao điểm của AC' và B'D'. I là trọng tâm của tam giác SAC.

2 2 2' '3 3 3

SI B D BD aSO

.

Ta có ' ' 'B D AC (do B'D'//BD) nên 2

' ' '1 '. ' '2 3AB C D

aS AC B D .

Gọi H là hình chiếu của S trên AC' thì ' 'SH B D nên ( ' ' ')SH AB C D .

Mặt khác tam giác SAC' đều nên 32

aSH .

Vậy: 3

' ' ' ' ' '1 3.3 18SAB C D AB C D

aV SH S .

D'

D

B'

C'

C

B A

S

I

O

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2006

Page 109: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

165

ĐỀ SỐ 27 Câu I: 1. Khi m = 2, ta có 3 23 4y x x (Bạn đọc tự khảo sát sự biến thiên và vẽ đồ thị) 2. Với hàm số (1) đã cho, ta có 2' 3 2(1 2 ) 2y x m x m Hàm số có cực đại, cực tiểu khi chỉ khi phương trình y' = 0 có hai nghiệm phân

biệt 2 2 5' (1 2 ) 3(2 ) 0 4 5 0 14

m m m m m m (*)

Gọi 1 2x x là hai nghiệm của phương trình y' = 0. Khi đó 2x là điểm cực tiểu.

Ta có 2

22 1 4 5

3m m mx

nên phải có: 2

22 1 4 5 1

3m m mx

2

2 2

4 2 01

54 5 4 2 1 5 744 54 5 4 16 16

mm

m m m m mm

m m m m

Giao với (*), ta được: m < - 1 hoặc 5 74 5

m .

Câu II: 1. Phương trình đã cho tương với (sinx - cosx)(cosx - sinx + 1) = 0 2. Cách 1. Hệ phương trình đã cho tương đương với:

2 2 2 2

2 22 22

( )2 12 (3)( ) 13 (1) ( )( ) 13( ) 13 (4) ( ) 2 25 ( ) 25 (2)

x y xyx y x y x y x yx y x yx y x y xyx y x y

Trừ từng vế (4) cho (3): 3( ) 1x y

Hệ 2

11 1xy = 6 x(x - 1) = 6 x - x - 6 = 0

y xx y y x

hai nghiệm (3; 2), ( - 2; - 3)

Cách 2. Thấy ngay x y. Hệ phương trình đã cho tương đương với:

2 2 2 2

22

( ) 13 (1) 13 (3)25( ) 25 (2)

x y x y x yx yx y x y

Đặt y = tx. Từ (3) suy ra

2 2 2 22 2

2 2

13 1 13 25 25 13 26 1325 251

x t x t t t tx tx t

2 2 36 13 6 03 2

t t t t .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2006

Page 110: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

166

23

t 23

y x : 2 32 2 2525 25 3

3 3 27xx x x x x

.

32

t 32

y x : 2 33 3 2525 25 2

2 2 8xx x x x x

.

Cách 3. Hệ phương trình đã cho tương đương với: 23 2 2 3 3 3

3 2 2 3

( ) ( ) 3 19 13 (1) 19 ( ) 6 25 (2) ( ) 6

x y x y xyx xy yx y x yxy x yx xy yx y xy x y

3 1 ( ) 1 6 ( ) 6

x yx yxyxy x y

Cách 4. Hệ phương trình đã cho tương đương với:

3 2 2 3 3 3

3 2 2 3

13 (1) 19 ( ) 6 25 (2)

x xy yx y x yxy x yx xy yx y

đặt y = tx. Ta có:

3 2 2 3 3 3

3 2 2 3 3

13 (1) (1 ) 19 25 (2) (1 ) 6

x xy yx y x tx xy yx y x t t

Câu III: 1. Hình chiếu vuông góc A'B' của AB lên mặt phẳng là giao tuyến của mf(P) và mf(Q), trong đó mf(Q) là mặt phẳng chứa AB và vuông góc với (P). Do đó mf(Q) có cặp chỉ phương (2;0; 4)AB

và (2;1; 1)Pn

. Suy ra một véc tơ pháp tuyến

của mf(Q) là ; (4; 6;2)Qn AB n

. Vậy phương trình mf(Q):

2x - 3y + z - 4 = 0 Như thế, đường thẳng A'B' có cặp chỉ phương (2;1; 1)Pn

, ' (2; 3;1)Qn

nên có

một véc tơ pháp tuyến , ' (5;3; 1)P Qn n n

. Điểm M(9; 1; -11) thoả phương trình của cả hai mặt phẳng (P) và (Q), nên M(9; 1; - 11) thuộc đường thẳng A'B'. Vậy phương trình đường thẳng A'B' là:

95

x

13

y = 111

z

2. Gọi I(a;b;c) là tâm mặt cầu (S): x2 + y2 + z2 - 2ax - 2by - 2cz + d = 0.

O(0; 0 ; 0), A(0; 0; 4), B(2; 0 ;0) thuộc (S) suy ra: 0 1

16 8 0 24 4 0 0

d ac d c

a d d

Mặt khác, (P) tiếp xúc mặt cầu (S) khi chỉ khi d(I, (P)) = R = OI

2 2 2 22 5 6( ) 5 6( 5) 1a b c a b c b b b

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2006

Page 111: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

167

Vậy, phương trình (S): x2 + y2 + z2 - 2x - 2y - 4z = 0. Câu IV:

1. Tính I = 1

3 2ln1 2 ln

e x dxx x

Đặt 1 2lnt x 2 1 2ln dxt x tdtx

Suy ra I = 2 22

2

1 1

3 ( 1) 10 2 11(4 )3

t tdt t dtt

2. Ta có 2 3

2

3x 4 24, A = 4

yx yx y

,

suy ra 2 2

3x 1 2 1 2A = 4 4 4 4 2

x y y x yyx y x y

32 91 3 2

16 2

Dấu đẳng thức xảy ra khi chỉ khi 2

x 14 21

8

x x yyy

thoả 4x y .

Vậy minA = 92

.

Câu Va: 1. Phương trình đường cao BH: x - 3y - 7 = 0 AC đi qua A và vuông góc BH nên phương trình (AC) là: 3(x - 2) + 1(y - 1) = 0 3x + y - 7 = 0 B thuộc BH nên 3 7;B y y . Mặt khác A(2; 1) nên trung điểm AB là:

3y+9 1;2 2

yI

. I thuộc CI có phương trình x + y + 1 = 0 nên: 3y+9 1 1 02 2

y

3 ( 2; 3)y B .

Toạ độ C là nghiệm của hệ phương trình:1 0 4

(4; 5)3 7 0 5x y x

Cx y y

2. Số tam giác có một đỉnh thuộc d1 và hai đỉnh thuộc d2 là 210 nC Số tam giác có một đỉnh thuộc d2 và hai đỉnh thuộc d1 là 2

10nC Theo giả thiết ta có: 210 nC + 2

10nC = 2800 n2 + 8n - 560 = 0 n = 20. Câu Vb: 1. Đặt 2

3 0x xt . Phương trình đã cho trở thành t2 - 10t + 9 = 0 t = 1, t = 9. Suy ra:

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2006

Page 112: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

168

2

2

2

2

3 1 0 0, 11, 223 9

x x

x x

x x x xx xx x

2. Gọi E là trung điểm BC, H là tâm tam giác đều ABC. A'ABC là hình chóp tam giác đều nên góc(A,BC,A') = AEA'. Ta có:

3 2 32 3 3

a aAE AH AE

2 2 2 23 1' ' 9 33 6 3

AE aHE A H A A AH b a 2 2' 2 3tan A H b a

HE a

dt(ABC) = 2 34

a . Ta có:

' ' ' ' ' ' 'A BB C C ABCA B C A ABCV V V A'H.dt(ABC) - 13

A'H.dt(ABC) = 23

A'H.dt(ABC)

= 2 2 23

6a b a .

C'

B'

E

C

H

B

A'

A

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2006

Page 113: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

187

ĐỀ SỐ 32 Câu I: 1. Khảo sát y = –2x3 + 6x2 – 5 (Bạn đọc tự làm) 2. Viết phương trình tiếp tuyến (C) đi qua A(–1; –13) Ta có y' = –6x2 + 12x Gọi M0(x0; y0) là tiếp điểm thuộc (C) 5x6x2y 2

0300

Phương trình tiếp tuyến với (C) tại M0: y – y0 = f '(x0)(x – x0) 5x6x2xxx12x6y 2

03000

20

Vì tiếp tuyến đi qua A(–1; –13) nên 0

20

20

20

30 x1x12x65x6x213

200

30

200

30 x12x12x6x65x6x213

30 0 0 0x 3x 2 0 x 1 x 2

Ta có y(1) 1 y( 2) 35 . M(1; –1) thì phương trình tiếp tuyến với (C) qua A là: y + 1 = 6(x – 1) y = 6x – 7 M(–2; 35) thì phương trình tiếp tuyến với (C) qua A là: y – 35 = – 48(x + 2) y = – 48x – 61 Câu II:

1. Giải phương trình: 2x3cos2

42xcos

42x5sin

(1)

(1) 2x3cos2

2x

42sin

42x5sin

2x3cos2

2x

43sin

42x5sin

3x 3x2 cos x sin 2 cos4 2 2 2

2x3cos2

2x3cos

4xcos2

3x 2cos 0 v cos x2 4 2

3x 3k vx k22 2 4 4

2x k vx k2 vx k2

3 3 2

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2007

Page 114: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

188

2. Tìm m để phương trình: mx1x4 2 (1) có nghiệm Xét hàm số x1xxf 4 2 (điều kiện: x 0)

0x

1

1x

x21x'f

4 32

, x > 0. Vì

3 6 3424

1

1

x x xxx xx

Ta có f giảm trên 0; và xlim f(x) 0

nên ta có

0 f(x) 1, x 0; .

Vậy, phương trình (1) có nghiệm mtập giá trị của f trên đoạn 0;

0 < m 1 Câu III: 1. Đường thẳng AB có VTCP 3,2,2412,8,8a

Phương trình đường thẳng AB:

t35zt25y

t23x

Điểm I (–3+2t; 5- 2t; –5+3t) AB (P) khi (–3 + 2t) + (5 – 2t) + (–5 + 3t) = 0 t = 1 Vậy đường thẳng AB cắt mặt phẳng (P) tại I(–1; 3; –2) 2. Tìm M (P) để MA2 + MB2 nhỏ nhất Gọi H là trung điểm của đoạn AB. Tam giác MAB có trung tuyến MH nên:

2ABMH2MBMA

2222

Do đó MA2 + MB2 nhỏ nhất MH2 nhỏ nhất MH nhỏ nhất Ta để thấy H(1; 1; 1), M (P) MH nhỏ nhất MH (P) và để ý rằng mặt phẳng (P): x + y + z = 0 có véc tơ pháp tuyến 1;1;1OH

và O (P) M (0; 0; 0)

Vậy, với M(0; 0; 0) thì MA2 + MB2 nhỏ nhất. Khi đó, ta có min(MA2 + MB2) = OA2 + OB2 = (9 + 25 + 25) + (25 + 9 + 49) = 142. Câu IV:

1. Tọa độ giao điểm của 2 đường 1xx1xy 2

và y = 0 là A(0, 0); B(1, 0). Khi đó

0 x 1 x(1 – x) 0 01xx1xy 2

Do đó diện tích hình phẳng giới hạn bởi 2 đường đã cho là

1 1 12

2 2 20 0 0

x 1 x x x x 1S dx dx 1 dxx 1 x 1 x 1

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2007

Page 115: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

189

1

02

1

0dx

1x1xxS

Đặt: x = tgt dx = (tg2t + 1)dt

Đổi cận x 1 t ;x 0 t 04

4

0

40

1

02 2ln

21

4tcoslntdt1tgtdx

1x1xS

Vậy 2ln21

41S

2. Đặt: f(t) = et, /32

2 2

t 1g t ;g (t) 0, t 1t 1 (t 1)

Ta có f tăng và g giảm trên từng khoảng xác định.

Hệ phương trình (1)

2007xgyf2007ygxf f(x) + g(y) = f(y) + g(x) ()

Nếu x > y f(x) > f(y) g(y) < g(x) ( do() y > x ( do g giảm ) vô lý. Tương tự khi y > x cũng dẫn đến vô lý.

Do đó, (1) (2)x

2

xe 2007 0x 1

x y

Xét: 20071x

xexh2

x

(x > 1 )

Nếu x > 0 t< –1 thì x > 1:

Khi x > 1

23

2x

23

2

x 1xe1x

1ex'h

5x 2 x2

52 2

3 3xh'' x e x 1 .2x e 02 x 1

Suy ra, h'(x) đồng biến trên (1, +). Mặt khác, ' 1,001 0h , '(2007) 0h . Chứng tỏ tồn tại x0 thuộc khoảng (1, +) sao cho h'(x) < 0 trên(1; x0), h'(x) < 0 trên (x0;+). Suy ra, hàm số h(x)nghịch biến trên (1; x0), đồng biến trên (x0;+).

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2007

Page 116: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

190

Mặt khác,

xhlim1x

, xlim h x

và 2 2h 2 e 2007 03

.

Suy ra: h(x) = 0 có đúng 2 nghiệm x1 > 1, x2 > 1. Câu Va: 1. Với điều kiện: x 2, y 3, ta có:

661xx212y1yy

222y1yy611xx

66CA

22CA2x

3y

3y

2x

2 3 2

3 2 26x 6x y 3y 2y 132 (1)y 3y 2y .2 x x 132 (2)

2 3 2

26x 6x y 3y 2y 13211x 11x 132 0 (2) 2(1)

23 2x 4 x 4 hay x 3 (loaïi) x 4y 5 y 2y 12 0 y 5y 3y 2y 60

2. Đường tròn (C) có tâm I(4, –3), bán kính R = 2 Tọa độ của I(4, –3) thỏa phương trình (d): x + y – 1 = 0. Vậy I d Vậy AI là một đường chéo của hình vuông ngoại tiếp đường tròn, có bán kính R = 2 , x = 2 và x= 6 là 2 tiếp tuyến của (C ) nên . Hoặc là A là giao điểm các đường (d) và x = 2 A(2, –1) . Hoặc là A là giao điểm các đường (d) và x = 6 A(6, –5) . Khi A(2, –1) B(2, –5); C(6, –5); D(6, –1) . Khi A(6, –5) B(6, –1); C(2, –1); D(2, –5) Câu Vb: 1. Giải phương trình: 21x2log1xlog 3

23

3 32 log x 1 2 log 2x 1 2

3 3log x 1 log 2x 1 1

3 3log x 1 2x 1 log 3

x 1 2x 1 3

2

2

1 x 1x 12 2x 3x 2 02x 3x 4 0 (vn)

x 2

2. BC vuông góc với (SAB) BC vuông góc với AH

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2007

Page 117: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

191

Mặt khác, SB vuông góc với AH AH vuông góc với (SBC) AH vuông góc SC (1) + Tương tự AK vuông góc SC (2) (1) và (2) SC vuông góc với (AHK ) 2 2 2 2SB AB SA 3a SB = a 3

AH.SB = SA.AB AH = a 63

SH = 2a 33

SK = 2a 33

(do 2 tam giác SAB và SAD bằng nhau và cùng vuông tại A)

Ta có HK song song với BD nên HK SH 2a 2HKBD SB 3

.

Gọi AG là đường cao của tam giác cân AHK (AH = AK), ta có:

2

2 2 2 4aAG AH HG9

AG = 2a3

.

