82
DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT MATTEO VIEL INAF & INFN – Trieste SISSA IDEALS WORKSHOP --- 11th November 2011

DARK MATTER AND DARK ENERGY AT HIGH …...DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT MATTEO VIEL INAF & INFN – Trieste SISSA IDEALS WORKSHOP --- 11th November 2011 RATIONALE HIGHLIGHT

  • Upload
    others

  • View
    7

  • Download
    1

Embed Size (px)

Citation preview

DARK MATTER

AND DARK ENERGY

AT HIGH REDSHIFT

MATTEO VIEL

INAF & INFN – Trieste

SISSA IDEALS WORKSHOP --- 11th November 2011

RATIONALE

HIGHLIGHT THE IMPORTANCE OF HIGH REDSHIFT (z>1) OBSERVABLESIN ORDER TO CONSTRAIN:

1) NEUTRINOS

2) COLDNESS OF COLD DARK MATTER

3) EARLY DARK ENERGY

4) BAOs

STATUS

THE MEASUREMENT OF MATTER POWER AT HIGH-z (COMBINED with the CMB) IS CURRENTLY PROVIDING THE TIGHTEST CONSTRAINTS on 1), 2) and 3) AND WILL PROVIDE THE TIGHTEST CONSTRAINTS on 4).

z=1100

WDM

NEUTRINOS

High-z BAO

NEUTRINOS

N-body + Hydro neutrino simulations – I: slices

Viel, Haehnelt & Springel 2010, JCAP, 06 ,15

TreeSPH code Gadget-IIIfollows DM, neutrinos, gas and starparticles in a cosmological volume

EVOLUTION of LSS –I : dynamics in the linear regime

Effects in terms of matter clustering,Hubble constant,Energy density

(see Lesgourgues & Pastor 2006)

Different evolution in terms of dynamicsand geometry as compared to masslessneutrino universes

CMB GALAXIES IGM (WL)

N-body simulations – II: effects in terms of non-linear power

Brandbyge et al 08

--

Hydro simulations – III: redshift/scale dependence of non-linear power

Viel, Haehnelt & Springel 2010, JCAP, 06 ,15

Full hydro simulations: gas physics does impact at the <10 % level at scales k < 10 h/Mpc

Hydro simulations – IV: redshift space distortions

Marulli, Carbone, MV, Moscardini e Cimatti 2011

Hydro simulations – V: the distribution of high-z voids

Navarro-Villaescusa, Vogelsberger, MV, Loeb 2011

N-body simulations – VI: very non-linear regime

Bird, MV, Haehnelt 2011

LINEAR

SIMULATIONS

HALOFIT

Neutrino constraints from SDSS flux power

Seljak, Slosar, McDonald, 2006, JCAP, 0610, 014

normal

inverted1

2

31,2

32σ limit DISFAVOURED

BY LYMAN-α

Lesgourgues, Bird, MV, Haehnelt 2012

Non-linear neutrinos VII: EUCLID forecasts

DARK MATTER’S COLDNESS

Warm Dark Matter and structure formation - I

ΛCDM

k FS ~ 5 Tv/Tx (m x/1keV) Mpc-1

See Bode, Ostriker, Turok 2001 Abazajian, Fuller, Patel 2001 Avila-Reese et al. 2001 Boyarsky et al. 2009 Colin et al. 2008 Wang & White 2007 Gao & Theuns 2007 Abazajian et al. 2007 Lovell et al. 2011

z=0

z=2

z=5

1 keV

MV, Markovic, Baldi & Weller 2011

Warm Dark Matter and non-linear power - II

Range of wavenumbers important for weak lensing tomography , IGMand small scale clustering of galaxies!

MV, Markovic, Baldi & Weller 2011

MV et al., Phys.Rev.Lett. 100 (2008) 041304

Tightest constraints on mass ofWDM particles to date:

m WDM > 4 keV (early decoupled thermal relics)

m sterile > 28 keV (standard Dodelson-Widrow mechanism)

SDSS + HIRES data

(SDSS still very constraining!)

