115
1 Joining in Car Body Engineering 2011 Tutorial 1: Adhesive bonding technologies Lucas F M da Silva Lucas da Silva JCBE2011 – Adhesive bonding technologies 1 Faculty of engineering of the University of Porto Department of Mechanical Engineering Contents • Introduction Theory of adhesion Adhesive selection Adhesive selection Joint design Surface treatment Joint fabrication methods Control (destructive and non-destructive ) Lucas da Silva JCBE2011 – Adhesive bonding technologies 2 tests) Applications in the automotive industry

DaSilva Prezentare Adhes Bond

Embed Size (px)

DESCRIPTION

Adezivi structurali

Citation preview

  • 1

    Joining in Car Body Engineering 2011

    Tutorial 1: Adhesive bonding technologies

    Lucas F M da Silva

    Lucas da Silva JCBE2011 Adhesive bonding technologies 1

    Faculty of engineering of the University of PortoDepartment of Mechanical Engineering

    Contents

    Introduction Theory of adhesion Adhesive selection Adhesive selection Joint design Surface treatment Joint fabrication methods Control (destructive and non-destructive

    )

    Lucas da Silva JCBE2011 Adhesive bonding technologies 2

    tests) Applications in the automotive industry

  • 2

    Introduction Applications

    de Bruyne (1957)

    De Havilland Comet

    Aeronautical industry

    De Havilland Comet

    Lucas da Silva JCBE2011 Adhesive bonding technologies 3

    Introduction Applications

    Aeronautical industry

    Lucas da Silva JCBE2011 Adhesive bonding technologies 4

  • 3

    Introduction ApplicationsAerospace industry Dsagulier (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 5

    Introduction ApplicationsAutomotive industry

    Lucas da Silva JCBE2011 Adhesive bonding technologies 6

    Lotus Elise

  • 4

    Introduction ApplicationsAutomotive industry

    Lucas da Silva JCBE2011 Adhesive bonding technologies 7

    Introduction ApplicationsRail industry

    Hexcel Composites

    Lucas da Silva JCBE2011 Adhesive bonding technologies 8

  • 5

    Introduction ApplicationsMarine industry

    Lucas da Silva JCBE2011 Adhesive bonding technologies 9

    Introduction ApplicationsCivil industry

    Lucas da Silva JCBE2011 Adhesive bonding technologies 10

  • 6

    Introduction ApplicationsElectrical industry

    Lucas da Silva JCBE2011 Adhesive bonding technologies 11

    Shoe industry

    Introduction Technologies involved

    Lucas da Silva JCBE2011 Adhesive bonding technologies 12

  • 7

    Introduction Technologies involved

    Petrie (2000)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 13

    Introduction Advantages Uniform stress distribution

    Lucas da Silva JCBE2011 Adhesive bonding technologies 14

  • 8

    Introduction Advantages Uniform stress distribution better fatigue strength Vibration damping better fatigue strength

    Powis (1968)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 15

    Introduction Advantages

    Ability to joint dissimilar materials

    Kinloch (1997)

    Ability to join thin-sheet material efficiently

    Frequently represent the most convenient and cost effective joining technique

    Lucas da Silva JCBE2011 Adhesive bonding technologies 16

    joining technique

  • 9

    Introduction Advantages An increase in design flexibility (e.g. honeycomb structures) Smooth shapes (no bolt or rivet or weld) Continuous contact between surfaces In general, reduce costs

    Lucas da Silva JCBE2011 Adhesive bonding technologies 17

    Introduction Disadvantages

    Peeling loads

    Peel (one substrate is flexible)

    Cl (th t b t t

    Lucas da Silva JCBE2011 Adhesive bonding technologies 18

    Cleavage (the two substrates are rigid)

  • 10

    Introduction Disadvantages

    Avoid localised stress

    Best solution load in shear

    Avoid localised stress

    Lucas da Silva JCBE2011 Adhesive bonding technologies 19

    Introduction Disadvantages

    Limited resistance to extreme conditions such as heat and humidity.

    Need to fixing tools to keep the substrates in position until cure is complete important economic disadvantage.

    To obtain good results, a surface treatment is often required. Adhesives are frequently cured at high temperatures. Quality control more difficult but recent developments in NDI

    techniques.

    Lucas da Silva JCBE2011 Adhesive bonding technologies 20

    No universal failure criterion.

  • 11

    Theory of adhesion Forces involved

    Primary bonds e- are transferred or shared strong: 100-1000 kJ/molstrong: 100 1000 kJ/mol

    Ionic

    Covalent

    Lucas da Silva JCBE2011 Adhesive bonding technologies 21

    Metallic

    Theory of adhesion Forces involvedSecondary bonds no e- transferred or shared interaction of atomic/molecular dipoles weak < 100 kJ/mol weak < 100 kJ/mol

    van der Waals London forces or dispersion

    (induced dipoles) Debye forces (permanent

    dipole and induced

    Lucas da Silva JCBE2011 Adhesive bonding technologies 22

    Hydrogen

    dipole and induced dipole)

    Keesom forces (permanent dipoles)

  • 12

    Theory of adhesion Forces involvedAll the bonds are forces acting in very short distances (some

    angstroms (1 A = 10-10 m = 0.0001 m)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 23

    Theory of adhesion Surface roughness

    1 ( )L

    R h d

    Lucas da Silva JCBE2011 Adhesive bonding technologies 24

    0

    ( )Ra h x dxL

    =

    0.5 m

  • 13

    Theory of adhesion Surface roughness

    Roughness = 1000 x distance of action of the bonding forces

    But if liquid...

    Lucas da Silva JCBE2011 Adhesive bonding technologies 25

    Theory of adhesion Phase change

    Good wetting but without strength

    Hardening...