Gọi E là hình chiếu của A trên SC. Khi đó AE thuộc mf(AHK). Thấy ngay A, G, E thẳng hàng, E là trung điểm SC do tam giác SAC vuông cân. Gọi I là hình

chiếu của O trên AE. OI = 12

EC = 14

SC = 2a .

3

OAHK AHK

1 1 a 1 1 a 1 2 2 a 2V OI.S . . HK.AM . . . a 2. a3 3 2 2 3 2 2 3 3 27

Cách khác: Tam giác SAC vuông cân đỉnh A, AS = AC = 2a , nên SC = 2a. Gọi E là hình chiếu của A trên SC. Khi đó AE thuộc mf(AHK). Thấy ngay A, G, E thẳng hàng, E là trung điểm SC. G là trọng tâm tam giác SBD.

Do đó HK = 23

BD = 2 23

a .

AG = 23

AE = 23

. 12

SC = 23

. 12

2a = 23

a

Cách khác: Chọn hệ trục tọa độ Oxyz sao cho A O (0;0;0), B(a;0;0), C( a;a;0), D(0;a;0), S (0;0; a 2 ). Suy ra tọa độ H và K.

Khi đó, 1 ,6OAHKV AH AK AO

I H D

C B

A

S

E K

G

O

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2007

Page 118: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

192

ĐỀ SỐ 33 Câu I:

1. Khảo sát và vẽ đồ thị hàm số x2

11xy

(Bạn đọc tự làm)

2. Ta có: 2

2

2 x24mx4x

x2m1'y

y' = 0 –x2 + 4x + m – 4 = 0 (2 – x)2 = m (x 2) () Đồ thị (Cm) có cực đại phương trình () có 2 nghiệm phân biệt 2 m > 0 Khi đó y' = 0 m2x1 , m2x2 , ta có: x – x1 2 x2 + y' – 0 + + 0 – y + + CĐ CT – – Điểm cực đại A(2 + m , –1 – 2 m ) Phương trình tiếp tuyến với (Cm) tại điểm CĐ A có phương trình: m21y , do đó m21m21OB

AB = X2 = 2 + m (vì B Oy xB = 0) AOB vuông cân OB = BA 1 + 2 m = 2 + m m = 1 Cách khác:

2x 3x 2 my2 x

có dạng

2ax bx cyAx B

với a.A < 0

Do đó, khi hàm có cực trị thì xCT < xCĐ

xCĐ = 2x 2 m và yCĐ = 22x 31

= –1 – 2 m

Câu II:

1. Giải phương trình: gxcottgxxsinx2cos

xcosx2sin

(1)

(1)xsinxcos

xcosxsin

xcosxsinxsinx2sinxcosx2cos

xcosxsinxcosxsin

xcosxsinxx2cos 22

cosx cos2x s in2x 0 22 cos x cosx 1 0 s in2x 0

1cosx (cosx 1 :loaïi vì sin x 0)2

2k3

x

2. Phương trình: 01xmx13x4 4 (1)

(1) x1mx13x4 4

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2007

Page 119: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

193

m1x9x6x4

1x

x1mx13x

1x2344

ycbt đường thẳng y = –m cắt phần đồ thị f(x) = 4x3 – 6x2 – 9x – 1 với x 1 tại 1 điểm f(x) = 4x3 – 6x2 – 9x – 1 TXĐ: x 1 f'(x) = 12x2 – 12x – 9 = 3(4x2 – 4x – 3)

f'(x) = 0 4x2 – 4x – 3 = 0 23x

21x

x – –1/2 1 –3/2 + f' + 0 – – 0 + f CĐ + – –12 CT Từ bảng biến thiên ta có:

ycbt 3 3m hay m 12 m hay m 122 2

Câu III:

1. Theo giả thiết A(2,0,0) M(0,–3,6) O(0,0,0) Bán kính mặt cầu 5363MOR 22 Khoảng cách từ tâm M của mặt cầu đến mặt phẳng (P): x + 2y – 9 = 0.

R535

155

960d

Vậy (P) tiếp xúc với mặt cầu tâm M bán kính MO Phương trình đường thẳng d qua M và vuông góc với mặt phẳng (P) là:

x y 3 x t

y 3 2t1 2z 6z 6

(t R)

Thế vào phương trình (P) ta có: t + 2(2t – 3) – 9 = 0 t = 3 Vậy tọa độ tiếp điểm I của mặt cầu với mặt phẳng (P) là t(3,3,6)

2. Gọi b là tung độ của B, c là cao độ của điểm C

Vì A(2,0,0) Ox nên phương trình (Q): 1cz

by

2x

Ta có M(0,–3,6) mặt phẳng (yOz) nên: bcc3b61c6

b3

(1)

Ta lại có 33bc

bc21.

32S.OA

31V OBCOABC 9bc (2)

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2007

Page 120: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

194

Từ (1) và (2) ta có bc 9 bc 96b 3c 9 6b 3c 9

3bb c 3 2c 6

Vậy có 2 mặt phẳng (Q) có phương trình là: 13z

3y

2x

hoặc 16z

3y2

2x

Câu IV:

1. Ta có:

2yx

0yx2y 22

2

Là nửa đường tròn tâm O, bán kính 2R , có y 0 Phương trình hoành độ giao điểm của 2 đường y = x2 và 2x2y :

2 2x 2 x x 1 ; x2 và khi x 1;1 thì 22 x x2 Do đó ta có

1

1

21

1

21

1

22 dxxdxx2dxxx2S

1

1

21 dxx2I Đặt: x = 2 sint

2,

2t

dx = 2 costdt x 1 t ;x 1 t4 4

4

4

4

4

21 tdtcos2.tcos2tdtcos2.tsin22I

21

42t2sin

21tdtt2cos1tdtcos2I

4

4

4

4

4

4

21

(Nhận xét : 4 4

10

4

I 1 cos2t dt 2 1 cos2t dt

Vì f(t) = 1 cos2t là hàm chẵn)

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2007

Page 121: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

195

1 1

2 22

1 0

2I x dx 2 x dx3

Vậy 31

2321

232

21

42S

(đvdt )

(Nhận xét : 1 1

2 2 2 2

1 0

S 2 x x dx 2 2 x x dx

Vì g(x) = 2 22 x x là hàm chẵn)

2. Hệ phương trình

)2( xy9y2y

xy2y

)1( yx9x2x

xy2x

2

3 2

23 2

Từ hệ suy ra:

2 2

2 23 3

1 1VT 2xy x y VPx 1 8 y 1 8

Dễ thấy VT 2xy x2 + y2 = VP

(

181y

1

81x

13 23 2

và dấu = xảy )

Ta có VT = VP x y 1x y 0

Thử lại, kết luận hệ phương trình có 2 nghiệm x y 1,x y 0

Câu Va:

1. Điều kiện n 4 Ta có:

n

0k

knk2kn

n2 2xC2x

Hệ số của số hạng chứa x8 là 4n4n2C Ta có: 3 2 1

n n nA 8C C 49 (n – 2)(n – 1)n – 4(n – 1)n + n = 49 n3 – 7n2 + 7n – 49 = 0 (n – 7)(n2 + 7) = 0 n = 7 Nên hệ số của x8 là 2802C 34

7

2. Phương trình đường tròn (C): x2 + y2 – 2x + 4y + 2 = 0 có tâm I(1, –2) 3R Đường tròn (C') tâm M cắt đường tròn (C) tại A, B nên AB IM tại trung điểm

H của đoạn AB. Ta có 23

2ABBHAH .

Có 2 vị trí cho AB đối xứng qua tâm I. Gọi A'B' là vị trí thứ 2 của AB, gọi H' là trung điểm của A'B'.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2007

Page 122: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

196

Ta có: 2

2 2 3 3IH ' IH IA AH 32 2

Ta có: 2 2MI 5 1 1 2 5

và 27

235HIMIMH

3 13M H ' M I H ' I 52 2

Ta có: 134

52449

43MHAHMAR 2222

1

434

1724

16943'MH'H'A'MAR 2222

2

Vậy có 2 đường tròn (C') thỏa là: (x – 5)2 + (y – 1)2 = 13 (x – 5)2 + (y – 1)2 = 43 Câu Vb:

1. Phương trình: 1xlog1

43logxlog23

x93

(1)

(1) 1xlog1

4x9log

1xlog233

3

1xlog1

4xlog2xlog2

33

3

đặt: t = log3x

(1) thành 22 t 4 1 t 3t 4 02 t 1 t

(vì t = -2, t = 1 không là nghiệm) t = - 1 hoặc t = 4.

Do đó, (1)

3

3

1log x 1 x ,x 81log x 4 3

2. * Chứng minh AHK vuông Ta có: AS CB AC CB (ACB nội tiếp nửa đường tròn) CB (SAC) CB AK mà AK SC AK (SCB) AK HK AHK vuông tại K * Tính VSABC theo R Kẻ CI AB Do giả thiết ta có AC = R = OA = OC AOC đều

2RIOIA

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2007

Page 123: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

197

Ta có SA (ABC) nên (SAB) (ABC) CI (SAB) Suy ra hình chiếu vuông góc của SCB trên mặt phẳng (SAB) là SIB

Vì AB43BI . Suy ra SA.R.

43S

43S SABSIB ()

Ta có: 22SBC RSA.3R

21SC.BC

21S

Theo định lý về diện tích hình chiếu ta có:

22SBC

oSBCSIB RSA

43RS

2160cos.SS ()

Từ (), () ta có: 2

RSA . Từ đó 12

6RABCdt.SA31V

3

SABC .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2007

Page 124: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

219

ĐỀ SỐ 38 Câu I. 1. Khi m = 0 ta có hàm số: 3 23 1y x x

10 TXĐ: D =

20 Sự biến thiên:

3 2

3 2

lim lim (3 3 1)

lim lim (3 3 1)x x

x x

y x x

y x x

Đồ thị không có tiệm cận.

2' 3 6 3 ( 2)0

' 02

y x x x xx

yx

Bảng biến thiên: Hàm số đồng biến trên mỗi khoảng ( ;0) và, nghịch biến trên khoảng (2;0)

1 05 2

CT CT

CD CD

y xy x

30 Đồ thị: '' 6 6; '' 0 1y x y x

Điểm uốn I(1;-3) Đồ thị cắt trục tung tại điểm có hoành độ (0;1) và đi qua các điểm có toạ độ (-1;-5) và(3;-1) Ta có đồ thị

2. Ta có: 3 23 3 ( 2) 1y x x m m x (1) 2' 6 3 ( 2)y x x m m

x 0 2 'y + 0 - 0 +

y

-1 -5

f(x)=x^3-3x^2-1

-8 -6 -4 -2 2 4 6

-8

-6

-4

-2

2

4

6

8

f(x)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 125: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

220

Hàm số (1) có hai cực trị phương trình ' 0y có hai nghiệm 1 2,x x phân biệt 2' 9 9 ( 2) 9( 1) 0 1(*)m m m m Gọi 1 2,x x là hoành độ hai điểm cực trị. 3 2 3 2

1 22 3 1; 2 9 12 5y m m y m m m 1 2,y y cùng dấu 1 2 0y y

3 2

3 2

3 2

3 2

12

2 3 1 0 52 9 12 5 0 5 12 (**)

2 212 3 1 022 9 12 5 0

52

mm m

mm m mm

m m mm m m

m

Kết hợp (*) và (**) ta có :

Hàm số (1) có hai điểm cực trị cùng dấu5 12 2

1

m

m

Cách 2. Ta có: 3 23 3 ( 2) 1y x x m m x (1) 2' 6 3 ( 2)y x x m m Hàm số (1) có hai cực trị phương trình ' 0y có hai nghiệm 1 2,x x phân biệt 2' 9 9 ( 2) 9( 1) 0 1(*)m m m m Gọi 1 2,x x là hoành độ hai điểm cực trị. 3 2 3 2

1 22 3 1; 2 9 12 5y m m y m m m

1 2,y y cùng dấu 1 2 0y y 3 2 3 2(2 3 1)( 2 9 12 5) 0m m m m m Câu II.

1. 12sin( ) sin(2 )3 6 2

x x

2

2

3 1 1sin 3 cos sin 2 cos 22 2 2

1 1sin 3 cos 3 sin cos (1 2sin )2 2

(sin sin ) ( 3 cos 3 sin cos ) 0

x x x x

x x x x x

x x x x x

(1 sin )(sin 3 cos ) 0

1 sin 0 (1)

sin 3 cos 0 (2)

x x x

x

x x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 126: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

221

(1) sin 1 22

(2) sin( ) 03 3

x x k

x x k

Vậy phương trình đã cho có nghiệm 22

x k ;3

x k ( )k

2. 10 1 3 5 9 4 2 2x x x x (1)

Điều kiện:

10 1 03 5 09 4 02 2 0

xxxx

53

x

Với 53

x ta có : 10 1 3 5

9 4 2 2

x x

x x

Nhân cả hai vế của (1) với ( 10 1 3 5)( 9 4 2 2)x x x x ta được: (7 6)( 9 4 2 2) (7 6)( 10 1 3 5)x x x x x x

2 2

2

9 4 2 2 10 1 3 5

7 6 (9 4)(2 2) 7 6 (10 1)(3 5)(9 4)(2 2) (10 1)(3 5)18 10 8 30 47 512 37 3 0

1123

x x x x

x x x x x xx x x xx x x xx x

x

x

Kết hợp điều kiện, ta có: 3x Thử lại thấy 3x thoả (1) Vậy 3x là nghiệm của phương trình đã cho.

Cách 2. Điều kiện:

10 1 03 5 09 4 02 2 0

xxxx

53

x

(1) 10 1 2 2 9 4 3 5x x x x Bình phương hai vế ta được:

2 6(1) (10 1)(2 2) (9 4)(3 5) 7 15 18 0 3,7

x x x x x x x x .

Suy ra: x = 3. Câu III.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 127: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

222

1. (1,3, 1)AB

2d có 2 (1;3; 1)a

là vectơ chỉ phương và 2d qua (5;4;3)A

1d có phương trình : 5 4 31 3 1

x y z

Mặt khác, 1d có vectơ chỉ phương 1 (2;9;1)a

nên ta xét hệ tạo bởi ( 1d ),( 2d ),có

3 52 9 1

5 4 31 3 1

x y z

x y z

hệ vô nghiệm.

Ta có: 1a

và 2a không cùng phương nên ( 1d ) và ( 2d ) chéo nhau.

2. Gọi toạ độ của điểm C là: ( ; ; )C x y z

2 2 2

22 2

2 2 2

1( ) ,2

3 1 1 1 1 314 3 3 5 5 42

1 (3 9 4) (5 3) 4 3 521 10 2 10 82 4 68 6 2 6 354 (1)2

dt ABC AB AC

y z z x x y

z y x z y x

x y z x y z yz xz xy

1

9 ( 3)3 5 2 (*)

32 9 1 52

y xx y zC dxz

Thay (*) vào (1) ta có:

2 22

2

1 81 4327 1 9 295 2 295 .2 4327( ) 5902 2 2 2 9 81 22

1 4327 295 .22 2 81

9 295 2 590 347 463( ) min 0 ;9 81 18 1622

xdt ABC x x

xdt ABC x y z

Vậy A(5;4;3) ; B(6;7;2); C( 590 347 463; ;81 18 162

) thì diện tích tam giác ABC đạt

giá trị nhỏ nhất Câu IV.