SDSS range Completely new small scale regime

Lyman-α and Warm Dark Matter - III

WDM and non-linear power - IV: weak lensing with EUCLID

MV, Markovic, Baldi & Weller 2011

Lyman-α and Cold+Warm Dark Matter

SDSS+WMAP5 SDSS + VHS

Boyarsky et al. 09

HIGH-Z DARK ENERGY

Early Dark Energy from the CMB

Calabrese et al. 2011

Reichardt et al. 2011

Xia & Viel 2009

Early Dark Energy in the “Dark Ages”

Coupled dark energy and the IGM

Baldi & MV 10

BAOs

Slosar et al. 2011 (BOSS collaboration)

SDSS from low to high redshift

about 20 QSOs per square degree with BOSS

Future perspectives: BAOs

McDonald & Eisenstein 2007

BOSS-like simulatedflux power

McDonald & Eisenstein 2007

Future perspectives-II: BAOs

BAOs in the Lyman-α forest: probing the transverse direction

Transverse direction: MV et al 2002; White 2003; McDonald & Eisenstein 2007; Slosar et al. 2009, 2010

3D Correlations in BOSS 1yr data!

Slosar et al. 2011

Estimates of b and β performed

SUMMARY

Bridging the gap between z=1100 and z=0 via LSS probes:

Lyman-α

Weak Lensing

Clustering of galaxies

is important and is providing and will provide tight constraints on the small scale properties of the matter distribution and the cosmological model

Mν < 0.17 eV (0.3 eV) MWDM > 4 keV (2 keV) Ω EDE < 0.02 in the structure formation eraClose to BAO detection at z=3 via Lyman-α

Outline

- What data we got

- How we used them

- What we achieved

The data sets

Theoretical framework

Results

3035 LOW RESOLUTION LOW S/N vs 30 HIGH RESOLUTION HIGH S/NSDSS

LUQAS

SDSS vs LUQAS

McDonald et al. 2005 Kim, MV et al. 2004

The data sets

SDSS power analysed by forward modelling motivated by the huge amount of data with small statistical errors

+ +

CMB: Spergel et al. (05) Galaxy P(k): Sanchez & Cole (07) Flux Power: McDonald (05)

Cosmological parameters + e.g. bias + Parameters describing IGM physics

132 data points

The interpretation: full grid of sims - I

z=4.2

z=2.2

- Cosmology

- Cosmology

- Mean flux

- T=T0 (1+δ )γ -1

- Reionization

- Metals

- Noise- Resolution

- Damped Systems

- Physics- UV background

- Small scales

Tens of thousands of modelsMonte Carlo Markov Chains

McDonald et al. 05The interpretation: full grid of sims - II

Both methods have drawbacks and advantages:

1- McDonald et al. 05 better sample the parameter space2- Viel & Haehnelt 06 rely on hydro simulations, but probably error bars are underestimated

P F (k, z; p) = P F (k, z; p0) + Σ i=1,N P F (k, z; pi) (pi - pi0) ∂ pi p = p0

Best fit

Flux power

p: astrophysical and cosmological parameters

but even resolution and/or box size effects if you want to save CPU time

The interpretation: flux derivatives - III

Independent analysis of SDSS power

The flux power spectrum is a smooth function of k and z

RESULTS

Summary (highlights) of results

1. Competitive constraints in terms of cosmological parameters (in particular shape and

curvature of the power spectrum)

Lesgourgues, MV, Haehnelt, Massey (2007) JCAP 11 008

2. Tightest constraints to date on neutrino masses and running of the spectral index Seljak, Slosar, McDonald JCAP (2006) 10 014

3. Tightest constraints to date on the coldness of cold dark matter

MV et al., Phys.Rev.Lett. 100 (2008) 041304

Results Lyman-α only with full grid: amplitude and slope

McDonald et al. 05

Croft et al. 98,02 40% uncertaintyCroft et al. 02 28% uncertaintyViel et al. 04 29% uncertaintyMcDonald et al. 05 14% uncertainty

χ2 likelihood code distributed with COSMOMC

AM

PLI

TU

DE

SLOPE

Redshift z=3 and k=0.009 s/km corresponding to 7 comoving Mpc/h

SDSS data only

σ8 = 0.91 ± 0.07n = 0.97 ± 0.04

Fitting SDSS data with GADGET-2 this is SDSS Ly-α only !!