    Liquid

    Lucas da Silva JCBE2011 Adhesive bonding technologies 26

    Solid

  • 14

    Theory of adhesion Phase change

    Hardening process (cure)

    L f l t ( hit l f d) Loss of solvent (e.g. white glue for wood) Cooling from the molten state (hot melts) Chemical reaction (most of structural

    adhesives)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 27

    Theory of adhesion Wetting

    Lucas da Silva JCBE2011 Adhesive bonding technologies 28

  • 15

    Theory of adhesion Wetting

    Contact l angle,

    0 90 180

    SV = SL + LV cos Young (1805)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 29

    cos 1 0 -1

    Spreading Complete wet. Partial wet. SL= SV Low wetting No wetting

    Theory of adhesion Wetting

    Unbalance of atraction forces at the surface surface energy

    Surface energy,

    surface energy

    Lucas da Silva JCBE2011 Adhesive bonding technologies 30

  • 16

    Theory of adhesion Wetting

    Surface energy,

    Lucas da Silva JCBE2011 Adhesive bonding technologies 31

    Theory of adhesion Wetting

    Surface energy of liquidsWilhelmy plate, weight of a drop, capillarity, etc.

    FL 2

    Fl

    =

    Lucas da Silva JCBE2011 Adhesive bonding technologies 32

  • 17

    Theory of adhesion Wetting

    Surface energy of solidsCritical surface tension, C

    Zisman (1950)Zisman (1950)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 33

    Theory of adhesion Wetting

    Surface energy of solidsDispersion and polar components

    Fowkes (1963)

    d p = + +

    ( )( ) ( )

    ( )( ) ( )

    2/1

    2/1

    2/12/1

    2/1cos1 D

    SD

    PLP

    SDL +

    =+

    Lucas da Silva JCBE2011 Adhesive bonding technologies 34

    ( ) ( ) ( ) ( )2/12/12 SDLSDL

    Watts (2010)

  • 18

    Theory of adhesion Spreading

    Principle of minimum energy

    < the liquid spreadsL < S the liquid spreadsL > S the liquid does not spread

    Surfaces of high energy S = 500 ~ 5000 mJ m-2(metals and their oxides, glass and ceramics; generally hard materials with high melting points)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 35

    materials with high melting points) Surfaces of low energy S = 5 ~ 100 mJ m-2

    (most of organic solids and polymeric materials; generally soft materials with low melting points)

    Theory of adhesion Spreading

    Lucas da Silva JCBE2011 Adhesive bonding technologies 36

  • 19

    Theory of adhesion Spreading

    How can the user intervene?

    Increase the surface energy of the solid

    Contamination of surfaces (powders, greases, oils, adsorbed gases, humidity, etc.) low surface energy

    The surface treatments can eliminate the

    Lucas da Silva JCBE2011 Adhesive bonding technologies 37

    The surface treatments can eliminate the contaminants and modify the chemistry of surfaces of low energy (polymers)

    Theory of adhesion Theories of adhesion

    Mechanical Adsorption Diffusion Electrostatic

    Lucas da Silva JCBE2011 Adhesive bonding technologies 38

  • 20

    Theory of adhesion Theories of adhesion

    Mechanical

    Example: rubber with textile

    But... Smooth surface

    Lucas da Silva JCBE2011 Adhesive bonding technologies 39

    Increase of surface areaElimination of weak boundary layersBetter wettingMore energy dissipation

    Theory of adhesion Theories of adhesion

    AdsorptionPhysical adsorption

    Surface forcesG d tti

    Chemical adsorption

    Good wettingMost importantOccurs in all bonds

    Ch i l b d

    Lucas da Silva JCBE2011 Adhesive bonding technologies 40

    Chemical bondAcid-basePrimaryBonding agents

  • 21

    1. Adhesive selection2. Joint design3. Surface treatment4. Fabrication5. Control

    Lucas da Silva JCBE2011 Adhesive bonding technologies 41

    5. Control

    Adhesive selection Classification

    Function (structural and non-structural) Chemical composition (thermoplastics, thermosets,

    elastomers hibrids)elastomers, hibrids) Hardening mechanism (chemical reaction, loss of

    solvent or water, hardening from the melt) Physical form (liquid, paste, solid) Cost Substrates

    Lucas da Silva JCBE2011 Adhesive bonding technologies 42

    Substrates Method of application

  • 22

    Adhesive selection Classification

    Function

    Adhesives

    Structural Non-structural

    EpoxiesPolyurethanes

    RubbersPolyesters

    Lucas da Silva JCBE2011 Adhesive bonding technologies 43

    yAcrylics

    PhenolicsAromatics

    yHot meltsInorganic

    Adhesive selection Classification

    Chemical composition

    Lucas da Silva JCBE2011 Adhesive bonding technologies 44

  • 23

    Adhesive selection Classification

    Kinloch (1997)Chemical compositionHybrids (e.g. thermoset + rubber)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 45

    Adhesive selection ClassificationChemical compositionHybrids (e.g. thermoset + rubber) da Silva & Adams (2005)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 46

  • 24

    Adhesive selection Composition

    Base or binder Hardener and catalyst

    S l t Solvents Diluents Fillers Carriers or reinforcements

    O

    Lucas da Silva JCBE2011 Adhesive bonding technologies 47

    Other additives

    Adhesive selection Hardening

    1. Chemical reactiona. Two partsb. One part, cure by catalyst or hardenerc. Cure by humidityc. Cure by humidityd. Cure by radiation (light, UV, electrons beam, etc.)e. Catalized by the substratef. Adhesives in solid form (tape, film, powder, etc.)

    2. Loss of solvent or watera. Resinous solvent adhesives b. Reactivatable adhesives

    Lucas da Silva JCBE2011 Adhesive bonding technologies 48

    c. Contact adhesives

    3. Hardening from the melt

  • 25

    Adhesive selection Hardening

    VULCANIZAO(CROSS-LINKING)

    Chemical reaction Condensation reaction (polyimides,

    polybenzimidazole, phenolics)p y p ) Addition reaction (epoxies, urethanes, acrylics)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 49

    Adhesive selection Epoxies

    Most important Strong but brittle Low shrinkageLow shrinkage 1 or 2 parts Exothermic cure Can be B-staged Diglycidyl ether of bisphenol A

    (DGEBA)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 50

    (DGEBA) Cured with amines (room temp.) Most are hybrid epoxies

  • 26

    Adhesive selection Epoxies

    Two part epoxyForm 2 parts in paste Method of application Manual mixture

    Mi t d t t d li tiMixture and automated application Cure Room temperature (can be

    accelerated at high temperature) Service temperature 40 to 100C Advantages Strength and durability Disadvantages Slow curing

    Mixture (voids) Environment resistance

    Water GoodSolvent Good

    Lucas da Silva JCBE2011 Adhesive bonding technologies 51

    resistance Solvent GoodOil Good

    Health and safety Dermatosis Breathing problems

    Applications Aircraft, helicopters, cars, trains, sport equipment, etc.