1. Đặt 2 34 1 14

uu x x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 128: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

223

2 22 23

0 0

224 1

23 3 1 1 13( 3 )04 2 8 8 3 12

ududu dx dxxu udu uI du u u

u

2. Ta có: 2( )

3 12yz y zx y zx x

(1)

Đặt y z m ( với 0m )

Ta có: (1) 2

12mx m

x

2 212 12 0x mx m

2 2 2' 36 12 48

' 4 3

6 4 3 6 4 312 12

2 3 3 2 3 3 ( )6 6

m m m

m

m m m mx

x m y z

Cách 2. 2

2 2 2 2( ) 12 12 ( ) ( ) ( ) 12 ( ) 12 03 12yz y zx y z x x y z y z y z x y z xx x

1 2 3 3(6 4 3)66 4 3

xy z xy z

.

Cách 3. 22( ) 2 3 312 12 1 0

3 12 6yz y z x x xx y zx x y z y z y z

Câu Va. Theo chương trình không phân ban

1. Số nguyên n thoả mãn :3 3

35( 1)( 2)

n nA Cn n

(với 3n )

Ta có: 3 3

35( 1)( 2)

n nA Cn n

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 129: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

224

33 3 1(1 )

3! 3!35 35( 1)( 2) ( 1)( 2)

7 !6 35

( 3)!( 1)( 2)

nn n

AA A

n n n n

n

n n n

7 35 306

n n (thoả mãn điều kiện)

Với n =30 ta có: 2 2 2 3 22 3 ... ( 1)n n

n n nS C C n C Ta có: 0 1 2 2(1 ) ... ( 1)n n n n

n n n nx C C x C x C x Lấy đạo hàm hai vế ta được: 1 1 2 3 2 1(1 ) 3 ... ( 1)n n n n

n n n nn x C C C x nC x (1) Trong (1) cho 1x ta có: 1 2 30 2 3 ... ( 1)n n

n n n nC C C nC (2) Lấy đạo hàm hai vế của (1) ta có: 2 1 2 2( 1)(1 ) 2 3.3 ... ( 1) ( 1)n n n n

n n nn n x C C x n n C x (3) Trong (3) cho 1x ta được: 1 20 2 3.2 ... ( 1) ( 1)n n

n n nC C n n C (4) Lấy (2) cộng (4) vế theo vế ta có: 1 2 30 (2 2.1) (3 3.2) ... ( 1) ( 1)n n

n n n nC C C n n n C 1 2 30 2 3 ... ( 1)n n

n n n nC C C nC 2 2 2 3 22 3 ... ( 1)n n

n n nS C C n C 1nC

Với 13030 30n S C

2. Gọi toạ độ các điểm A và B trong mặt phẳng Oxy lần lượt là ( ; )A Ax y và ( ; )B Bx y . Theo bài ra, 2 25 ( ) ( ) 5A B A BAB x x y y (1) Đường thẳng AB có phương trình: 2 3 0x y

2 3 0 (*)2 3 0

A A

B B

x yx y

( ) 2( ) 0A B A Bx x y y (2)

G là trọng tâm của tam giác ABC ( ; )3 3

A B C A B Cx x x y y yG

Mà G đường thẳng 2 0x y 1 1 2 03 3

A B A Bx x y y

( ) ( ) 8 0A B A Bx x y y (3)

Từ (1),(2),(3) ta có hệ (I)

2 2( ) ( ) 5 (1)( ) 2( ) 0 (2)

8 (3)

A B A B

A B A B

A B C

x x y yx x y y

x x y

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 130: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

225

(2) 2( )A B A Bx x y y Thế vào (1) ta có

2 2 24( ) ( ) 5 5( ) 521 1

1 12B

A B A B A B

AA B A B A B

A B A B A BA B

y y y y y yx xy y y y x x

y y y y x xx x

18 2( ) 7

( ) (**)2( ) 91

8

A B A B

A B A B A A

A AA B A B

A B A B

y y x xx x y y x y

Ix yy y x x

x x y y

(*) kết hợp với (**) ta có hệ:

7 4 62 1 3

2 3 2 29 6 42 3 1

2 3 2 2

A BA A

A BA A

A AA A

A AA A

x xx yy yx y

x xx yy yx y

Vậy

1 3(4; ) ; (6; )2 23 1(6; ) ; (4; )

2 2

A B

A B

CâuVb. Theo chươg trình không phân ban 1. Điều kiện: 0x 2 1

2

2log 2 2 log 9 1 1x x

2 22(1 log ) 2 log 9 2x x 2 2 22 2 log 2 log 9 log 2x x x 2 2log log 9 2x 2 2 2log log 9 log 4x

2 29 9log log4 4

x x

Vậy phương trình có nghiệm duy nhất 94

x

2.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 131: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

226

*) Ta có: 2 2 3.

1 1 1 3. ( ) . . 3.3 3 3 3S ABCDV SA dt ABCD SA AD a a a

*) Lấy E CD sao cho ( ; ) ( ; )CD CE SA SB SB BE Ta có, tứ giác ABEC là hình bình hành 2AC BE a Xét AEC có : 2 2135 2 2 2 cos135 5o oACE BCE BCA AE a a a a a Xét SAE vuông ở A có: 2 2 2 23 5 2 2SE SA AE a a a Mặt khác, SAB vuông tại A 2 23 2SB a a a và ABC vuông tại B 2 2AC a BE AC a

Xét SBE ta có 2 2 2 2 2 24 2 8 1cos

2 . 2.2 . 2 2 2SB EB SE a a a

SE SB a a

1arccos( )2 2

.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN B 2008

Page 132: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

227

ĐỀ SỐ 39 Câu I.

1. Khi m = 1 hàm số trở thành y = 2

12

xxx = x - 1 +

21x

1o. Hàm số có TXĐ là R\{-2} 2o. Sự biến thiên của hàm số Giới hạn tại vô cực, giới hạn vô cực và đường tiệm cận Ta có: lim

x , lim

x

2

limx

, 2

limx

Do đó đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số (khi x 2 và x 2 ) Vì y - (x - 1)0 khi x và x nên đường thẳng y = x - 1 là tiệm cận xiên của đồ thị hàm số đã cho khi x . Chiều biến thiên

y=1- 2)2(1x

= 2

2

)2(34

xxx (x -2)

y=0 x2+4x+3=013

xx

BBT: x - -3 -2 -1 + y + 0 - - 0 + -5 + +

y - - -1 Kết luận: Hàm số đồng biến trên mỗi khoảng (- ;-3) và (-1;+ )

Hàm số nghịch biến trên mỗi khoảng (-3;-2) và (-2;-1) Hàm số đạt cực đại tại x = -3, yCĐ = y(-3) = -5 Hàm số đạt cực đại tại x = -1, yCT = y(-1) = -1 3o. Đồ thị

Giao điểm của đồ thị hàm số với trục tung là điểm (0;21 )

Đồ thị đi qua các điểm A(-3;-5) và C(-1;-1) Đồ thị hàm số nhận giao điểm B(-2;-3) của 2 tiệm cận làm tâm đối xứng.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 133: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

228

6

4

2

-2

-4

-6

-8

-10 -5 5 100 y

x

-3

-5

-3

-2 -1

-1

1

C

B

A

2. 2 (3 2) 1 2 9 83 4

2 2x m x m my x m

x x

'2

8 912

myx

TH1: 98

m 1y

TH2: 98

m

- 98

m , ' 0y x D hàm số đồng biến trên từng khoảng của TXĐ

- 98

m , ' 0y x D hàm số nghịch biến trên từng khoảng của TXĐ

Vậy với 98

m thì hàm số đồng biến trên từng khoảng của TXĐ

Câu II.

1. 23sin cos 2 sin 2 4sin cos2xx x x x

23sin 1 sin sin 2 2sin cos 1x x x x x

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 134: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

229

22sin sin 1 0x x

1sin2

sin 1

x

x

26

7 26

22

x k

x k k

x k

2.

3

4

1 8 (1)

1 (2)

x y x

x y

ĐK 10

xy

Từ (2) 2( 1)y x . Thay vào (1) ta được 2 31 ( 1) 8 x x x 3 21 8 2 1x x x x 3 21 2 9x x x x (*)

Ta thấy 2x là 1 nghiệm của pt (*) Xét hàm số ( ) 1, 1f x x x

' 1( ) 0 1 2 1

f x xx

hàm số ( )f x đồng biến trên [1; )

3 2( ) 2 9, 1g x x x x x

2

' 2 1 5( ) 3 2 2 3 03 3

g x x x x

hàm số ( )g x nghịch

biến trên [1; ) Với 1 2x ta có ( ) (2) (2) ( )f x f g g x Với 2x ta có ( ) (2) (2) ( )f x f g g x Với x = 2 ta có f(2) = 1 = g(2) 2x là nghiệm duy nhất của pt (*) Thay vào (2) 1y

Vậy nghiệm của hệ pt là 21

xy

Cách 2. (*) 3 21 2 9x x x x = 0 (**) Xét hàm số 3 2( ) 1 2 9f x x x x x , 1x .

21'( ) 3 2 2 0, 12 1

f x x x xx

.

Mặt khác, f(2) = 0. Suy ra, x = 2 là nghiệm duy nhất của (**). Câu III. 1. Gọi D(x; y; z) là điểm cần tìm

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 135: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

230

Ta có (1;3;0)AB

, (0;3;2)AC

, ( 1; ; 1)AD x y z

1 , . 1 , . 66ABCDV AB AC AD AB AC AD

3 0 0 1 1 3

, , , (6; 2;3)0 2 2 0 0 3

AB AC

6( 1) 2 3( 1) 6

, . 66( 1) 2 3( 1) 6

x y zAB AC AD

x y z

6 2 3 96 2 3 3

x y zx y z

6 2 3 9 6 2 3 3

1 0 1 04 4

x y z x y zx y x yx y z x y z

1 5

0 65 7

x xy yz z

Vậy có 2 điểm D thỏa mãn yêu cầu bài toán có tọa độ lần lượt là ( 1;0;5) và (5;6; 7) 2. Gọi ( ; ; )H a b c là trực tâm của ABC . Ta có ( 1; ; 1)AH a b c

, ( 2; 3; 1)BH a b c

, ( 1; 3; 1)CH a b c

Vì H là trực tâm ABC , Hmp(ABC) . 0

. 0

, . 0

BH AC

CH AB

AB AC AH

3( 3) 2( 1) 01 3( 3) 0

6( 1) 2 3( 1) 0

b ca b

a b c

3 10

3 2 76 2 3 3

a bb ca b c

854913549

3149

a

b

c

85 135 31; ;49 49 49

H

mf(ABC) có 1 véc tơ pháp tuyến là n

= ,AB AC

= (6; 2;3)

Đường thẳng qua H mp(ABC) nhận n

làm vec tơ chỉ phương nên có phương

trình là

85 649135 24931 349

x t

y t

z t

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 136: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

231

Câu IV.

1. Đặt 2

24

4xx t dt dx

x

2 24x t (1) 3, (0) 2t t

33 32

2 2

8 16( 4) 4 3 3 8 3 33 3 3tI t dt t

2. TH1: 0x hoặc 0y , ta có : n n n + 1 n + 1n n + 1x + y = x + y (1)

TH2: 0, 0x y x > 0, y > 0.

Ta chứng minh n n n + 1 n + 1n n + 1x + y > x + y . (2)

Thật vậy:

1n n n + 1 n + 1n n + 1 n n + 1x + y > x + y + 1 > + 1

n nx xy y

(3)

Giả sử x y . Đặt 0 1x a ay

Bđt cần chứng minh 1 11 1n nn na a

11 1ln 1 ln 11

n na an n

(4)

Xét hàm số 1( ) ln 1 , 2xf x a xx

'2

1 ln( ) ln( 1) 0( 1)

xx

xa af x a

x x a

[2; )x

hàm số ( )f x nghịch biến trên [2; ) ( ) ( 1)f n f n

11 1ln 1 ln 11

n na an n

Suy ra, (4) được chứng minh. Vậy với , 0x y ; , 2n n thì 1 11n n n nn nx y x y Dấu ”=” xảy ra khi 0, x y hoặc 0, y x . Cách khác:

(4) 11 1ln 1 ln 1 01

n na an n

, 0 1a , , 2n N n (5)

Xét hàm số 11 1( ) ln 1 ln 1 , , 2, (0;1]1

n nf t t t n N n tn n

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 137: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

232

1 1 1

11 1

1

1

( 1)'( )1 11 ( 1) 1 1 1

(1 ) 0, , 2, (0;1]1 1

n n n n n n

n nn n n n

n

n n

nt n t t t t tf tt tn t n t t t

t t n N n tt t

Suy ra, f(t) đồng biến trên (0; 1]

a > 0 f(a) > f(0) 11 1ln 1 ln 1 01

n na an n

(đpcm)

Phần riêng Câu Va.

1. , , x n ta có: 0

1n

n k n kn

kx C x

2 212 2 1

0 00 0 00

11

1 1

n n kn nn k n k k

n nk k

x xx dx C x dx Cn n k

1 1 0 11

0

2 2 2 23 1 ...1 1 1 1

n k k n n nn nn n n n

k

C C C Cn n k n n

0 1 1 01 2 2 23 1 ...

2( 1) 1 1

n n nnn n nC C C

n n n

,(đpcm)

2.

4

2

-2

-4

B

-5 51F A

y

x0

1

DE

1,5 3

KH

2

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 138: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

233

OAB vuông tại O => SOAB = S = 12

.OA.OB= 12

.3.4=6

AB2 = 2 2OA OB = 2 23 4 5

p = 12

(OA+OB+AB) = 12

(3 + 4 + 5) = 6

=> Srp

= 1=> tâm đường tròn nội tiếp OAB là H(1;1)

Gọi D, E, F lần lượt là trung điểm của các đoạn AB, OB, OA. Ta có D 3 ;22

,

E(0;2), F 3 ;02

/ // /

DE OADF OBOA OB

DE DF DEF vuông tại D.

Gọi K là trung điểm của đoạn EF => K 3 ;14

, K là tâm đường tròn ngoại tiếp

DEF . Bán kính đường tròn này là R = KE = 2

23 14

= 54

Ta thấy 14

R r ,2

1 14 4

HK

R r HK đường tròn nội tiếp OAB và

đường tròn ngoại tiếp DEF tiếp xúc ngoài với nhau, đpcm. Câu Vb.

1. 2 21 13 2 5.6 0x x x 2 2 3 23.3 2.2 5.6 0 3. 2. 5 0

2 3

x xx x x

Đặt 3 02

x

t t

Ta có 223 5 0 3 5 2 0 0 2t t t tt

32

3 2 log 22

x

x

.

Cách khác. Bất phương trình đã cho tương đương:

2

32

3 3 3 3 33 5 2 0 2 3 1 0 2 log 22 2 2 2 2

x x x x x

x

2. Gọi E là trung điểm của đoạn CD Ta có: BCD cânBECD

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 139: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

234

aH

F

Ka

a

a

a

EB

C

D

A

ACD cânAECD Suy ra CDmp(ABE) và góc giữa mp(ACD) và mp(BCD) bằng (AE,BE)=90o Lại có ACD =BCDAE = BE ABE vuông cân tại E

AE = BE =2

a

CE = 22 AEAC =2

aCD =

22a = 2a

BCDS =21 BE.CD =

21 .

2a . 2a = 2

21 a

Mà AE CD và AEBE AE mp(BCD) nên AE là đường cao hạ từ đỉnh A xuống mp(BCD) của hình chop A.BCD

Vậy .A BCDV =31 AE. BCDS = 21 1. .