FLUX DERIVATIVES

Results Lyman-α only with flux derivatives: correlations

Lesgourgues, MV, Haehnelt, Massey, 2007, JCAP, 8, 11

VHS-LUQAS: high res Ly-a from (Viel, Haehnelt, Springel 2004)SDSS-d: re-analysis of low res data SDSS (Viel & Haehnelt 2006)WL: COSMOS-3D survey Weak Lensing (Massey et al. 2007) 1.64 sq degree public available weak lensing COSMOMC module

Lyman-α forest + Weak Lensing + WMAP 3yrs

VHS+WMAP1

AM

PL

ITU

DE

SPECTRAL INDEXMATTER DENSITY

Lesgourgues & Pastor Phys.Rept. 2006, 429, 307

Lyman-α forest

Σ m ν = 0.138 eV

Σ m ν = 1.38 eV

Active neutrinos - I

Active neutrinos - IISeljak, Slosar, McDonald, 2006, JCAP, 0610, 014

Σmν (eV) < 0.17 (95 %C.L.), < 0.19 eV (Fogli et al. 08) r < 0.22 (95 % C.L.)

running = -0.015 ± 0.012 Neff = 5.2 (3.2 without Ly α) CMB + SN + SDSS gal+ SDSS Ly-α

normal

inverted

1

2

31,2

3

Goobar et al. 06 get upper limits 2-3 times larger…… for forecasting see Gratton, Lewis, Efstathiou 2007

Tight constraints because dataare marginally compatible

2σ limit DISFAVOUREDBY LYMAN-α

Lyman-α and Warm Dark Matter - II

ΛCDM

MV, Lesgourgues, Haehnelt, Matarrese, Riotto, PRD, 2005, 71, 063534

[P (k) WDM/P (k) CDM ]1/2

T x 10.75 =T ν g (T D)

1/3

1/3

Light gravitino contributing to a fraction of dark matter

10 eV

100 eV

m gravitino < 16 eV (2 σ C.L.)(or any particle with g(TD)~90-100)From high res. Lyman-a data

If the gravitino is the LSP then the susy breaking scale is limited from above

Λ susy < 260 TeV

WDM GRAVITINO

PRIMORDIAL Non Gaussianities in the IGM

Mathis et al. 04Kang et al. 07Grossi et al. 07,09Hikage et al. 08Desjacques et al. 08

N-body simulation in NG scenario: the mass distribution

Viel, Branchini, Dolag, Grossi, Matarrese, Moscardini 2009, MNRAS, 393, 774

First hydrodynamical simulation in NG scenario

f nl = - 200 f nl = + 200

SYSTEMATICS

Fitting the flux probability distribution function

Bolton, MV, Kim, Haehnelt, Carswell (08), MV et al. 2009, Puchwein et al. 2011

T=T0(1+δ ) γ -1

Flux probabilitydistributionfunction

Invertedequation of state γ <1 means voids arehotter than mean density regions

Systematics: Thermal state

T = T0 ( 1 + δ ) γ -1

Statistical SDSS errors on flux power

Thermal histories Flux power fractional differences

UV fluctuations from Lyman Break Galaxies Metal contribution

Systematics: UV fluctuations and Metals

McDonald, Seljak, Cen, Ostriker 2004 Kim, MV, Haehnelt, Carswell, Cristiani (2004)Croft 2006Lidz et al. 2007

Ratio of Flux power Ratio of Flux power

GALAXY-IGM

BOSS (or SUPERBOSS) – SDSS III150,000 (1,000,000) QSO spectra tailored for BAO and P(k) studies

X-Shooter (taking data now) spectrographMedium resolution between SDSS and high res at least 100 QSO spectraneeded to improve constraints

Independent analysis of thermal state using different statistics andconstraints both on astrophysics and cosmological at both HIGH and low redshift

E-ELT era: measuring the cosmic expansion

Future perspectives

BAOs

Slosar et al. 2011 (BOSS collaboration)

Importance of transverse direction: MV et al 2002; White 2003; McDonald & Eisenstein 2007; Slosar et al. 2009

about 20 QSOs per square degree with BOSS

Future perspectives : BAO

McDonald & Eisenstein 2007

BOSS-like simulatedflux power

BAOs in the Lyman-a forest: probing the transverse direction

Importance of transverse direction: MV et al 2002; White 2003; McDonald & Eisenstein 2007; Slosar et al. 2010

about 20 QSOs per square degree with BOSS

3D Correlations in BOSS 1yr data!