    Adhesive selection Epoxies

    One part epoxy

    Form Film, paste Method of application Manual Cure Temperature (~150C) Service temperature 40 to 180C Advantages Strength and durability Disadvantages Storage

    Cures at high temperature Environment resistance

    Water Excellent Solvent Excellent Oil Excellent

    Lucas da Silva JCBE2011 Adhesive bonding technologies 52

    Health and safety DermatosisBreathing problems

    Applications Aircraft, helicopters, cars, trains, sport equipment, etc.

  • 27

    Adhesive selection Epoxies

    Hexcel Composites

    Lucas da Silva JCBE2011 Adhesive bonding technologies 53

    Adhesive selection Epoxies

    Toughened epoxies Inclusions of CTBN Increased toughness

    Kinloch (1997)Increased toughness

    Lower Tg Lower strength

    Lucas da Silva JCBE2011 Adhesive bonding technologies 54

  • 28

    Adhesive selection Epoxies

    Epoxy-phenolic Epoxy resin + phenolic resin High temperature resistance High temperature resistance Continuously until 175C Very good strength to environment, oil, solvents Low toughness Aeronautical applications

    Lucas da Silva JCBE2011 Adhesive bonding technologies 55

    Bonding honeycomb sandwich composites

    Adhesive selection Epoxies

    Epoxy-nylon Improved toughness and

    peel strength

    Kinloch (1997)

    peel strength Limited resistance to the

    environment Max temperature 80C Good filleting capacity

    B d l i i ki t

    Lucas da Silva JCBE2011 Adhesive bonding technologies 56

    Bond aluminium skins to honeycomb core

  • 29

    Adhesive selection Epoxies

    Epoxy-polysulfide Excellent toughness, peel strength and flexibility,

    chemical resistancechemical resistance Max temperature 50-80C 2 parts paste Room temperature cure High deformation applications

    C t i

    Lucas da Silva JCBE2011 Adhesive bonding technologies 57

    Bond concrete in floors and roads Sealants, glass bonding, bond rubber to metals

    Cotronics

    Adhesive selection Polyurethanes

    Form Solutions, pastesMethod of application Cartridge Cure Room temperature and moisture (1

    part) Can be accelerated with temperature (2 parts)

    Service temperature 200 to 120CAdvantages Good strength at low temperatures

    Toughness Wetting ability

    Disadvantages Moisture cure Limited temperature resistance

    Environment Water Fair

    Lucas da Silva JCBE2011 Adhesive bonding technologies 58

    resistance Solvent Fair/Good Oil Fair/Good

    Health and safety Avoid physiological risks Applications Cryogenic applications

    Automotive industry

  • 30

    Adhesive selection Polyurethanes

    Total / Le joint Franais

    Lucas da Silva JCBE2011 Adhesive bonding technologies 59

    Adhesive selection Acrylics

    Anaerobics Cyanoacrylates Cyanoacrylates Modified acrylics Cure rapidly Bond many substrates, including plastics Fast assembly operations

    Lucas da Silva JCBE2011 Adhesive bonding technologies 60

  • 31

    Adhesive selection Acrylics Anaerobics

    Form 1 part liquid or paste Method of application Small container or automatic

    application Cure By absence of oxygenCure By absence of oxygen

    Cures in min or h at 25C or in 10 min at 120C

    Service temperature 55 to 150C Advantages Little surface preparation Disadvantages Thin bondlines Environment resistance

    Water Good Solvent Depends on formulation Oil Good

    Lucas da Silva JCBE2011 Adhesive bonding technologies 61

    Oil GoodHealth and safety No major problems Applications Liquid lock washer

    Small assembly works

    Loctite

    Adhesive selec. Acrylics Cyanoacrylates

    Form 1 part liquid Method of application Small container or automatic

    application Cure Substrate moisture

    Cures in sec or min at 20C Service temperature 30 to 80C Advantages Fast cure Disadvantages Cannot bond large areas due to fast

    cure Brittle Bad gap filling

    Environment resistance

    Water Weak Solvent Fair/good

    Lucas da Silva JCBE2011 Adhesive bonding technologies 62

    resistance Solvent Fair/goodOil Good

    Health and safety Can bond to skin due to fast cure Applications Rapid assemble of light structures

    Optical and electronic industry

    Loctite

  • 32

    Adhesive selec. Acrylics Modified acrylics

    Form 2 parts Method of application Small container or automatic

    applicationppCure Catalysed by an initiator that allows

    a fast cure Service temperature 40 to 120C Advantages Fast cure

    Can bond unprepared surfaces Good environment resistance

    Disadvantages Lower strength and stiffness than epoxies

    Lucas da Silva JCBE2011 Adhesive bonding technologies 63

    Environment resistance

    Water GoodSolvent Good Oil Good

    Health and safety No major problems Applications Rapid assemble of structures

    Adhesive selection Phenolics

    Cure at high temperature (140C) and pressure

    Volatiles released during cure gporous bondlines

    Good resistance to environment and temperature

    Wood bonding Cheap

    Lucas da Silva JCBE2011 Adhesive bonding technologies 64

    Cheap Brittle and low peel strength Hybrid phenolics generally used

  • 33

    Adhesive selection Phenolics

    Form Solutions, powder, films Method of application Manual, brush, film Cure Temperature and pressure Service temperature 40 to 180CService temperature 40 to 180CAdvantages Good strength to fire