3 22a a =

3 212

a

Gọi F, K, H lần lượt là trung điểm của AC, BD và AB

EF / /AD, EK / /BC

EF EK HK FH2a

Nên tứ giác HFKE là hình thoi có đường chéo HE =21 AB =

2a

Suy ra, các tam giác KHE,FHE đều 0KEF 120 (EF, EK) = 60o Vậy góc giữa 2 đường thẳng AD và BC bằng 60o.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN B 2008

Page 140: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

76

ĐỀ SỐ 6 Câu I:

1. Khảo sát và vẽ đồ thị hàm số y = xxx 3231 23 (1)

(Học sinh tự giải) 2. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số (1) và trục Ox.

)(49

03

23

32

1232

31 23

423

3

0

dvdtxxxdxxxxS

Câu II:

1. Giải phương trình x2cos8

1= sinx

Điều kiện:

)(0sin)(0cos

bxax

Với điều kiện đó phương trình xxxx

2222 cossin4

21sin

cos81

04cos2

4cos12sin21 2

xxx

48 kx (1)

Kết hợp điều kiện: cosx = cos 048

k

( , , )8 4 2

k n k n

1 + 2k ≠ 4 + 8n Điều này luôn đúng vì I + 2k là số lẻ, 4 + 8n là số chẵn, vậy điều kiện (a) thoả mãn, điều kiện (b):

sinx = sin

48 k > 0

Tập nghiệm (1) được biểu diễn bởi 8 điểm ngọn trên đường tròn lượng giác, trong

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2002

Page 141: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

77

đó có 4 điểm thuộc nửa trên của đường tròn thoả mãn điều kiện sinx > 0, vậy tập nghiệm của phương trình là:

x = n28 , x = 3

n28 ,

x = n28

5 , x = n28

7 .

2. Điều kiện: x > 0, y > 0, x ≠ 1, y ≠ 1. x3 + 2x2 – 3x – 5y = x3 2x2 – 3x = 5y (1)

y3 + 2y2 – 3y – 5x = y3 2y2 – 3y = 5x (2) Từ (1) v à (2) 2(x2 – y2) – 3(x – y) = 5(y – x) 2(x2 – y2) + 2(x-y) = 0 (x – y) (x + y + 1) = 0 (3) Hệ (1) và (2) với điều kiện x > 0, y > 0 tương đương với hệ

2 2 4

2 3 5 2 8 0x y x y

x yx x y x x

Vậy hệ phương trình có nghiệm duy nhất: x = y = 4 Câu III: 1. Tứ diện ABCD đều cạnh a nên các mặt là những tam giác đều cạnh a. Gọi M là trung điểm BC, N là trung điểm AD. Ta có BC AM, BC DM suy ra BC (ADM) BC MN.

Đồng thời có AM = DM = 2

3a

MN AD (trung tuyến vừa là đường cao). Vậy MN là đường vuông góc chung của BC và AD. Trong AMN vuông góc tại N ta có

MN = 2

244

3 2222 aaaANAM

Hình 23

x 0

y

O

8

Hệ

Hình 24

A

D

B C

a

N

M

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2002

Page 142: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

78

cm62226

2. a) Dễ nhận thấy rằng dm luôn đi qua điểm M0(0; - 1) m. Do bán trục lớn a = 3, bán trục nhỏ b = 2 nên M0 (0; - 1) là điểm trong thực sự của elip (E), do đó dm luôn cắt elip (E) tại hai điểm phân biệt. Cách khác: Từ phương trình xác định dm rút theo x và thế vào phương trình của (E) ta được một phương trình bậc 2 theo x có biệt thức > 0. m. b) Gọi (x0; y0) là toạ độ tiếp điểm, ta có phương trình của tiếp tuyến với (E)

14900 yyxx

(x0; y0) (E) nên

149

20

20

yx (1)

Tiếp tuyến qua N (1; -3) nên

14

39

00 yx (2)

Rút y0 từ (2) thế vào (1) ta rút gọn được

04057285 020 xx

' = 362 + 85.405 = 35721 = 1892.

;1745

8518936

0

x .59

8528936

0

x

Với 1745

0 x ta có .1716

0

y

Với 59

0

x ta có .58

0

y

Vậy ta có 2 tiếp tuyến cần tìm

14.17

169.17

45 yx hay 5x - 4y - 17 = 0

14.5

89.5

9 yx hay x + 2y + 5 = 0

Chú ý: Bạn có thể bỏ qua các câu nói về tiếp tuyến của conic vì sách giáo khoa hiện hành không trình bày nữa. Câu IV:

O

y

x

N -3

-3 2 3

-2

Hình 25

1

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2002

Page 143: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

79

1...1 910

6410

7310

8210

89110

1010 xCxCxCxCxxCxx

...21 7410

8310

9210

10110

1110 xCxCxCxCxxx

1...2 910

2810

7310

8210

9110

102910 xCxCxCxCxCxxxC

8210

310

9110

210

10110

11 2.2.2 xCCxCCxCx

11106

57

48

39

210

111 ... axaxaxaxaxaxax

Vậy 6722 410

5105 CCa

Câu V:

1.

2

2345

12

6

1 151lim

156lim

x

xxxxxxx

xxxx

15543211

54321lim 2

2342

1

x

xxxxxx

2. Ta có diện tích tam giác: 1 1 1 .2 2 2a b cS ah ah ah

;2aSha ;2

bSh b

cSh c

2

cbaShhh cba

21111

cbacba

Shhhcba cba

11121111111

Áp dụng bất đẵng thức Côsi ta có:

9111

cbacba

Và để ý 23

S theo giả thiết, do vậy ta có:

.339111111

cba hhhcba

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2002

Page 144: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

101

ĐỀ SỐ 11 Câu I:

1. Khảo sát và vẽ đồ thị hàm số 2 25 6

3x x my

x

khi m = 1

(Học sinh tự giải) 2. tìm m để hàm số đồng biến trên khoảng (1;+):

Ta có: 2 2

2

(2 5)( 3) ( 5 6)( 3)

x x x x myx

=2 2

2

6 9( 3)

x x mx

Để hàm số đồng biến trên khoảng (1;+) điều kiện cần và đủ là y'/0 x (1;+) và y'(x) chỉ bằng 0 tại các điểm rời rạc của khoảng đó 2 26 9 / 0, /1x x x m x (1) Gọi x1,x2 là các nghiệm của phương trình x2 +6x + 9 - m2 = 0 Ta có: x1 = -3 - m; x2 = -3 + m. Khi m = 0 thì x1 = x2 và bất phương trình (1) luôn thoả mãn Khi m > 0 , để thoả mãn đòi hỏi của bài toán, khoảng (1, +) phải nằm bên ngoài khoảng (x1, x2) tức là x2 < x1 1 -3 + m 1 0 < m 4. Khi m < 0, ta có x2 < x1, đẻ thoả mãn bài toán phải có x2 < x1 1 -3 - 3 1 0 > m -4. Tổng hợp ba trường hợp trên ta được -4 m 4 Câu II:

1. Giải phương trình 2os cos 1

2 1 sinsin cos

c x xx

x x

Điều kiện: sinx + cosx = 2 sin 04

x

.

Với điều kiện ấy phương trình tương đương với: (1 - sin2x) (cosx - 1) = 2(sinx + sosx) (1 + sinx0 (1 + sinx) [(1 - sinx)(cosx - 1)- 2(sinx + cosx)]=0

s inx 1 s inx 1(1 cos )(1 s inx) 0 cos 1x x

(thoả mãn điều kiện)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2003

Page 145: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

102

2

42

x kk Z

x k

2. f(x) = xlogx2 (x>0, x 1) Tính f'(x) và giải bất phương trình f'(0) 0;

2 2

1( )log log

xf x xx x

2 2

2 22 2

2 1log . logln 2 ln 2'( )

(log ) (log )

x x xxf x

x x

Ta có: f'(x) 0

21log 0

ln 2x (do > 0 nên, x 1 nên 2

2log 0x )

2 2log logx e 1

x x ex

Câu III: 1. Vectơ pháp tuyến của đường cao kẻ từ B là 1n

= (2;1). Suy ra đường thẳng AC

có phương trình 2(x - 1) + (y - 0) hay 2x + y -2 = 0, Vectơ pháp tuyến của đường cao kẻ từ C là 2n

= (1;3). Suy ra đường thẳng AB có phương trình

1. (x - 1) - 3(y - 0) = 0 hay x - 3y - 1 = 0. Toạ độ của B là nghiệm của hệ:

2 1 0

( 5; 2).3 1 0

x yB

x y

Toạ độ C là nghiệm của phương trình:

3 1 0

( 1; 4)2 2 0

x yC

x y

Gọi H là chân đường hạ từ C xuống AB thì toạ độ của H là nghiệm của hệ

3 1 0 2 1;

3 1 0 5 5x y

Hx y

Ta có 1 .2ABCS AB CH trong dó:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2003

Page 146: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

103

2 2

2 2

(5 1) ( 2 0) 2 10

2 1 71 4 105 5 5

AB

CH

Vậy 1 7.2 10. 10 142 5ABCS

2. Mặt cầu (S) có tâm I(1; -1; 1) và bán kính R = 3. Gọi d là khoảng cách từ I đến (P). Để (S) tiếp xúc với (P) ta cần có d = 3.

2

2 2 2

2

2 2

2.1 2.( 1) 1.1 33

2 2 13 1 9

3 1 9 3 10 02; 5

m md

m m

m m m mm m

2 23 1 9 3 8 0m m m m vô nghiệm. Vậy m cần tìm là m = -5; m = 2 Mặt phẳng (P) có vectơ pháp (2;2;1)n

.

Đường thẳng (d) đi qua I và (P) có phương trình:

1 1 12 2 1

x y z

Với m cần tìm là m = -5, m = 2. Mặt phẳng (P) có vectơ pháp n

= (2; 2; 1).

Đường thẳng (d) đi qua I và (P) có phương trình:

1 1 12 2 1

x y z .

Với m = -5 và m = 2 phương trình củan(P) là 2x + 2y + z - 10 = 0 Toạ độ tiếp điểm là nghiệm của hệ

2 2 10 0

3;1;21 1 12 2 1

x y zx y z

3. SA (ABC) SA AC. Do đó SAC vuông tại A. M là trung

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2003

Page 147: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

104

điểm SC nên MA = .2

SC ABC

vuông tại B. Vậy MB = 2

S C . Từ

đó MA = MB. Vậy AMB cân tại M. Từ M kẻ MN // SA. Từ H kẻ HK //

BC. Do SA AB. Từ đó MN = 2

SA a ,

HK = 2

BC a và từ AB HK suy ra AB

MK.

Ta có MK = 2 2 2 2 2.MH HK a a a

Vậy 21 1 2. . 2 .

2 2 2AMBaS AB MK a a

Câu IV: 1. Từ 9 chữ số 0,1,2,3,4,5,6,7,8 có thể lập được bao nhiêu số tự nhiên chẵn mà mỗi số gồm 7 chữ số khác nhau? Các số phải lập là nhẵn nên phải có chữ số đứng cuối cùng là 0 hoặc 2;4;6;8. Trường hợp chữ số 0 đứng cuối cùng thì 6 chữ số còn lại của số được lập ứng với một chỉnh hợp chập 6 của 8 chữ số còn lại, do đó có 6

8A thuộc loại này.

Trường hợp mỗi một trong các chữ số 2; 4; 6; 8 đứng cuối cùng thì 6 chữ số còn lại của số tự nhiên được lập cùng ứng với chỉnh hợp chập 6 của 8 chữ số (kể cả các số tự nhiên có chữ số 0 đứng đầu mà thực chất là số có 6 chữ số). Vì vậy lượng các số loại này gồm 6 5

8 74. A A .

Vậy lập được tất cả 6 6 58 8 74 90720A A A số tự nhiên chẵn gồm 7 chữ số

khác nhau trong 9 chữ số đã cho.

2. Tính 2 21 1

3 2

0 0

x xI x e dx x e xdx

Đặt x2 = t, ta được: 1 10 0

x t

B K

C

M S

A

H

Hình 40

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2003

Page 148: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

105

1 1

0 0

1 12 2

t tI te dt td e

=1

0

1 11 1 1 1 10 02 2 2 2 2 2 2

t t t e ete e dt e e

Vậy 12

I

Câu V: Ta có:

2

2 2

22

1 11 os2 1 os2 s in2 211 2 os( ). os( ) sin os cos . os( )2

1 1 1cos ( ) os ( )2 os 4 4

Q c A c B C

c A B c A B C c C C c A B

C A B c A Bc

Vậy 14

Q

Và 0

0

120114 cos 302

A B CQ

C A B

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2003

Page 149: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

106

ĐỀ SỐ 12

Câu I: 1. Khảo sát vẽ đồ thị hàm số y = 2x3 - 3x -1 (C) 2. Phương trình dk: y + 1 =kx y = kx - 1. Phải xác định k sao cho phương trình: 2x3 - 3x2 - 1 = kx - 1 x(x2 - 3x -k) = 0, có 3 nghiệm phân biệt. 2x2 - 3x - k = 0 có hai nghiệm phân biệt 0

99 8 08

0 0

k kk k

Câu II:

1. Giải phương trình 2cos 4cot x t nxsin 2

x xax

Điều kiện: sin2x 0 cos2x 1

Với điều kiện đó phương trình cos s inx os4s inx cos sinx.cos

x c xx x

2os2 os4 2cos 2 os2 1 0c x c x x c x

os2 1: ai

1os22 3

c x lo

c x x k

2. Giải phương trình: log5 (5x - 4) = 1 - x. Điều kiện: 5x - 4 > 0 Thấy ngay x = 1 là một nghiệm. Đặt f(x) = log5 (5x - 4) - 1 + x là một hàm số đồng biến. Suy ra x = 1 là nghiệm duy nhất. Câu III: 1. a) I là trung điểm của AB nên có toạ độ I ( 1; 0; 2); AB

(-2; -2; 2) = -2 (1;1;-1). Mặt phẳng (P) dđ qua I và vuông góc vưói

AB có phương trình. 1.(x - 1) + 1 (y - 0) - 1 (z - 2) = 0 Hay: x + y - z + 1 = 0 K là giao điểm của d với (P) nên toạ dộ của K là nghiệm của hệ.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2003

Page 150: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

107

1 0

3 2 11 0 3; 1;33 8 0

x y zx y K

y z

Trong phương trình xác định d đặt x = 2t ta có y = 3t - 112

, z =

1 983 2

y t . Vậy ta có véctơ chỉ phương 2;3; 1dn

và 2; 1;1 .IK

Ta có . 2.2 3 1 1 .1 0dn IK

. Vậy d IK.

b) Mặt phẳng có phương trình x + y - z + 1 = 0 chính là mặt phẳng (P). Gọi hd là hình chiếu vuông góc của d trên (P) ta có IK d, KI hd, do đó mặt phằng chứa d, hd có phương trình 2. (x - 3) - 1. (y + 1) + 1 . (x - 3) = 0 (mp chứa điểm K và vuông góc với IK

)

hay 2x - y + z - 10 = 0 Vậy phương trình tổng quát của hình chiếu của d trên mặt phẳng (P) là

2 10 0

1 0x y z

x y z

2. Trong mặt phẳng (ABC), kẻ AH BC. Do AD (AVC) nên BC DH. ABC vuông tại A

Ta có: BC = 2 2 2 2AC AB b c

2 2

2 2 2 2 2 2 21 1 1 1 1 b c

AH AC AB b c b c

Do đó AH2 = 2 2

2 2b c

b c và

AD (ABC) nên AD AH. Do đó: AH2 = AD2 + AH2

= 2 2 2 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2 2 2

b c a b a c b c a b a c b ca DHb c b c b c

Vậy

2 2 2 2 2 22 2 2 2 2 2 2 2

2 2

1 1 1. . .2 2 2ABC

a b a c b cS BC DH b c a b a c b cb c

C B

A

c

a

b

H

A

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2003

Page 151: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

108

Ta có

2 2 2 2 2 2

2 2 2 2 2 2. . .2 2 2

b c a c a babc a b c a bc b ac c ab a b c

( theo bất quy tắc Côsi) 2 2 2 2 2 2 BCa b a c b c S

( đ.p.c.m)

Câu IV: 1. Tìm số tự nhiên n thoả mãn 2 2 2 3 3 32 1 00n n

n n n n n nC C C C C C (1)

Hệ thức (1) 2 22 2 3 32 1 0 0n n n nC C C C

22 3 1 0 0n nC C

2 3 10n nC C

1 ( 1) 210

2 6n n n n n

2 23 2 60n n n n n

2 3 2 60n n n

2 1 60n n n

1 1 3.4.5n n n

*

( 1) ( 1) 60n n nn

n = 4

2. Tính 2

1

11e xI nxdx

x

1 21 1

dxI= 1nx.xdx+ 1nx = I +Ix

e e

2

11 11 . . 1 .