Slosar et al. 2011

Estimates of b and β performed

COSMICEXPANSION

Measuring the cosmic expansion?

This is a fundamental quantity not related at all to the FRW equations….

COsmicDynamicEXperiment CODEX-I

REDSHIFT

Dz/Dt(10-10 yr-1)

Ultra-stable spectrograph

Liske et al. 2008, MNRAS, 386, 1192

COsmicDynamicEXperiment CODEX - II

‘ISOLATED’ CLOUDS

NETWORK OF FILAMENTS

PROBES OF THE JEANS SCALE

COSMOLOGICAL PROBES

BRIEF HISTORICAL OVERVIEW of the Lyman-α forest

Dark matter evolution: linear theory of density perturbation + Jeans length LJ ~ sqrt(T/ρ) + mildly non linear evolution

Hydrodynamical processes: mainly gas cooling cooling by adiabatic expansion of the universe heating of gaseous structures (reionization)

- photoionization by a uniform Ultraviolet Background - Hydrostatic equilibrium of gas clouds dynamical time = 1/sqrt(G ρ) ~ sound crossing time= size /gas sound speed

In practice, since the process is mildly non linear you need numerical simulationsTo get convergence of the simulated flux at the percent level (observed)

Size of the cloud: > 100 kpcTemperature: ~ 104 KMass in the cloud: ~ 109 M sunNeutral hydrogen fraction: 10 -5

Modelling the IGM

Bi & Davidsen 1997, ApJ, 479, 523

Modelling the IGM –II

M (> ρ)

V (> ρ)

N-body simulations – II: neutrino velocities matter

Brandbyge et al 08

Draw velocity from Fermi-Diracdistribution

N-body simulations – VII: halo density profile

Brandbyge, HannestadHaugbolle, Wong 2010

CDM q/T total q/T=1 q/T=2

q/T=3 q/T=4 q/T=5 q/T=6

N-body simulations – IV: mesh method

Computing the neutrino gravitational potential on the PM grid and summing upits contribution to the total matter gravitational potential – this is much faster!

COMPARISON GRID VS PARTICLES

M ν =0.6 eV M ν = 1.2 eV

Brandbyge et al 08b

N-body simulations – V: a hybrid approach

After neutrino decoupling CBE

Brandbyge & Hannestad 09

Expansion of ψ in Legendre series

N-body simulations – VI: comparison

PARTICLES: accurate non-linear sampling but prone to shot-noise errors GRID: fast and accurate but no phase mixing (i.e. non-linear regime suppression maybe it is less than it should be)

HYBRID: ideal for non-linear objects but memory demanding and prone to convergence issues

NEUTRINOS in the IGM – IV: impact on neutrino power spectrum

Increasing neutrino mass

INTRO

DATA: high resolution spectrum

SIMULATING NEUTRINOS at high-redshift – II: methods

Matter power @ z = 3

1) Significant non linearevolution at the smallest scales

2) Percent level discrepanciesbetween particle and grid methods

3) Poissonian contribution affectssmall scales

Methods differ

Hydro simulations – VI: matter and halo clustering

Marulli, Carbone, MV, Moscardini e Cimatti 2011

80 % of the baryons at z=3 are in the Lyman-α forest

baryons as tracer of the dark matter density field δ IGM ~ δ DM at scales larger than the Jeans length ~ 1 com Mpc

flux = exp(-τ) ~ exp(-(δ IGM )1.6 T -0.7 )

THEORY: GAS in a LCDM universe

Bi & Davidsen (1997), Rauch (1998)

COLD (a bit) WARM sterile 10 keV

Little room for standard warm dark matter scenarios…… … the cosmic web is likely to be quite “cold”

Hydro simulations – IV: halo mass functions

Marulli, Carbone, MV, Moscardini e Cimatti 2011