    Cheap Disadvantages Difficult processing

    Brittle Porous bondlines

    Environment resistance

    Water Excellent Solvent Good Oil Good

    Lucas da Silva JCBE2011 Adhesive bonding technologies 65

    Oil GoodHealth and safety Low smoke and low level of

    toxicity Applications Wood

    Metal (hybrid phenolics)

    Adhesive selection Phenolics

    Nitrile-phenolics Vinyl-phenolic

    N h li Neoprene-phenolic

    http://en.wikipedia.org/wiki/Brake_lining

    Lucas da Silva JCBE2011 Adhesive bonding technologies 66

    http://www.boardtek.com.tw/Metal.htm

  • 34

    Adhesive selection Polyaromatics

    Polyimide, bismaleimide, polybenzimidazole

    Ladder structure High temperature adhesives Expensive Difficult processing

    Brittle and low peel strength

    Lucas da Silva JCBE2011 Adhesive bonding technologies 67

    Brittle and low peel strength Difficult to toughen

    Adhesive selection Polyaromatics

    Form Supported film Method of application Sandwich assembly Cure Temperature (250C) and pressure p ( ) pService temperature 40 to 280C Advantages Strength at high temperatures Disadvantages Very difficult processing

    Brittle at room temperature Porous bondlines Expensive

    Environment resistance

    Water Excellent Solvent Excellent

    Lucas da Silva JCBE2011 Adhesive bonding technologies 68

    Oil Excellent Health and safety No major problems Applications Applications at high temperature

    Aeronautical and aerospace industry

  • 35

    Adhesive selection Polyaromatics

    Hexcel Composites

    Lucas da Silva JCBE2011 Adhesive bonding technologies 69

    Adhesive selection Selection process

    Substrate

    Design and loading

    Production requirements Adhesive

    selectionExperimental

    validation

    Lucas da Silva JCBE2011 Adhesive bonding technologies 70

    Service environment

  • 36

    Adhesive selection Selection processSubstrateSpreading condition principle of minimum energy

    L < S the liquid spreadsL > S the liquid does not spreadL > S the liquid does not spread

    Lucas da Silva JCBE2011 Adhesive bonding technologies 71

    Adhesive selection Selection process

    -phe

    nolic

    phen

    olic

    ene-

    phen

    olic

    cino

    l for

    mal

    dehy

    de

    l for

    mal

    dehy

    de

    min

    e fo

    rmal

    dehy

    de

    orm

    alde

    hyde

    omat

    ic

    ter

    reth

    ane

    obic

    acry

    late

    ied

    acry

    lic

    Shields (1984)Substrate

    Epo

    xy

    Nitr

    ile-

    Vin

    yl-p

    Neo

    pre

    Res

    orc

    Phen

    ol

    Mel

    am

    Ure

    a fo

    Poly

    ar

    Poly

    est

    Poly

    ur

    Ana

    ero

    Cya

    noa

    Mod

    ifi

    Metals Ceramics Wood Paper Leather Textile Elastomers Neoprene Silicone Polyurethane

    Lucas da Silva JCBE2011 Adhesive bonding technologies 72

    yThermoplastics PVC (flexible) PVC (rigid) Cellulose acetate PE (film) PE (rigid) PP (film) PP (rigid) PC Teflon

  • 37

    Adhesive selection Selection processSubstrateResidual thermal stresses

    Lucas da Silva JCBE2011 Adhesive bonding technologies 73

    Adhesive selection Selection process

    Production requirements

    Adhesive form Method of application Working time Cure conditions (temperature, pressure, time) Holding time Shelf life

    Lucas da Silva JCBE2011 Adhesive bonding technologies 74

    Safety and health issues Cost

  • 38

    Adhesive selection Selection process

    Production requirements

    Type of adhesive Common forms available

    Cure method

    Processing conditions

    d m e uid en

    t so

    lutio

    n,

    lsio

    n

    ent r

    elea

    se

    mic

    al re

    actio

    n

    m te

    mpe

    ratu

    re

    h te

    mpe

    ratu

    re

    sure

    requ

    ired

    sure

    not

    requ

    ired Petrie (2000)

    Solid

    Film

    Past

    e

    Liqu

    Solv

    emul

    Solv

    Che

    m

    Roo

    m

    Hig

    h

    Pres

    s

    Pres

    s

    Epoxy (polyamine) Epoxy (polyanhydride) Epoxy (polyamide) Epoxy-phenolic Epoxy-nylon Epoxy-polysulfide Nitrile-phenolic Vinyl-phenolic Neoprene-phenolic Resorcinol formaldehyde Phenol formaldehyde

    Lucas da Silva JCBE2011 Adhesive bonding technologies 75

    yMelamine formaldehyde Urea formaldehyde Polyimide Bismaleimide Polybenzimidazole Polyester + isocyanate Polyester + monomer Polyurethane Cyanoacrylate Acrylic

    Adhesive selection Selection processDesign and loading

    Lucas da Silva JCBE2011 Adhesive bonding technologies 76

  • 39

    Adhesive selection Selection processService environment

    Adhesive Tg (C)

    Epoxies Toughened epoxy

    50-150

    da Silva et al. (2007)

    g p yEpoxy phenolic Epoxy nylon Epoxy polysulfide

    200 50 50

    Phenolics Nitrile phenolic Vinyl phenolic Neoprene phenolic

    120 70 70

    High temperature adhesives

    Lucas da Silva JCBE2011 Adhesive bonding technologies 77

    High temperature adhesivesBismaleimide Polyimide

    210-280 340-430

    Polyurethanes 20-50 Anaerobics 120 Cyanoacrylates 80 Modified acrylics 60-120

    Adhesive selection Selection process

    Experimental validationPhysical and chemical propertiesColour viscosity shelf life working life density TColour, viscosity, shelf life, working life, density, Tg,

    etc...Mechanical propertiesFailure strength tests (shear, tension, compression),

    fracture tests (mode I, II)D bilit

    Lucas da Silva JCBE2011 Adhesive bonding technologies 78

    DurabilityTemperature, moisture

  • 40

    Adhesive selection Selection process

    Experimental validationTensile test EN ISO 527-2

    BS 2782BS 2782

    Lucas da Silva JCBE2011 Adhesive bonding technologies 79

    Adhesive selection Selection process

    Tension vs compression

    Experimental validation

    Tension vs. compressionc = 1.2 to 1.4 t

    Lucas da Silva JCBE2011 Adhesive bonding technologies 80

  • 41

    Adhesive selection Selection process

    ASTM D 695Experimental validationCompression test

    Lucas da Silva JCBE2011 Adhesive bonding technologies 81

    Adhesive selection Selection process

    Experimental validationThick Adherend Shear Test (TAST)