2

e e xI nx x dx nx d

= 2 2 2 2 2

1 11

11 .2 2 2 4 4 4

ee ex x dx e x enxx

22 11 1

1 11 . 1 . 1 12 2

e e edxI nx nx d nx n xx

Vậy I = I1 + I2 = 2 21 1 34 2 4

e e .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2003

Page 152: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

109

Câu V: Xác định dạng của tam giác ABC biết rằng (p - a) sin2A + (p - b)sin2B = csinA . sinB (1) Hệ thức (1) (p - a) a2 + (p - b) b2 = abc

( ) 1p a a p b b

bc ac

( )p a a p b bp p pbc ac

2 2os os2 2A Bac bc p

1 cos 1 cosa A b B a b c

cos cos sin 2 sin 2 2a A b B A B sinC os 1c A B A = B, tức tam giác cân.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2003

Page 153: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

119

ĐỀ SỐ 16

Câu I:

1. Bạn đọc tự giải.

2. pt(d): y = 13

x + 1. Vì tiếp tuyến vuông góc với (d) nên tiếp tuyến có hệ số

góc bằng -3. Gọi M(x0; y0) là tiếp điểm, ta có f ’(x0) = -3.

202 2

0

0 0

0 0

4 4'( ) 1 1 3 ( 1) 1( 1) ( 1)

0 42 6

f x xx x

x yx y

Vậy có hai tiếp tuyến có phương trình là: y = -3x + 4 và y = -3x – 12 Câu II:

1. 2sinx.cos2x + sin2x.cosx = sin4x.cosx 2sinx.cos2x + sin2x.cosx.(1-2cos2x) = 0 2sinx.(cos2x + cos2x(1 – 2cos2x))=0

s inx = 0 x = k 1+ cos2xcos2x + (1 - 2cos2x) = 0 (*)

2

Giải (*): đặt t = cos2x, pt (*) trở thành: 2t2 – t – 1 = 0 2 21 os2x = 1

21 1 2 2cos2x = 3 32 2

x k x kt c

x k x kt

Vậy nghiệm của pt là 3

x k

x k

2. 2 2

1

(1)2 2 (2)x y x

x y y xx y

Từ (1): (x – y).(x + y – 1) = 0 1

x yy x

Nếu x = y thay vào (2) ta được: 22x – 2x -1 = 0 12 .(2 ) 0 1, 12

x x x y

Nếu y = 1 – x: thay vào (2) ta được 2 – 2x – 1 = 2x - 1 2x – 1 - 3 + 2x = 0 Dễ thấy x = 1 là một nghiệm và vế trái là hàm số đồng biến trên R nên đó là nghiệm duy nhất. Vậy hệ pt có nghiệm là (-1; -1) và (1; 0).

Câu III:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2004

Page 154: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

120

1. Gọi C(x; y). Ta có: //

AB AC

BK BC

(2; 8); ( 1; 4) 4 17 04 1 4( ;6); ( 1; 4) 9 2 17 03 4 / 3 6

AB AC x y x yx yBK BC x y x y

Từ đó suy ra x = 3; y = 5 hay C(3; 5) 2. a) Ta có:

(0;2;0); ( 2;0;2) [ ; ]=(4; 0; 4)ABCAB AC n AB AC

n (1;0;1)

là 1 véc tơ pháp tuyên của (ABC). Vậy ptmp(ABC) là x + z – 2 = 0. Gọi (∆) là đường thẳng đi qua O và vuông góc với mp(ABC). Ta có pt tham số

của đt (∆) là: 0x tyz t

Gọi I là hình chiếu vuông góc của O lên mp(ABC) thì I là giao điểm của đt (∆) và mp(ABC). Suy ra I(1; 0; 1). I là trung điểm của OO’ nên O’(2; 0; 2). b) Ta có OH < OA =2

( ; ) 81( ) ( ; ). 8 42

d B OH OB

dt OHB d B OH OH

Vậy ta có đpcm. Câu IV:

1. 2

0

.sinI x xdx

Đặt 2 2t x t x tdt dx Với x = 0, t = 0

Với x = 2 , t = . Khi đó: 2

0

2 .sinI t tdt

Đặt 2

2 210

0

222 . ost 4 . os 2

ostdtsindu tdtu t

I t c t c tdt Iv cdv tdt

Tính I1:

1 0 00

4 .sin 4sin 4 ost 8I t t tdt c

Vậy 22 8I

2. Ta có: 2

0 0

1 1( ) .( )n n

n k n k k k n kn n

k kx C x C x

x x

S

H

B A

O

z

y

x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2004

Page 155: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

121

Khi đó: 0 1

23 23 223

0

24 1 24 231( )

n nn

k k

k

C C n n

x C xx

Theo bài ra: 23 – 2k > 0 nên 23 112

k k

Tổng 0 1 1123 23 23.....S C C C

Mà 23

0 1 11 12 13 23 0 1 23 22 11 223 23 23 23 23 23 23 23 23

1 2..... ..... ( ..... ) 2 (2 )2 2

C C C C C C C C C

Vậy S là số chính phương. Câu V:

Phương trình đã cho: x2 + ( m2

- 53 ) 2x + 4 + 2 - m2

= 0.

Đặt 2x + 4 = t 2.

Phương trình đã cho tương đương với: t2 - 4+ ( m2

- 53 )t + 2 - m2

= 0.

3t2 + ( 3m2

- 5 )t - 6 - 3m2 = 0 3t2

- 5t - 6 = 3m2 (1 - t)

223 5 6 3

1t t m

t

.

Đặt 23 5 6( ) , 2.1

t tf t tt

Ta có 2 2

2 2

(6 5)(1 ) 3 5 6 3 6 11'( ) 0, 2.(1 ) (1 )

t t t t t tf t tt t

f(t) giảm liên tục trên [2; + ), f(2) = 4 và lim ( )x

f t

.

Vậy phương trình có nghiệm khi chỉ khi 2 33 42

m m .

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2004

Page 156: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

122

ĐỀ SỐ 17

Câu I: 1. Bạn đọc tự giải.

2. Ta có: 1

xyx

, (C)

M(C) M(a; 1

aa

), d: 3x + 4y = 0

d(M;d) = 1

435 6 211 1 1, ,

5 3 3

aa a a a

Câu II: 1.

s inx + sin2x = 3( osx + cos2x) sinx - 3 osx = 3 os2x - sin2x

sin(x - ) sin( 2 )3 3

2 2x - 2 2 x =3 3 9 32 x 2x - 2 2

3 3

c c c

x

kx k

kx k

2. Tìm max, min của hàm số 2( 1) 1y x x Đk: 1 1.x Ta có:

2

2

2

2

' 1 ( 1). 01

11 ( 1) 0 1

1 2

xy x xx

xx x x

xx

Khi đó: y(-1) = y(1) = 0; 1 3 3( )2 4

y

Vậy 3 3axy4

m khi x = 12

và miny = 0 khi x = ± 1.

Câu III: 1. Vì Bd1 nên gọi tọa độ B(b; -5-b).

Vì Cd2 nên gọi tọa độ C(7-2c; c). Do G(2; 0) là trọng tâm ∆ABC nên ta có:

2 7 2 6 2 3 13 5 0 2 1

b c b c bb c b c c

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2004

Page 157: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

123

Vậy B(-1; -4) và C(5; 1). 2. *) Chứng minh: m(n – m) = a2.

Ta có : MC2 + MN2 = NC2 m2 + 2a2 + a2 + (n – m)2 = a2 + n2 2m2 – 2nm + 2a2 = 0 m(n – m) = a2 (đpcm) *) ABNM là hình thang nên

dt(ABNM) = ( ).2

m n a

Theo trên ta suy ra: 2 2

2 2( ) (2 ). 2. 2 . 22 2

a a a an m dt ABNM m a am m

Vậy dt(ABNM) nhỏ nhất là 2 a2 khi m = 2

a

3. Ta có phương trình của d: 2 2

x ty tz t

có véc tơ chỉ phương (1; 1;2)da

Suy ra phương trình mf(P): x - (y - 1) + 2(z - 1) = 0 x - y + 2z - 1 = 0. Đường thẳng đi qua B và vuông góc với (P) có véc tơ chỉ phương (1; 1;2)da

nên

có phương trình:

112 2

x ty tz t

thay vào phương trình (P):

1 + t - 1 + t + 4 + 4t - 1 = 0 t = 12

. Suy ra B' 1 3; ;12 2

.

Câu IV:

1. Tính ln8

2

ln3

1x xI e e dx

Đặt ex + 1 = t dt = ex dx Với x = ln3: t = 4 Với x = ln8: t = 9.

Khi đó: 99 9 5 3

3/2 1/2 2 2

4 4 4

2 2( 1). ( )5 3

I t tdt t t dt t t

2. Gọi abcd là số chẵn có 4 chữ số đôi một khác nhau, nhỏ hơn 2158. a = 1: d có 5 cách chọn, bc có 2

8A cách chọn. Suy ra, khi a = 1 có 5 28A = 280 số.

a = 2: + b = 0: d có 3 cách chọn, c có 7 cách chọn. Suy ra có 21 số. + b = 1, c = 5, d có 3 cách chọn. Suy ra có 3 số.

n

a m

M

B C

D A

N

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2004

Page 158: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

124

+ b = 1, c = 4, d có 3 cách chọn. Suy ra có 3 số. + b = 1, c = 3, d có 4 cách chọn. Suy ra có 4 số. Suy ra, khi a = 2 có 3.7 + 3 + 3 + 4 = 31 số. Vậy, số tất cả các số cần tìm là 280 + 31 = 311 số. Câu V:

Xác định m để hệ có nghiệm: 2

2

5 4 0 (1)

3 16 0 (2)

x x

x mx x

Ta có (1) [1;4]x . (2) 23 16mx x x (3)

Với [1;4]x : (3) 23 16xm

x x

= f(x).

2 22 2

3 3

6 32 12 9 3'( )

2 2

xx x x xx x x xf x

x x x

> 0, [1;4]x .

Suy ra 1;4 1;4min ( ) (1) 19 max ( ) (4) 8f x f f x f .

Vậy, hệ có nghiệm khi chỉ khi 8 19m .

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2004

Page 159: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

134

ĐỀ SỐ 20 CÂU I: 1. Khaûo saùt 4 2y x 6x 5 . MXÑ: D = R

3 2y' 4x 12x 4x x 3 ,y ' 0 x 0 hay x 3 2y'' 12x 12,y '' 0 x 1

BBT x 3 0 3 y' - 0 + 0 - 0 + y 5 - 4 -4 Ñoà thò

2. Tìm m ñeå phương trình 4 2

2x 6x log m 0 coù 4 nghieäm phaân bieät.

4 2 4 22 2x 6x log m 0 x 6x 5 log m 5

Ñaët 2k log m 5

Phương trình đã cho có 4 nghiệm phân biệt ñöôøng thaúng y = k caét (C) taïi 4 ñieåm phaân bieät 4 k 5 24 log m 5 5

2 919 log m 0 m 12

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2005

Page 160: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

135

CAÂU II

1. Giaûi pt 3x 3 5 x 2x 4 1

Ñieàu kieän: 3x 3 05 x 0 2 x 52x 4 0

(1) 3x 3 5 x 2x 4 vaø 2 x 5

3x 3 5 x 2x 4 2 5 x 2x 4 vaø 2 x 5

x 2 5 x 2x 4 vaø 2 x 5

x 2 0 hay[ x 2 5 x 2 vaø 2 x 5 ]

x 2 hay [x 2 2 5 x vaø 2 x 5]x 2 hay x 4

2. Giaûi phương trình: 2 2 3sin x cos2x cos x tg x 1 2sin x 0 2

Ñieàu kieän : cosx 0 x k2

2 2 32 sin x cos2x sin x cos x 2sin x 0

2sin x cos2x 2sin x cos2x 0

sin x cos2x 1 cos2x cos2x 0

2sin x 1 2sin x 0

22sin x sin x 1 0

1sin x (vì sinx 1 loaïi )2

1 5sin x sin x k2 hay x k22 6 6 6

CAÂU III. 1. Do tính ñoái xöùng cuûa elíp (E). Ta chæ caàn xeùt tröôøng hôïp x 0,y 0 Goïi A 2m,0 ;B 0,m laø giao ñieåm cuûa tieáp tuyeán cuûa (E) vôùi caùc truïc toïa ñoä

( m 0 ). Pt AB: x y 1 x 2y 2m 02m m

AB tieáp xuùc vôùi (E) 264 4.9 4m 2 24m 100 m 25 m 5 m 0

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2005

Page 161: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

136

Vaäy pt tieáp tuyeán laø x 2y 10 0 Vì tính ñoái xöùng neân ta coù 4 tieáptuyến là:

x 2y 10 0,x 2y 10 0x 2y 10 0,x 2y 10 0

2. a) 1d qua O 0,0,0 , VTCP a 1,1,2

2d qua B 1,0,1 , VTCP b 2,1,1

a,b 1, 5,3

, OB 1,0,1

1 2a,b OB 1 3 4 0 d ,d

cheùo nhau

b. 1M d M t ', t ',2t ' ; 2N d N 1 2t,t,1 t

MN 2t t ' 1,t t ',t 2t ' 1

Vì MN // (P) pMN n 1, 1,1

pMN.n 0 2t t ' 1 t t ' t 2t ' 1 0 t t '

2 22MN t ' 1 4t ' 1 3t ' 2

2 414t ' 8t ' 2 2 2t ' 7t ' 4 0 t ' 0 hay t '7

* t’= 0 ta coù M 0,0,0 O P loaïi

* 4t '7

ta coù

4 4 8 1 4 3M , , ;N , ,7 7 7 7 7 7

CAÂU IV. 1/ Tính e 2

1I x ln xdx

Ñaët dxu ln x dux

; 3

2 xdv x dx choïn v3

3e ee2 311 1

x 1 dxI x ln xdx ln x x3 3 x

3 e3 3

1

x 1 2 1lnx x e3 9 9 9

2. Ta coù các tröôøng hôïp : * 3 nöõ + 5 nam. Ta coù 3 5

5 10C C 2520

* 4 nöõ + 4 nam. Ta coù 4 45 10C C 1050

* 5 nöõ + 3 nam. Ta coù 5 35 10C C 120

Theo qui taéc coäng. Ta coù 2520 + 1050 + 120 = 3690 caùch . CAÂU V: Ta coù:

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2005

Page 162: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

137

3

3

3

a 3b 1 1 1a 3b 1.1 a 3b 23 3

b 3c 1 1 1b 3c 1.1 b 3c 23 3

c 3a 1 1 1c 3a 1.1 c 3a 23 3

Suy ra 3 3 3 1a 3b b 3c c 3a 4 a b c 63

1 34. 6 33 4

Daáu = xaûy ra 3a b c 1a b c4

4a 3b b 3c c 3a 1

Caùch 2: Ñaët 33x a 3b x a 3b ; 33y b 3c y b 3c ;

33z c 3a z c 3a

3 3 3 3x y z 4 a b c 4. 34

. BÑT caàn cm x y z 3 .

Ta coù : 33 3x 1 1 3 x .1.1 3x ; 3 33y 1 1 3 y .1.1 3y ;

33 3z 1 1 3 z .1.1 3z 9 3 x y z (Vì 3 3 3x y z 3 ).

Vaäy x y z 3

Hay 3 3 3a 3b b 3c c 3a 3

Daáu = xaûy ra 3 3 3 3x y z 1 vaø a b c4

a 3b b 3c c 3a 1 vaø 3 1a b c a b c4 4

.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2005

Page 163: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

138

ĐỀ SỐ 21 CAÂU I

1. Khaûo saùt 2x 2x 2y

x 1

(C)

MXÑ: D R \ 1

22

2x 2xy' ,y ' 0 x 2x 0 x 0 hay x 2x 1

BBT x -2 -1 0 y' + 0 - - 0 + y

-2

2

Tieäm caän:

x 1 laø pt t/c ñöùng. y x 1 laø pt t/c xieân Ñoà thò :Baïn ñoïc töï veõ. 2. Chöùng minh khoâng coù tieáp tuyeán naøo cuûa (C) ñi qua I 1;0 laø giao ñieåm

cuûa 2 tieäm caän.

Goïi 2o o

o o o oo

x 2x 2M x ,y C yx 1

.

Phöông trình tieáp tuyeán cuûa (C) taïi oM :

2o o

o o o o o2o

x 2xy y f ' x x x y y x xx 1

Tieáp tuyeán ñi qua I 1,0

2o o o

o 2o

x 2x 1 x0 y

x 1

2 2o o o o

o o

x 2x 2 x 2xx 1 x 1

2 0 : Voâ lí.

Vaäy khoâng coù tieáp tuyeán naøo cuûa (C) ñi qua I 1,0 .

CAÂU II

1. Giaûi baát phöông trình 28x 6x 1 4x 1 0 (1)

(1) 28x 6x 1 4x 1

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2005

Page 164: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

139

2

2 22

1 1x Vx1 14 28x 6x 1 0 x Vx

1 4 24x 1 0 x14 x 0 hay x8x 6x 1 (4x 1) 48x 2x 0

1 1x hay x4 2

2. Giaûi phöông trình 22

cos2x 1tg x 3tg x2 cos x

(2)

(2) 2

22

2sin xcot gx 3tg xcos x

2 31 tg x 0 tg x 1 tgx 1 x k ,k Z

tgx 4

CAÂU III 1. Ñöôøng troøn 1C coù taâm O(0; 0) baùn kính 1R 3

Ñöôøng troøn 2C coù taâm I(1; 1), baùn kính 2R 5

Phöông trình truïc ñaúng phöông cuûa 2 ñöôøng troøn 1C , 2C laø :

2 2 2 2x y 9 x y 2x 2y 23 0

x y 7 0 (d)

Goïi k k k kK x ;y d y x 7

2 2 22 2 2 2 2k k k k k k k kOK x 0 y 0 x y x x 7 2x 14x 49

2 2 2 22 2k k k k k kIK x 1 y 1 x 1 x 8 2x 14x 65

Ta xeùt 2 2 2 2k k k kIK OK 2x 14x 65 2x 14x 49 16 0

Vaäy 2 2IK OK IK OK(ñpcm) 2. Tìm 1M laø h/c cuûa M leân mp (P)

Mp (P) coù PVT n 2;2; 1

Pt tham soá 1MM qua M, P laø x 5 2ty 2 2tz 3 t

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2005

Page 165: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

140

Theá vaøo pt mp (P): 2 5 2t 2 2 2t 3 t 1 0

18 9t 0 t 2 . Vaäy 1 1MM P M 1; 2; 1

Ta coù 2 2 21MM 5 1 2 2 3 1 16 16 4 36 6

Ñöôøng thaúng

x 1 y 1 z 5:

2 1 6 ñi qua A(1;1;5) vaø coù véc tơ chỉ phương

a 2;1; 6 .

Ta coù AM 4;1; 8 .

Maët phaúng (Q) ñi qua M, chöùa mp (Q) qua A coù véc tơ pháp tuyến laø

AM,a 2;8;2 hoặc 1;4;1 neân phương trình (Q):

x 5 4 y 2 z 3 0 x 4y z 10 0 Caùch khaùc: Maët phaúng (Q) chöùa neân phương trình mp(Q) coù daïng: x 2y 1 0 hay m(x 2y 1) 6y z 11 0 . Maët phaúng (Q) ñi qua M(5;2; - 3)

neân ta coù 5 – 4 + 1 = 0 ( loaïi) hay m( 5 – 4 + 1) + 12 – 3 – 11 = 0 m = 1. Vaäy Pt (Q): x 4y z 10 0

CAÂU IV:

1. Tính

/ 4 sinx0

I tgx e cosx dx

Ta coù: / 4 / 4 / 4 / 4sinx sinx

0 0 0 0

sinxI tgxdx e cosxdx dx e cosxdxcosx

1

/ 4/ 4 sinx 20 o

ln cosx e ln 2 e 1

2. Goïi 1 2 3 4 5n a a a a a laø soá caàn laäp

Tröôùc tieân ta coù theå xeáp 1, 5 vaøo 2 trong 5 vò trí: ta coù: 25A 4.5 20 caùch

Xeáp 1, 5 roài ta coù 5 caùch choïn 1 chöõ soá cho oâ coøn laïi ñaàu tieân 4 caùch choïn 1 chöõ soá cho oâ coøn laïi thöù 2 3 caùch choïn 1 chöõ soá cho oâ coøn laïi thöù 3 * Theo qui taéc nhaân ta coù: 2

5A .5.4.3 20.60 1200 soá n.

Caùch khaùc : - Böôùc 1 : xeáp 1, 5 vaøo 2 trong 5 vò trí: ta coù: 2

5A 4.5 20 caùch

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2005

Page 166: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

141

- Böôùc 2 : coù 35A 3.4.5 60 caùch boác 3 trong 5 soá coøn laïi roài xeáp vaøo 3 vò

trí coøn laïi . Vaäy coù 20.60 = 1200 soá n thoûa ycbt.

CAÂU V. Ta coù 20 x 1 x x Ta coù 1 1x y y x x y y x

4 4 (1)

Theo baát ñaúng thöùc Cauchy ta coù

2 21 1 1y x yx 2 yx . x y4 4 4

1x y y x4

Daáu = xaûy ra

2

2

0 y x 1 x 1x x 1y

1 4yx4

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2005

Page 167: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

169

ĐỀ SỐ 28 Câu I: 1. Bạn đọc tự giải. 2. Gọi M(x1; y1), N(x2; y2) là hai điểm thuộc đồ thị và đối xứng qua trục tung.

1 21 2 3 3

2 21 21 2 1 1 2 2

1 213 3

1 2 1 22 22 22 2 2 23

22 2

0011 113 3

3 3 3 30

30

3 3 333 3 2 18 0

x xx xx xy y x x x x

x xx

x x x xx xx x x x xxx x

Suy ra M(-3; 163

), N(3; 163

).

Câu II: 1. Phương trình tương đương (sinx + cosx)(1 - sinxcosx) - cos2x = 0 (sinx + cosx)(1 - sinxcosx - cosx + sinx) = 0 (sinx + cosx)(1 - cosx)(1 + sinx) = 0

4

2

22

x k

x k

x k

2. Hệ phương trình đã cho tương đương với:

2

2 2

( ) 3( )( ) 3 7( )x y xy x yx y xy x y

(1)

Đặt x - y = u, xy = v.

(1) 2 2

22 2

00 13 0 3 3 0

122 2 2

u vu uu u v u u

uv uv u v u v

00 0

02, 11

11, 22

2

x yx y x y

xyx yx y

x y x yxyxy

Câu III: 1. Ta có d1 đi qua M(0; 3; -1) và có chỉ phương ( 1;2;3)a

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2006

Page 168: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

170

d2 đi qua N(4; 0; 3) và có chỉ phương (1;1;2)b

; (1;5; 3), (4; 3;4) ; 23 0a b MN a b MN

. Suy ra đpcm.

2. đường thẳng nằm trong (P) và cắt cả hai đường thẳng d1 và d2 nên đi qua giao điểm của d1 và d2 với mf(P).

Toạ độ giao điểm A của d1 và(P): 3 1

( 2;7;5)1 2 34 3 11 26 0

x y zA

x y z

Toạ độ giao điểm B của d2 và(P):

4 3

(3; 1;1) (5; 8; 4)1 1 24 3 11 26 0

x y zB AB

x y z

Suy ra phương trình đường thẳng : 2 7 55 8 4

x y z

Câu IV:

1. Ta có 2 2 2

20

0 0 0

1 1 1( 1)sin 2 ( 1) (cos 2 ) ( 1) cos 2 cos 22 2 2

x x x d x x x xdx

= 14

2. Phương trình đã cho tương đương:

2 2

2

2 1 sin(2 1) 02 1 sin(2 1) 1 sin (2 1) 0

1 sin (2 1) 0

x xx x x

x

yy y

y

sin(2 1) 1( ) 12 02 1 sin(2 1) 0

1 2sin(2 1) 1 sin(2 1) 1 22 2

x

xx x

x x

x

yVN xy

y ky y

Câu Va: 1. Phương trình (C) có dạng: x2 + y2 - 2ax - 2by = 0 có tâm I(a; b), R2 = a2 + b2 A(- 1; 1) (C) nên 2 + 2a - 2b = 0 b = 1 + a I(a; 1 + a), R2 = 2a2 + 2a +1. Do (C) tiếp xúc đường thẳng (d): x - y + 1 - 2 = 0, nên:

R = d(I, d) 2(1 ) 1 2

2 2 12

a aa a

2a2 + 2a = 0 a = 0 hoặc a = - 1. Vậy có hai đường tròn như thế: x2 + y2 - 2y = 0 x2 + y2 + 2x = 0

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2006

Page 169: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

171

2. Ba khả năng xảy ra: Khả năng Tổ Nữ Nam Số cách chọn 1

1

2

3

3

2

2

7

9

10

3 77 26C C 2 94 19C C 2 102 10C C

2

1

2

3

2

3

2

8

8

10

3 77 26C C 2 94 19C C 2 102 10C C

3

1

2

3

2

2

3

8

9

9

3 77 26C C 2 94 19C C 2 102 10C C

Câu Vb: 1. Phương trình 1

3 3log (3 1) log (3 3) 6x x (1) Đặt 3log (3 1)xt . Khi đó (1) 2( 1) 6 6 0 2, 3t t t t t t .

Suy ra: 3

3

33

log 103 1 9log (3 1) 2281 log3 1log (3 1) 32727

xx

xx

x

x

2. Tính SABCDV . Vì S.ABCD là hình chóp đều nên H là tâm hình vuông ABCD. Gọi M là trung điểm BC, K là hình chiêud vuông góc của H lên SM. Ta có: , ( ) ( ) ( )BC SH BC HM BC mf SHM mf SBC mf SHM

( ) 2 2HK SM HK mf SBC HK IJ b Trong tam giác SHM vuông tại H, HK là đường cao thuộc cạnh huyền, ta có:

2 2 2 2 2 2 2 2

1 1 1 1 1 4 24 16

abSHHK SH HM b SH a a b

Suy ra 3

2 2

1 2. ( ) .3 3 16

SABCDa bV SH dt ABCD

a b

.

J

H

K

S

C

C B

A I

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2006

Page 170: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

172

ĐỀ SỐ 29 Câu I: 1. Bạn đọc tự giải.

2. Gọi M0(x0; y0) (C) 00

0

31

xyx

, 0 20

4'( )( 1)

y xx

.

Phương trình tiếp tuyến của (C) tại M0 là : 0 020

4 ( )( 1)

y x x yx

(d)

Gọi A là giao điểm của (d) và tiệm cận ngang thì A(2x0 - 1; 1), B là giao điểm của (d) và tiệm cận đứng thì B(1; yB).

M0, A, B thẳng hàng và 00

2 1 12 2

A B xx x x . Suy ra M0 là trung điểm AB.

Câu II: 1. Phương trình đã cho 4sin3x + 4sin2x + 3sin2x + 6cosx = 0 4sin2x(sinx + 1)+ 6cosx(sinx + 1) = 0 (sinx + 1)(4sin2x + 6cosx) = 0

2

s inx = -1x= - 2s inx = -1 1 2osx = -

222cos 3 osx - 2 = 0 x = 2osx = 2 (VN) 3

kc

x c kc

2. Phương trình đã cho: 22 7 2 1 8 7 1x x x x x 1 2 7 2 1 ( 1)(7 ) 0x x x x x

1( 1 2) 7 ( 1 2) 0 ( 1 2)( 1 7 ) 0x x x x x x x

1 2 0 1 2 541 7 0 1 7

x x xxx x x x

Câu III : 1. Gọi d là đường thẳng đi qua O và vuông góc mf(ABC). Ta có:

( 1;2;0), ( 1; 2;3)AB AC

.

Suy ra một véc tơ chỉ phương của d là ,n AB AC

= (6; 3; 4).

Khi đó, phương trình của d: 6 3 4x y z .

2. Giả sử phương trình mf(P): Ax + By + Cz + D = 0, A2 + B2 + C2 > 0. (P) đi qua O(0; 0; 0) nên D = 0 A thuộc (P) nên A + 2B = 0

Mặt khác d(B,(P)) = d(C,(P)) 2 2 2 2 2 2

4 34 3

B CB C

A B C A B C

.

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2006

Page 171: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

173

Với 4B = 3C: Chọn B = 3, C = 4 khi đó A = - 6. Suy ra (P): - 6x + 3y + 4z = 0 Với 4B = - 3C: Chọn B = 3, C = - 4 khi đó A = 6. Suy ra (P): 6x + 3y - 4z = 0 Câu IV : 1. Ta có:

I = 2

1

( 2) lnx xdx

=

22 2 22 2 2

1 1 1122

1

1ln ( 2 ) ( 2 ) ln ( 2 ) 2 ln 2 ( 2)2 2 2 2

5ln 4 ( 2 ) ln 44 4

x x x xxd x x x x dx dxx

x x

2. Hệ phương trình đã cho tương đương:

ln(1 ) ln(1 )2ln(1 ) ln(1 )

( 2 )( 10 ) 0 ln(1 ) ln(1 )10

1 2ln 0 (1ln(1 2 ) ln(1 )

2 1ln(1 10 ) ln(1 ) 9

10 1

x y x yx yx y x y

x y x y x y x yx y

y yyy y y

x yy y y

x y

1)

2 1 (2)

1 10ln 9 0 (3)1

10 1 (4)

x y

y yy

x y

Giải hệ (1) và (2): Đặt 2 1 1( ) ln ,1 2

yf y y yy

Ta có 2

1 1 1 2 3'( ) . 1 1 .2 1 ( 1) (2 1)( 1) 1 2 1y y yf yy y y y y y

.