    ISO 11003 2 ASTM D 5656ISO 11003-2, ASTM D 5656

    ISO 11003-2

    Lucas da Silva JCBE2011 Adhesive bonding technologies 82

    ISO 11003-2, ASTM D 5656da Silva et al.(2008)

  • 42

    Adhesive selection Selection process

    Experimental validationShear test (Arcan)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 83

    Adhesive selection Selection process

    Chen et al. (2010)

    Experimental validationShear test (Torsion)

    Gali et al. (1981)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 84

  • 43

    Adhesive selection Selection process

    ASTM D 3433

    Experimental validationToughness (Double cantilever beam (DCB) test)

    ASTM D 3433

    Lucas da Silva JCBE2011 Adhesive bonding technologies 85

    356

    12.7

    6.35

    6.35 a = 510

    25.4

    Adhesive selection Selection processExperimental validationMechanical properties

    Tljsten (2005)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 86

  • 44

    Adhesive selection Selection processExperimental validationMechanical properties

    Lucas da Silva JCBE2011 Adhesive bonding technologies 87

    Adhesive selection Selection processExperimental validationMechanical propertiesAdhesive Manufacturer Tension Compression Shear GIc

    (J/m2) GIIc (J/m2) E

    (MPa) y (MPa)

    r (MPa)

    r (%)

    y (MPa)

    r (MPa)

    G (MPa)

    y (MPa)

    r (MPa)

    r (%) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    Epoxies Araldite AV138 Huntsman 4590 41.0 41.0 1.30 1559 25.0 30.2 5.50 345.9 3000 Hysol EA 9394 Loctite 4420 31.0 59.8 4.64 35.9 68.9 1140 25.0 40.4 8.36 Hysol EA 9321 Loctite 3870 22.0 46.0 3.80 34.0 1030 20.0 33.0 6.35 Supreme 10HT Master Bond 3240 25.0 45.5 2.00 1460 37.1 37.1 16.1 0.30 Araldite AV 119 Huntsman 3450 67.1 67.1 4.10 1260 47.0 47.0 50.7 0.37 Hysol EA 9150 Loctite 2852 79.0 5.00 99.9 1056 0.35 Hysol EA 9359.3 Loctite 2650 42.5 42.5 4.50 145 660.0 35.3 35.3 63.0 Hysol EA 9330 Loctite 2646 38.6 2.40 53.1 965.0 0.37 Hysol EA 9628f Loctite 2377 51.7 7.50 79.3 624.0 1401 Araldite 2015 Huntsman 1850 22.5 4.40 560.0 14.0 20.0 40.3 525.7 4700 Redux 810 Hexcel Comp. 1730 40.0 5.53 02 Rapid Delo 1000 24.0 20.0

    Lucas da Silva JCBE2011 Adhesive bonding technologies 88

    Hysol EA 9361 Loctite 670 7.99 44.0 Polyurethanes Araldite 2026 Huntsman 200 18.0 50.00 Sikaflex 256 Sika 1.351 8.26 8.26 330 2901 Bismaleimides Redux HP655f Hexcel Comp. 3620 80.7 80.7 2.39 694.0 Redux 326f Hexcel Comp. 4850 50.9 50.9 1.28 1615 37.9 37.9 3.70 Modified acrylics DP-8005 3M 590 13.0 5.30 178.6 5.3 8.40 180 1360 Araldite 2024 Huntsman 760 20.0 42.5

  • 45

    Adhesive selection Selection processExperimental validationTg

    Lucas da Silva JCBE2011 Adhesive bonding technologies 89

    Adhesive selection Selection processExperimental validationTg DMA

    Lucas da Silva JCBE2011 Adhesive bonding technologies 90

  • 46

    Adhesive selection Selection processExperimental validationTemperature

    55C

    70

    da Silva & Adams (2005)

    -55C

    22C

    100C20

    30

    40

    50

    60

    Shea

    r stre

    ss (M

    Pa)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 91

    200C0

    10

    0 0.1 0.2 0.3 0.4 0.5

    Shear strain

    Adhesive selection Selection processExperimental validationHumidity Bordes et al. (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 92

  • 47

    1. Adhesive selection2. Joint design3. Surface treatment4. Fabrication5. Control

    Lucas da Silva JCBE2011 Adhesive bonding technologies 93

    5. Control

    Joint design Stress analysis

    Two possibilities:

    Analytical methods design Numerical methods (finite element

    method) research

    Lucas da Silva JCBE2011 Adhesive bonding technologies 94

  • 48

    Joint design Stress analysis

    Simple analysis

    Lucas da Silva JCBE2011 Adhesive bonding technologies 95

    blP

    =

    Joint design Stress analysis

    Volkersen (1938)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 96

  • 49

    Joint design Stress analysisVolkersen (1938)

    Load balance of upper adherend:

    ( ) 11 1 1 1 1dbt bdx d btd t + = + =

    Lucas da Silva JCBE2011 Adhesive bonding technologies 97

    ( )1dx t

    Load balance of lower adherend:

    ( ) 22 2 2 2 22

    dbt d bt bdxdx t = + + =

    Joint design Stress analysisVolkersen (1938)

    Joint equilibrium:

    1 1 2 2P bt bt = +

    Lucas da Silva JCBE2011 Adhesive bonding technologies 98

    Shear deformation in the adhesive:

    ( ) 1 2 1 21 2a a a a a 1 2

    1 1 1 1du dud du uG t dx G dx t dx dx t E E

    = = = = =

  • 50

    Joint design Stress analysis

    Volkersen (1938)1 2

    a a 1 2

    1 1dG dx t E E

    =

    2

    2

    ddx t

    = 11

    ddx t

    = + +

    2 2 2a1 1 2 2 1 1 2

    12 2 2a a a a 1 2

    1 Gt d t d dd tG dx G dx G dx dx t E E

    = = =

    2 Gd

    From 1 1 2 2P bt bt = +2

    11

    12 t

    tbtP =

    Lucas da Silva JCBE2011 Adhesive bonding technologies 99

    2a1 1 2

    1 2a 1 2

    Gdtdx t E E

    =

    Substituting in

    221

    1 02 0d Cdx

    + = with 2 aa 1 1 2 2

    1 1Gt E t E t

    = +

    a0

    a 2 2 1

    G PCt bE t t

    =

    Joint design Stress analysis

    Volkersen (1938)( ) ( ) ( )( )

    0 0 01 2 2 2

    1

    sinhcosh cosh 1

    sinhxC C CPx l

    bt l

    = + + +

    dFrom 11

    ddx t

    =

    ( ) ( ) ( )( )0 1 0 11

    1 2 2

    coshsinh cosh 1

    sinhxC t C td Pt x l

    dx l l

    = = + +

    Substituting C0 and 2 and usingPbl

    =

    Lucas da Silva JCBE2011 Adhesive bonding technologies 100

    bl

    ( )( ) ( ) ( )( ) ( )1 cosh coshsinh

    x l k l x xk l

    = +

    2 a

    a 1 1 2 2

    1 1

    2 2

    1 1

    1

    Gt E t E tE tkE t

    = +

    = +

  • 51

    Joint design Stress analysis

    Goland & Reissner (1944)

    Not deformedBending moment M = Ft/2

    Lucas da Silva JCBE2011 Adhesive bonding technologies 101

    Deformed

    Bending moment M = kFt/2k < 1

    Joint design Stress analysis

    Goland & Reissner (1944)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 102

  • 52

    Joint design Stress analysis

    Hart-Smith (1973)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 103

    Joint design Stress analysis

    Hart-Smith (1973)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 104

  • 53

    Joint design Stress analysis

    Finite element method

    KD = R

    Lucas da Silva JCBE2011 Adhesive bonding technologies 105

    Any geometryAll stresses

    Parametric studies more difficult

    KD R

    Joint design Failure modes

    Lucas da Silva JCBE2011 Adhesive bonding technologies 106

  • 54

    Joint design Failure criteria

    In the adhesive Brittle adhesive maximum stress (Volkersen or (

    G&R) Ductile adhesive maximum strain (Hart-Smith) Very ductile adhesive (> 20% in shear) global

    yielding Fracture mechanics

    Lucas da Silva JCBE2011 Adhesive bonding technologies 107

    Fracture mechanics Damage mechanics

    Joint design Failure criteria

    Global yieldingCrocombe (1989)

    pblP =max

    Lucas da Silva JCBE2011 Adhesive bonding technologies 108

  • 55

    Joint design Failure criteria

    Global yieldingda Silva et al. (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 109

    Joint design Failure criteria

    MetalsHart-Smith (1973)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 110

  • 56

    Joint design Failure criteria

    MetalsAdherend yielding

    Adams et al. (1997)

    pblP =max

    ybtP =max

    btPt =

    btkP

    kPtMbtM

    3

    R)&(G 2 and 6

    sup

    2sup

    =

    ==

    ( )( )kbtP

    btkP

    y

    t

    31

    31

    max

    supmax

    +=

    +=+=

    Lucas da Silva JCBE2011 Adhesive bonding technologies 111

    For low loads and short overlaps, k = 1For joints which are long compared to the adherend thickness (l/t = 20), k = 0

    4max ybtP =

    Joint design Failure criteria

    CompositesHart-Smith (1973)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 112

  • 57

    Joint design Failure criteria

    Singularities

    Lucas da Silva JCBE2011 Adhesive bonding technologies 113

    Joint design Failure criteria

    Singularities adherend rounding

    Zhao et al. (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 114

  • 58

    Joint design Failure criteria

    Fracture mechanicsTo solve proble of singularities

    But...

    Difficult to relate K with experimental results

    Diffi lt h th i

    Crack

    Lucas da Silva JCBE2011 Adhesive bonding technologies 115

    Difficult when there is plastic deformation

    Groth (1985)

    Joint design Failure criteria

    Damage mechanicsde Moura et al. (2002)

    u u=

    ,i u i >

    top bottom u u=

    Initiationi

    u,i,

    ,0

    u i ii u i

    u i i

    =

    Softening

    Lucas da Silva JCBE2011 Adhesive bonding technologies 116

    c , ,12i u i u i

    G = Propagation

    o,i u,i i

    , 0,u i i

  • 59

    Joint design Failure criteria

    Damage mechanics Loureiro et al. (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 117

    Joint design Optimisation

    Fillets

    Lucas da Silva JCBE2011 Adhesive bonding technologies 118

  • 60

    Joint design Optimisation

    Fillets Grant et al. (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 119

    Joint design Optimisation

    Adherend shaping

    Cherry & Harrison (1970)Adams et al. (1986) da Silva & Adams (2007)Hildebrand (1994) Rispler et al. (2000)Sancaktar & Nirantar (2003)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 120

    Sancaktar & Nirantar (2003)Kaye & Heller (2005)

  • 61

    Joint design Optimisation

    Adherend shaping

    4550

    da Silva & Adams (2007)

    51015202530354045

    Failu

    re lo

    ad (k

    N)

    Basic designTaper and adhesive fillet

    Lucas da Silva JCBE2011 Adhesive bonding technologies 121

    05

    -55C 22C -55C 22C -55C 22C

    Supreme10HT

    AV119 Adams et al(1986)

    Joint design Optimisation

    Mixed adhesive joint

    Sancaktar & Kumar (2000)Pires et al. (2003)

    Temiz (2006)Bouiadjra et al. (2007) das Neves et al. (2009)

    Marques & da Silva (2008)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 122

    da Silva & Lopes (2009)