Để ý rằng 1 1 2 3. 02 1 2 1

yyy y

, ta có:

Thấy ngay hệ có nghiệm x = y = 0

y - 12

0 +

f '(y) + - f(y)

0 - -

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2006

Page 172: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

174

Giải hệ (3) và (4): Đặt 10 1 1( ) ln 9 ,1 10

yf y y yy

Ta có 2

1 9 9 9 10 11'( ) . 9 9 .10 1 ( 1) (10 1)( 1) 1 10 1

y y yf yy y y y y y

.

Để ý rằng 1 9 10 11. 010 1 10 1

yyy y

, ta có:

Thấy ngay hệ có nghiệm x = y = 0 Cách 2. Hệ phương trình đã cho tương đương

ln(1 ) ln(1 ) (1)( 2 )( 10 ) 0 (2)

x x y yx y x y

Đặt 1( ) ln(1 ) , 1 '( ) 11 1

tf t t t t f tt t

Để ý rằng (2) x = 2y hoặc x = 10y đều cho x và y cùng dấu. i) x = 2y: Nếu - 1 < x = 2y < y < 0 thì f(x) < f(y) không thoả (1) (Trong (-1; 0) không xảy ra x = 2y > y) Nếu 0 < y < x = 2y thì f(y) > f(x) không thoả (1) (Trong (0 ; + ) không xảy ra y > x =2y) Nếu x = y = 0 thì hiển nhiên thoả hệ phương trình đã cho. ii) x = 10y: Tương tự. Câu Va :

1. Gọi phương trình elip (E):2 2

2 2 22 2 1, ( , , 0; )x y a b c a c b

a b .

y - 110

0 +

f '(y) + -

f(y)

0 - -

t - 1 0 +

f '(t) + -

f(t)

0 - -

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2006

Page 173: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

175

Theo giả thiết 2 2a . Các đỉnh trên trục Oy: 1 2(0; ), (0; )B b B b và các tiêu điểm . Tứ giác F1B1F2b2 là hình vuông b = c a2 = b2 + c2 = 2b2 8 = 2b2 b = 2

Suy ra phương trình (E): 2 2

18 4x y

.

2. Từ các chữ số 0, 1, 2, 3, 4, 5, 6 thiết lập các số 1 2 3 4 5n a a a a a chẵn, trong đó , ; , 1,5i ja a i j i j .

Vì n < 2500 nên 1 1,2a . Khả năng 1: a1 = 1. Số cách chọn a5 là 4, số cách chọn 2 3 4a a a là 3

5C số các số như thế: 4 35A = 240

Khả năng 2: a1 = 2, a2 chẵn và bé hơn 5. Số cách chọn a2 là 2, số cách chọn a5 là 2, số cách chọn 3 4a a là 2

4A số các số như thế: 2.2 2

4A = 48. Khả năng 3: a1 = 2, a2 lẻ và bé hơn 5. Số cách chọn a2 là 2, số cách chọn a5 là 3, số cách chọn 3 4a a là 2

4A số các số như thế: 2.3 2

4A = 72. Vậy số tất cả các số toả yêu cầu bài toán là: 240 + 48 + 72 = 360 Câu Vb : 1. Phương trình đã cho tương đương:

2 2

222 2

2

log (log 1) 2 02log 1

log log 2 0 1log 24

x xxx

x xx x

2. Gọi O, O' lần lượt là tâm của ABCD, A'B'C'D'; I là giao điểm của AK với

OO'. Suy ra 2 3

CK aOI .

Mặt phẳng ( ) chứa AK và song song với BD nên ( ) đi qua I và cắt

mf(BDB'D') theo giao tuyến MN//BD. Suy ra BM = DN = OI = 3a .

MN//BD, ( 'C'C) ( 'C'C)BD mf AA MN mf AA MN AK . Mặt khác I là trung điểm của AK và MN nên thiết diện AMKN là hình thoi. Mf( ) cắt hình lập phương thành hai khối. Gọi V1 là thể tích của khối ABCDMNK, V2 là thể tích của khối AMKNA'B'C'D'.

V1 = 2 ABCKMV = 31 1 22. . ( ) 2.

3 3 3 3 2 3a a a aAB dt BCMK a

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2006

Page 174: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

176

V2 = ' ' ' 'ABCDA B C DV - V1 = 3 3

3 23 3a aa

D'

O

N

M

K

D C

B A

O' C'

B' A'

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2006

Page 175: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

198

ĐỀ SỐ 34 Câu I: 1. Khảo sát (Bạn đọc tự làm)

2. Giao điểm của tiệm cận đứng với trục Ox là

0,

21A

Phương trình tiếp tuyến () qua A có dạng

21xky

() tiếp xúc với (C) /

x 1 1k x2x 1 2

x 1 k co ù nghieäm2x 1

)2( k

1x23

)1( 21xk

1x21x

2

Thế (2) vào (1) ta có pt hoành độ tiếp điểm là 2

13 xx 1 2

2x 1 2x 1

1(x 1)(2x 1) 3(x )2

và 1x2

3x 12

5x2

.

Do đó 121k

Vậy phương trình tiếp tuyến cần tìm là: 1 1y x12 2

Câu II:

1. Giải phương trình: 1xcos12

xsin22

(1)

(1) 112

sin12

x2sin2

1sin 2x sin

12 12 2

12

cos6

sin212

sin4

sin12

x2sin

125sin

12cos

12x2sin

5 72x k2 hay 2x k2 k Z12 12 12 12

x k hay x k k Z4 3

2. Phương trình cho m94x64x14x24x (1)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2007

Page 176: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

199

m34x14x22 m34x14x (1)

Đặt: 04xt (1) m3t1t ()

Phương trình đã cho có đúng 2 nghiệm () có đúng 2 nghiệm t 0 Vẽ đồ thị của hàm số 0t ,3t1ttf

Ta có

3t neáu 4t2

3t1 neáu 21t0 neáu t24

tf

y 4 2 0 1 2 3 x Từ đồ thị, thấy ngay yêu cầu bài toán được thỏa 2 < m 4. Cách khác

m3t1t t 0 0 t 1 1 t 3 t 3m 4 2t m 2 m 2t 4

0 t 1 t 31 t 32 m 4 m 2m 24 m 4 mt t2 2

Do đó: 2 < m 4 ( khi 2 < m 4 thì () có đúng 2 nghiệm t1, t2 thỏa 10 t 1 và t2 > 3 )

Câu III: 1. Tìm giao điểm M của đường thẳng d và mặt phẳng (P)

Phương trình số của d:

t1zt2yt23x

có VTCP 1,1,2a

Thế vào phương trình (P): (3 + 2t) + (–2 + t) + (–1 – t) + 2 = 0 t = –1 M ( 1 ;- 3 ; 0)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2007

Page 177: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

200

Mặt phẳng (Q) chứa d và vuông góc (P) có PVT 1,3,2n,an PQ Suy ra phương trình mặt phẳng (Q) chứa d và vuông góc (P) là: 2(x – 1) – 3(y + 3) + 1(z – 0) = 0 2x – 3y + z – 11 = 0 (Q) 2. Phương trình đường thẳng (d') hình chiếu của d lên mặt phẳng P là:

d': x y z 2 02x 3y z 11 0 có VTCP d 'a 4;1; 5

Phương trình tham số của d': x 1 4ty 3 tz 5t

Trên d' tìm điểm N sao cho MN = 42 Vì N d' N(4t +1; –3 + t; – 5t)

2 22 2MN 4t t 5t 42t 42 2t 1 t 1

t = 1 N1(5, –2, –5) Đường thẳng 1 qua N1 nằm trong (P), vuông góc d' có VTCP

1 P d 'a n ,a

6;9; 3 3 2, 3,1 .

Vậy phương trình 1: x 5 y 2 z 5

2 3 1

t = –1 N2(–3, –4, 5) Đường thẳng 2 qua N2 nằm trong (P), vuông góc d' có VTCP

'dP a,na 2 3 2, 3,1

Vậy phương trình 2: x 3 y 4 z 5

2 3 1

Câu IV:

1. Tính

1

02

21

02 dx

4xxxdx

4x1xxI

21 1 1

2 2 2 2 20 0 0

d x 4x 4 1 dx1 dx 1 4x 4 x 4 2 x 4 x 2

1

12

00

1 x 2 31 ln x 4 ln 1 ln 2 ln 32 x 2 2

2. Từ giả thiết a, b > 0 và ab + a + b = 3. Suy ra: ab 3 (a b) , (a +1)(b + 1) = ab + a + b + 1 = 4 Bđt đã cho tương đương với:

2 2 3 3a(a 1) 3b(b 1) 3a b 12 (a 1)(b 1) a b

Q

P

N M

d

d'

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2007

Page 178: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

201

1ba

3ba43ba

43

23ba 2222

4ba

12ba3ba36ba4 2222

2 2 12a b 3 a b 10a b

0 (A)

Đặt x = a+b > 0 2 2x (a b) 4ab 4(3 x) 2x 4x 12 0 x 6 x 2 x 2 ( vì x > 0)

2 2 2x a b 2ab 2 2 2 2a b x 2(3 x) x 2x 6 Theo đó, (A) trở thành:

2 12x x 4 0x

, với x 2.

3 2x x 4x 12 0 , với x 2. 2x 2 x x 6 0 , với x 2 (hiển nhiên đúng)

Vậy bất đẳng thức đã cho được chứng minh. Câu Va: 1. Với mọi n N ta có n

nn1n

n1n1n1

nn0

nn C1xC1...xCxC1x

Lấy đạo hàm hai vế ta có 1n

n1n2n1

n1n0

n1n C1...xC1nxnC1xn

Cho x = 1 ta có 2 10 1 2 10 1 ... 2 1 1n nn n

n n n nnC n C C C

2. Ta có A(2, 1); B(b, 0); C(0,c) với b, c 0 Ta có ABC vuông tại A 0AC.AB Ta có 1,2bAB ; 1c,2AC Do ABC vuông tại A 01c2b2AC.AB

25b005b2c2b21c

Ta lại có 2 21 1. 2 1 4 12 2ABCS AB AC b c

12b2b4412b21S 222

ABC

vì 25b0 nên SABC = (b – 2)2 + 1 lớn nhất b = 0

Khi đó c = 5. Vậy, B(0, 0) và C(0, 5)

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2007

Page 179: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

202

Câu Vb:

1. Phương trình: 221 22

1 1log 2x 3x 1 log x 12 2

(1)

211xlog

211x3x2log

21 2

22

2

211xlog

211x3x2log

21 2

22

2

2 2

2

x 1 (x 1)log 1 21 (x 1)(2x 1)2 x 1 x2

(x 1) 2(2x 1)

3x 1 1 10 x2x 1 3 2

2. Chọn hệ trục Oxyz sao cho A(0; 0; 0); C(-a; 0; 0); B(0; a; 0), A1(0; 0; a 2 )

Suy ra a 2M 0; 0; 2

, C1(-a; 0; a 2 ) , a a a 2N - ; ; 2 2 2

.

1BC a; a; a 2

; a aMN= - ; ; 02 2

; 1AA = 0; 0; a 2

0AA.MNBC.MN 11 Vậy MN là đường vuông góc chung của hai đường thẳng AA1 và BC1

Ta có 1a 2MA = 0; 0;

2

, a 2MB = 0; a; -

2

, 1

a 2MC = -a; 0; 2

2

1a 2MA , MB = ; 0; 0

2

22aMCMB,MA

3

11

12

2aMCMB,MA61V

3

11BCMA 11 (đvtt).

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2007

Page 180: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

203

ĐỀ SỐ 35 Câu I: 1. Khảo sát hàm số (Bạn đọc tự giải)

2. Ta có 2

1y ' 0, x 1x 1

Từ đồ thị ta thấy để tiếp tuyến tạo với hai tiệm cận một tam giác vuông cân ta phải có hệ số góc của tiếp tuyến là –1 tức là:

2x ,0x11x11x1

212

2

. Tại x1 = 0 y1 = 0 phương trình tiếp tuyến là y = –x . Tại x2 = 2 y2 = 2 phương trình tiếp tuyến là y = –x + 4

Câu II: 1. Giải phương trình: (1 – tgx)(1 + sin2x) = 1 + tgx (1)

Đặt: t = tgx 2t1t2x2sin

. Phương trình (1) trở thành:

2

2 t1 t 1 1 t1 t

2 21 t t 1 (t 1)(1 t )

2t 1 01 t t 1 (1 t )

t 1 t 0 .

Do đó (1) tgx = 0 hoặc tgx = –1

x = k hoặc x = 4

+ k, k

Cách khác (1) (cosx – sinx)(cosx + sinx)2 = cosx + sinx (hiển nhiên cosx = 0 không là nghiệm) cosx + sinx = 0 hay (cosx – sinx)(cosx + sinx) = 1

tgx = -1 hoặc cos2x = 1 x = 4

+ k hoặc x = k, k

2. Tìm m để hệ sau có nghiệm duy nhất

(I)

x1xy

0myx2

1xyx

0myx2 Với điều kiện: 0xy , ta có:

(I) 22

y 2x my 2x m 1 xxy 1 x y

xx 1 x 1

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2007

Page 181: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

204

2

21 x2x m x 2 m x 1 0

x

()

Hiển nhiên x = 0 không là nghiệm của () 2

2(*) mx x 2x 1

x 2x 1 m (**)x

Yêu cầu bài toán tìm m để phương trình (**) có đúng 1 nghiệm thỏa x 1.

Đặt: 2x 2x 1 f(x) , x 0.

x

Ta có 2

2

x 1 f '(x) 0, x 0.x

Bảng biến thiên: x - 0 +

f '(x) + +

f(x) + 2 - -

Thấy ngay yêu cầu bài toán được thỏa khi chỉ khi m > 2. Câu III: 1. d1 đi qua A(1; 3; 0) có một véc tơ chỉ phương a = 2; -3; 2

mf(P) có một véc tơ pháp tuyến Pn = (1; - 2; 2)

mf(Q) chứa d1 và (P) nên mf(Q) đi qua A và mf(Q) có một véc tơ pháp tuyến

Q Pn = a,n = - 2; - 2; - 1

. Suy ra phương trình (Q):

–2(x – 1) – 2(y – 3) – 1(z – 0) = 0 2x + 2y + z – 8 = 0

2. Phương trình tham số d1: x 1 2ty 3 3tz 2t

và Phương trình tham số d2: x 5 6t 'y 4t 'z 5 5t '

1M d M 1+2t; 3 - 3t; 2t

2N d N 5 6t ', 4t ', 5 5t '

MN = 6t' - 2t + 4; 4t' + 3t - 3; - 5t' - 2t - 5

Mặt phẳng (P) có một véc tơ pháp tuyến Pn = (1; - 2; 2)

MN // (P) . 0PMN n

1 6t ' 2t 4 2 4t ' 3t 3 2 5t ' 2t 5 0 t t ' Mặt khác d(MN, (P)) = d(M, P) vì MN // (P), suy ra:

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2007

Page 182: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

205

2441

1t22t332t21

6 12t 6 t 16 12t 6 6 12t 6 t 0

+ t = 1 t' = –1 M1(3; 0; 2) N1(–1; –4; 0) + t = 0 t' = 0 M2(1; 3; 0) N2(5; 0; –5) Câu IV:

1. Tính

π2

2

0

I = x cosxdx

Đặt: u = x2 du = 2xdx ; dv = cosxdx v = sinx

Vậy I =

2 2

2 2 20

0 0x cos xdx x sin x 2 xsin xdx

Ta có

22 2

0x sin x

4

I1 = 2

0xsin xdx

; Đặt u = x du = dx

dv = sinxdx v = cosx

I1 =

2 2

20

0 0xsin xdx x cosx cosxdx = 2

0x cosx sin x 1

Vậy : I = 2 2

2

0x cosxdx 2

4

Chú ý: Nếu bạn thành thạo tích phân từng phần thì viết theo công thức: π2

2

0

I = x cosxdx =

π2

2

0

x d(sinx) = 22 2

2 20

0 0

( s inx) 2 sin 2 ( osx)4

x x xdx xd c

2. Giải phương trình

xx

22 1log 1 x 2 (1)

x

Điều kiện x x 02 1 0 2 1 2 x 0x 0 x 0

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2007

Page 183: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

206

(1)

xx

22 1log 1 2 x

x và x > 0 x x

2 2log (2 1) log x 1 2 x và x > 0

(2x 1) + log2(2x 1) = x + log2x (2)

Xét hàm số f(t) = t + log2t , t (0; ) , 1'( ) 1 0, 0ln 2

f t tt

.

Suy ra f(t) đồng biến trên (0; + ) . Với x > 0, ta có 2x - 1 > 0, ta có: (2) f(2x 1) = f(x) 2x 1 = x 2x x - 1 = 0 (3) Xét hàm g(x) = 2x x 1, x (0; ) ta có:

g'(x) = 2xln2 1, g'(x) = 0 x2

12 log e 1ln 2

2 2x log (log e) 0

Mặt khác 2''( ) 2 ln 2 0xg x , x (0; ) nên g'(x) đồng biến trên /

2 2g (x) 0, x log (log e) và /2 2g (x) 0, x log (log e)

g(x) nghịch biến trên 2 2; log (log e) và đồng biến trên 2 2log (log e);

g(x) 0 có không quá một nghiệm trên 2 2; log (log e) , và có không quá một nghiệm trên 2 2log (log e); . Thấy ngay x = 0 và x = 1 thoả (3). Nhưng x > 0 nên (1) x = 1.

Câu Va: 1. Gọi n = 1 2 3 4a a a a là số cần tìm. Vì n chẵn a4 chẵn. * TH1 : a4 = 0 Ta có 1 cách chọn a4

6 cách chọn a1

5 cách chọn a2 4 cách chọn a3 Vậy ta có 1.6.5.4 = 120 số n * TH2 : a4 0. Ta có 3 cách chọn a4; 5 cách chọn a1; 5 cách chọn a2; 4 cách chọn a4. Vậy ta có 3.5.5.4 = 300 số n . Tổng cộng hai trường hợp ta có : 120 + 300 = 420 số n 2. Tọa độ giao điểm P của d1, d2 là nghiệm của hệ phương trình

(m 1)x (m 2)y m 2(2 m)x (m 1)y 3m 5

Ta có 2

2m 1 m 2 3 1D 2m 6m 5 2 m 0 m2 m m 1 2 2

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2007

Page 184: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

207

Vì 23 1D 2 m 0 m

2 2

nên d1, d2 luôn luôn cắt nhau.

Ta dễ thấy A(0,1) d1 ; B(2,1) d2 và d1 d2 APB vuông tại P P nằm trên đường tròn đường kính AB. Ta có (PA + PB)2 2(PA2 + PB2) = 2AB2 = 2 2(2 2) 16

PA + PB 4. Dấu "=" xảy ra PA = PB P là trung điểm của cung AB Vậy max (PA + PB) = 4 khi P là trung điểm của cung AB P nằm trên đường thẳng y = x – 1 qua trung điểm I (1; 0) của AB và IP = 2 P (2; 1 ) hay P (0; - 1) Vậy, m = 1 hoặc m = 2.

Câu Vb: 1. Giải phương trình : 23x+1 7.22x + 7.2x 2 = 0 2.23x 7.22x + 7.2x 2 = 0 Đặt t = 2x > 0 thì (1) thành

2t3 7t2 + 7t 2 =0 (t 1)(2t2 5t + 2) = 0 t = 1 hay t = 2 hay t = 12

Do đó pt đã cho tương đương:

x x x 12 1 hay 2 2 hay 22

x = 0 hay x = 1 hay x = 1

2. Chọn hệ trục Oxyz sao cho A(0 ; 0; 0); A1(0; 0; a); C (- a ; 0 ; 0 )

B

a a 3, ,02 2

; B1

a a 3; ; a2 2

;

aM 0; 0; 2

1

a a 3 a a a 3BM ; ; ; CB ; ;a2 2 2 2 2

2 2 2

1a 3a aBM.CB 04 4 2

BM B1C

Ta có 1B.B (0,0,a)

1 1

11

[BM.B C].BB a 30d(BM, B C)10[BM.B C]

Cách 2. Gọi N là trung điểm AB, I là giao điểm của MB và NB1, J là giao điểm của BC1 và CB1. Để ý rằng hai đáy là hai tam giác đều bằng nhau còn các mặt bên là các hình vuông bằng nhau. Ta có 1MB NB CN AB CN MB Suy ra 1 1( )MB mf B CN MB B C .

C1

C

B

A

M B1

A1

J

I N

ĐÁP ÁN ĐỀ DỰ BỊ 2 TOÁN D 2007

Page 185: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

235

ĐỀ SỐ 40 Câu I.

1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số 3 11

xyx

(1)

10 Tập xác định: \{-1} 20 Sự biến thiên : * Giới hạn: lim 3x

y

; lim 3x

y

Đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số.

1lim

xy

;

1lim

xy

Đường thẳng x = - 1 là tiệm cận đứng của đồ thị hàm

số. * Chiều biến thiên:

2

2' 0, 1( 1)

y xx

Bảng biến thiên x - -1 + y’ + +

y + -

Hầm số đồng biến trên mỗi khoảng ( ; 1) và (-1; ). 30 Đồ thị Giao Oy: (0; 1)

Giao Ox: ( 13

; 0) f(x)=(3x+1)/(x+1)

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-8

-6

-4

-2

2

4

6

8

x

y

2. Phương trình tiếp tuyến của đồ thị hàm số (1) tại M(-2; 5) là: y = 2(x + 2) + 5 hay y = 2x + 9.

Đường thẳng trên giao Ox tại A( 92

; 0).

Đường thẳng trên giao Oy tại B(0; 9). Diện tích tam giác cần tìm là OABS :

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2008

Page 186: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

236

OABS = 12

OA.OB = 12

. 92

.9 = 814

.

Câu II. 1. 4 44(sin os ) os4x + sin2x = 0x c x c 2 2 2 2 2 24(sin os ) 8sin cos 1 2sin 2 + sin2x = 0x c x x x x 24sin 2 + sin2x +5 = 0x

sin 2 1

5sin 24

[ x

x

(loại)

2 22

x k

4

x k

2. 2 2( 1)( 3) 2 3 2 ( 1)x x x x x (1) Điều kiện: -1< x <3. (1) 2 2 2( 2 3) 2 3 2 1x x x x x x Đặt 2 2 3x x =t t0. (1) trở thành: 3 2 2t t

3 2 2 0t t 2( 1)( 2 2) 0t t t 1t

1t : 2 2 3 1x x 2 2 2x x <0 1 3 1 3x . Câu III. 1. Gọi M( ; ; )o o ox y z là giao điểm của d với ( ) khi đó 0 0 0( , , )x y z phải thỏa:

0 0 0

0 0 0

2 2 1 0 (1 )1 1 ( 2 )

1 2 2

x y zx y z

Đặt0 0 01 11 2 2

x y zt

0

0

0

12 1

2

x ty tz t

Thay vào (1) ta được: 2(t + 1) – (2t + 1) + 2.(-2t) + 1 = 0

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2008

Page 187: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

237

- 4t +2 = 0 t = 12M(

32 ; 2; - 1).

* Ta có : (1; 2; 2)a

là vectơ chỉ phương của d.

(2; 1;2)n

là vectơ pháp tuyến của ( ) . là góc giữa d và ( )

sin = ..

a na n

= 4

9.

2. Gọi I( , ,I I Ix y z ) là tâm mặt cầu. Phương trình mặt cầu (C)

2 2 2

2 2 2

2 2 2 00

I I I

I I I

x y z x x y y z z dx y z d

Do (C) tiếp xúc với ( ) và Oxy nên: d(I, ( ) ) = d(I,(Oxy)) = R.

2 2 2

2 2 112 1 2

I I I Ix y z zR

2 2 1I I Ix y z =3 Iz (*)

Mặt khác: I d nên:

1

2 12

I

I

I

x ty tz t

Thay vào (*) 4 2 3 2t t 2 2(4 2) 9(2 )t t 220 16 4 0t t

1t = , t = 15

TH1: t = -1: I(0; - 1; 2), R = 2. phương trình mặt cầu: 2 2 2( 1) ( 2) 4x y z

TH2: t = 15

I( 6 7 2; ;5 5 5

), R = 25

.

phương trình mặt cầu: 2 26 7 2 4

5 5 5 25x y z

Câu IV.

1. 1 1 1

2 2

2 20 0 04 4

x xx xI xe xe dx dxx x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2008

Page 188: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

238

I1 1 1

2 2 2 1 21 0

0 0 0

1 1 1( )2 2 2

x x x xxe dx xd e xe e dx

= 2 2 1 2 2 20

1 1 1 1 1 1 12 4 2 4 4 4

xe e e e e

I1 1 1 2

2 2 2 20 0 0

1 2 1 (4 )2 24 4 4

xdx xdx d xx x x

= 2 1

04 2 3x

21 2

1 1 3 24

I I I e

2. Chứng minh: cos cos 1 os(xy)x y c .

Ta có cosx +cosy = 2cos x-yos2 2

x y c ; cos x+y1; os 02 2

x y c (vì 0 ,

3x y

)

x+yosx+cosy 2cos2

c (1)

Ta có x+y ; 0; os os2 3 2

x yxy xy c c xy (2)

Từ (1) và (2) suy ra, osx+cosy 2cosc xy Suy ra, chỉ cần chứng minh 2cos 1 os(xy)xy c (3)

Đặt t = 0;3

xy t (1) 2 22 ost 1+cost ost 2 ost+1 0c c c

f(t) = cost 2 2 ost+1c ; f’(t) = 2 22 sin 2sin 2( sin sin );t t t t t t 0;3

t

ta thấy t = 1 là nghiệm của f’(t) = 0

t > 1 : 2 2sin sint t t t (vì t 2 0; , 0;2 3

t

2sin sin '( ) 0t t t f t

t < 1 :t 2 2 2 2sin sin sin sin sint t t t t t t f'(t)>0 t=1 là nghiệm duy nhất t 0 1

3

f’(t) + - f(t)

0 2

os9

c

( ) 0f t (đpcm) dấu “=” xãy ra 0x y PHẦN RIÊNG: Câu V.a. 1. Ta có:

0 1(1 ) ...n n nn n nx C C x C x

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2008

Page 189: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

239

Lấy đạo hàm 2 vế. ta được: 1 1 1(1 ) ...n n n

n nn x C n C x Chọn x=2, ta được

1 1 2 1.3 2 .2 ... .2n n nn n nn C C n C

1 1 2 22 .3 2 2 . . . .2n n nn n nn C C n C

1 1 2 22 .3 2 2 ... .2n n n n n

n n nn C C n C (đpcm). Cách khác. Xét khai triển:

0 1 1 1( 2 1) ( 2 ) ( 2 ) ... ( 2 )n n n n nn n n nx C x C x C x C .

Đạo hàm hai vế: 1 0 1 1 1 2 12 ( 2 1) 2 ( 1) 2 ... 2n n n n n n n

n n n nn x n C x n C x C C Cho x = 1, ta có đpcm. 2. Đường tròn (C) tâm I(4; 0), bán kính R = 2. Gọi M(0; a). Vì A, B là tiếp điểm AB IM IM

là vecto pháp tuyến của đường thẳng AB

IM

=(- 4; a) và AB đi qua E(4; 1) phương trình đường thẳng AB: - 4(x - 4) + a(y - 1) = 0 hay - 4x + ay + 16 - a = 0

Vì OAM vuông tại A, AB IM d(O,AB)=2OA

OM=

2

416 a

Mặt khác d(O, AB)=2

4.4 16

16

a

a

=

216

a

a

a = 4 a = 4 . Thử lại, a = 4 thỏa mãn, a = - 4 không thỏa mãn, Vậy a = 4. Câu V.b.

1. 2 22 4 2 2 12 16.2 2 0x x x x

2 22 1 ( 2 1) 24 16.2 2 0x x x x

2

22 1

2 1

44 2 02

x xx x

Đặt 2 2 12x x = t. t > 0. Ta có bất phương trình:

2 4 2 0tt

3 2 4 0t t 2t .

2 2 12x x 2 2 2 2 0x x 1 3 1 3x

2. Gọi K MN CD . Khi đó, Q PK AD . Gọi F là trung điểm BC và G là điểm trên AC sao cho DG//PQ. Thấy ngay, FD//MN.

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2008

Page 190: ĐÁP ÁN DỰ BỊ TOÁN

Trần Xuân Bang - Trường THPT Chuyên Quảng Bình

Đề Dự bị thi Đại Học 2002 - 2008 Đề ra và Hướng dẫn giải. 6/2010

240

Ta có: 2 2 2 5 31 1 1 1 13 3 5

AG PG PG KD MF AQ APAP AP PC KC MC AD AG

.

Gọi V là thể tích tứ diện ABCD, V1 là thể tích khối đa diện ABMNQP, V2 là thể tích khối đa diện CDMNPQ. Khi đó V2 = V - V1. Ta có V1 = VABMN + VAMPN + VAPQN .

Do 1 1 1 3 1, , , .4 2 8 8 2

BMN MNC DNC

BCD BCD BCD

S S SBM BNBC BD S S S

Suy ra:

1 1 1 1 3 1, , . .8 3 8 3 5 10ABMN AMNP AMNC APQN ADNCV V V V V V V V

Như thế, 17 .20

V V Suy ra, 1

2

713

VV

.

Cách 2. Gọi K MN CD . Áp dụng định lý Menelauyt cho tam giác BCD :

. . 1MB KC NDMC KD NB

1 1. . 13 1

KCKD

3KCKD

32

KCDC

PK AD Q . Áp dụng định lý Menelauyt cho tam giác ACD :

. . 1KC QD PAKD QA PC

13. . 12

QDQA

23

QDQA

35

AQAD

.

Ta có: PQDCMN KCPM KQDNV V V .

KCPMV = 1 ( , ( )).3 MPCd K ABC S

=1 3 2 3 3 1 3. ( , ( )). . . ( , ( )).3 2 3 4 4 3 4ABC ABC ABCDd D ABC S d D ABC S V

1 1 1 2 1 1. ( , ( )). . . ( , ( )). . .3 3 2 5 2 10KQDN DQN ABD ABCDV d K ABD S d C ABD S V

1320PQDCMN ABCDV V

720ABMNQP ABCDV V

7

13ABMNQP

DCMNQP

VV

N

P Q

K

D

C

M

B

A

N

P Q

K

D

C

M

B

A

F

G

ĐÁP ÁN ĐỀ DỰ BỊ 1 TOÁN D 2008