    Marques & da Silva (2008)

  • 62

    Joint design OptimisationMixed adhesive joint

    da Silva & Lopes (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 123

    Joint design OptimisationMixed adhesive joint

    da Silva & Adams (2007)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 124

  • 63

    Joint design Optimisation

    Hybrid jointsLiu & Sawa (2001)

    Liu et al. (2004) G i t l (2006)Grassi et al. (2006)

    Pirondi & Moroni (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 125

    Joint design Optimisation

    Hybrid jointsPirondi & Moroni (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 126

  • 64

    Joint design Tubular joints

    Lucas da Silva JCBE2011 Adhesive bonding technologies 127

    Joint design T joints

    Adams et al. (1997)da Silva & Adams (2002)

    Apalak (2002) Marcadon et al. (2006)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 128

  • 65

    Joint design T joints

    10

    12

    1210

    da Silva & Adams (2002)

    2

    4

    6

    8

    10

    Failu

    re lo

    ad (k

    N)

    1.5 mm

    10 mm

    Base thickness

    9

    12

    7

    Lucas da Silva JCBE2011 Adhesive bonding technologies 129

    0

    2

    (d)(c)(b)(a)

    Joint design T joints

    da Silva & Adams (2002)

    (b) Apalak et al FE stress predictionObserved locus of failure(a)

    Locus of failure

    Maximum stresses

    Yield

    Progressive failure

    Lucas da Silva JCBE2011 Adhesive bonding technologies 130

    Locus of failure

    Maximum stressesSudden failure

  • 66

    Joint design Corner joints

    Lucas da Silva JCBE2011 Adhesive bonding technologies 131

    Adams et al. (1997)Apalak and Davies (1993)Feih and Shercliff (2005)

    Joint design

    da Silva et al. (2009)http://ni.fe.up.pt/~rteixeira/rjoints

    Lucas da Silva JCBE2011 Adhesive bonding technologies 132

  • 67

    1. Adhesive selection2. Joint design3. Surface treatment4. Fabrication5. Control

    Lucas da Silva JCBE2011 Adhesive bonding technologies 133

    5. Control

    Surface treatment

    Hagemaier (1990)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 134

  • 68

    Surface treatmentCharacteristics that affect adhesion

    ContaminationOils, greases, fingerprints, mold release

    agents etc low surface energyagents, etc. low surface energy decrease adhesion

    Lucas da Silva JCBE2011 Adhesive bonding technologies 135

    Surface treatmentCharacteristics that affect adhesion

    Weak boundary layerContaminant films, oxide layers, rust,

    corrosion scale and loose surface particlescorrosion, scale, and loose surface particles, etc.

    Lucas da Silva JCBE2011 Adhesive bonding technologies 136

  • 69

    Surface treatment General principles

    In surface treatment, the following operations can occur:

    1- Material removal2- Chemical modification of the surface3- Change of the surface topography

    Lucas da Silva JCBE2011 Adhesive bonding technologies 137

    Surface treatment Importance

    Aluminium joints bonded with an epoxy adhesive

    Kinloch (1987)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 138

  • 70

    Surface treatment Assessment

    Water-break test

    Lucas da Silva JCBE2011 Adhesive bonding technologies 139

    Surface treatment Assessment

    Destructive test

    Adhesive failure

    Bad treatment

    G d t t t

    Cohesive failure

    Lucas da Silva JCBE2011 Adhesive bonding technologies 140

    Good treatment

  • 71

    Surface treatment Selection

    1. Initial strength2. Durability3. Initial condition of the substrates4. Type of substrate and nature of the

    surface5. Production factors (cost, time, etc.)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 141

    Surface treatment MethodsPassive processes No chemical alteration Clean the surface Remove substances that are weakly attachedActive processes Chemical transformation Metals formation of a well defined oxide or structure Polymers formation of polar groups that increase

    Lucas da Silva JCBE2011 Adhesive bonding technologies 142

    Polymers formation of polar groups that increase surface energy and adhesion

    Last treatment when high strength and durability are required

  • 72

    Surface treatment Methods

    Passive processes Abrasive methods SolventsSolvents Chemical cleaningActive processes Acid etching Anodizing (metals)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 143

    Anodizing (metals) Flame treatment, corona discharge, plasma

    (polymers)

    Surface treatment MethodsSteel (shot-blasted)

    da Silva et al. (2008)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 144

  • 73

    Surface treatment Methods

    Al (acid etching) Critchlow et al. (2006)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 145

    Surface treatment Methods

    Metals

    Loctite

    Metals

    Lucas da Silva JCBE2011 Adhesive bonding technologies 146

  • 74

    Surface treatment Methods

    Polymers

    Loctite

    Polymers

    Lucas da Silva JCBE2011 Adhesive bonding technologies 147

    1. Adhesive selection2. Joint design3. Surface treatment4. Fabrication5. Control

    Lucas da Silva JCBE2011 Adhesive bonding technologies 148

    5. Control

  • 75

    Fabrication Steps

    Adhesive applicationStorage

    Metering and mixingFixturing of parts

    pp

    Lucas da Silva JCBE2011 Adhesive bonding technologies 149

    Hardening

    Fabrication Storage

    Adhesives degrade ith li ht h idit twith light, humidity, etc.

    Viscosity increases with time determines the shelf-life

    Lucas da Silva JCBE2011 Adhesive bonding technologies 150

    Van Twisk & Aker (1990)

  • 76

    Fabrication Storage

    Ambient temperatureAmbient temperature

    L

    Lucas da Silva JCBE2011 Adhesive bonding technologies 151

    Low temperature(fridge or freezer)

    Fabrication Storage

    Effect of ambient conditions

    Van Twisk & Aker (1990)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 152

  • 77

    Fabrication Storage

    Refrigerated or frozen productsHexcel Composites

    Lucas da Silva JCBE2011 Adhesive bonding technologies 153

    Fabrication Metering and mixing

    Lucas da Silva JCBE2011 Adhesive bonding technologies 154

  • 78

    Fabrication Adhesive application

    Liquid Brush, simple rollers, syringes, squeeze

    b ttl i d l t Easy to apply A lot of waste Any geometry

    bottles, pressurized glue guns, etc.

    Lucas da Silva JCBE2011 Adhesive bonding technologies 155

    Good wetting

    Fabrication Adhesive application

    Paste Guns, spatula Simple Simple Low waste

    Lucas da Silva JCBE2011 Adhesive bonding technologies 156

  • 79

    Fabrication Adhesive application

    Paste Application pattern to avoid air entrapment

    Lucas da Silva JCBE2011 Adhesive bonding technologies 157

    Translation Rotation

    Fabrication Adhesive application

    Paste Sika (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 158

  • 80

    Fabrication Adhesive application

    Film Minimum waste

    N i i No mixing Easy Good reproducibility Uniform thickness Flat surfaces

    Lucas da Silva JCBE2011 Adhesive bonding technologies 159

    Expensive

    Fabrication Fixturing of parts

    Keep surfaces in contact Avoid adhesive thickness variationsAvoid adhesive thickness variations Allow good wetting of the surface Avoid formation of voids and porosity

    (adhesives that cure by condensation such as phenolics and polyimides)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 160

    p p y )

  • 81

    Fabrication Fixturing of parts

    Equipment Clamps

    ARIANE 5 satellite adaptor

    Lucas da Silva JCBE2011 Adhesive bonding technologies 161

    Dsagulier (2010)

    Fabrication Fixturing of parts

    Equipment Moulds

    Lucas da Silva JCBE2011 Adhesive bonding technologies 162

  • 82

    Fabrication Fixturing of parts

    Equipment Press

    Lucas da Silva JCBE2011 Adhesive bonding technologies 163

    Fabrication Fixturing of parts

    Equipment Autoclave

    NPL

    Lucas da Silva JCBE2011 Adhesive bonding technologies 164

    Aschome

  • 83

    Fabrication Fixturing of parts

    Equipment Vacuum-bag

    Lucas da Silva JCBE2011 Adhesive bonding technologies 165

    Fabrication Fixturing of parts

    Adhesive thickness Influence on joint strength (0.1 to 0.2 mm)

    G t t l (2009)Grant et al. (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 166

  • 84

    Fabrication Fixturing of parts

    Adhesive thickness Microspheres or carriers (films)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 167

    Fabrication Fixturing of parts

    Adhesive thickness Shims

    Lucas da Silva JCBE2011 Adhesive bonding technologies 168

    Shim (controls the thickness and filet)

  • 85

    Fabrication Fixturing of parts

    Adhesive thickness Wires

    TWI

    Lucas da Silva JCBE2011 Adhesive bonding technologies 169

    Fabrication Hardening

    Chemical reaction (most of structural adhesives)adhesives)

    Loss of solvent or water (e.g. white glue of wood)

    Hardening from the melt (hot melts)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 170

  • 86

    Fabrication Hardening

    Chemical reaction Depends on adhesive, room temperature or high

    temperaturetemperature May need pressure (e. g. phenolics) Examples:

    Epoxy 120C, 1hBismaleimide (for high temperatures) 175C, 2h + 230C, 2h

    Cure is accelerated with temperature

    Lucas da Silva JCBE2011 Adhesive bonding technologies 171

    Cure is accelerated with temperature Tg increases with the cure temperature but beware of

    degradation of adhesive

    Fabrication Hardening

    Chemical reaction Time depends on temperature

    PermabondESP 110

    Lucas da Silva JCBE2011 Adhesive bonding technologies 172

  • 87

    Fabrication Hardening

    Equipment Temperature of adhesive Ovens (good air circulation)(g ) Hot press

    Lucas da Silva JCBE2011 Adhesive bonding technologies 173

    Fabrication Hardening

    Equipment Local heating (induction or dielectric)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 174

  • 88

    Fabrication Hardening

    Equipment Local heating

    Hexcel Composites

    Lucas da Silva JCBE2011 Adhesive bonding technologies 175

    Fabrication Safety and environment

    Schindel Bidinelli

    Use gloves and masks Well ventilated area with

    air e traction Schindel-Bidinelliair extraction Safety equipment Keep in a safe place

    solventsE th i ti

    Lucas da Silva JCBE2011 Adhesive bonding technologies 176

    Exothermic reaction use thin bondlines

  • 89

    1. Adhesive selection2. Joint design3. Surface treatment4. Fabrication5. Control

    Lucas da Silva JCBE2011 Adhesive bonding technologies 177

    5. Control

    Control Destructive tests

    Lap joints Peel Impact Impact Fatigue Creep Environment

    Lucas da Silva JCBE2011 Adhesive bonding technologies 178

  • 90

    Control Destructive tests

    Single lap joints

    ASTM D 1002

    Lucas da Silva JCBE2011 Adhesive bonding technologies 179

    Control Destructive tests

    Modified lap jointsLaminated lap shear specimen

    ASTM D 3165

    Double lap specimen

    Lucas da Silva JCBE2011 Adhesive bonding technologies 180

    ASTM D 3528

    Double lap specimen

  • 91

    Control Destructive tests

    PeelASTM D 1876

    ASTM D 3167ASTM D 1781

    Lucas da Silva JCBE2011 Adhesive bonding technologies 181

    T-peelFloating roller peel

    Climbing drum peel

    Control Destructive tests

    Peel Blackman (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 182

  • 92

    Control Destructive tests

    Peel Adhesive thickness

    Rider (1964)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 183

    Control Destructive tests

    ImpactASTM D 950

    Lucas da Silva JCBE2011 Adhesive bonding technologies 184

  • 93

    Control Destructive tests

    ImpactHarris & Adams (1985)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 185

    Control Destructive tests

    Impact (wedge impact peel)ISO 11343

    Lucas da Silva JCBE2011 Adhesive bonding technologies 186

  • 94

    Control Destructive tests

    Impact (Split Hokinson Pressure Bar) Goglio (2010)

    Strain gauges

    Projectile

    Specimen

    Strain gauges

    Incident pulse distance

    a)

    b)

    Second (transmitter) bar First (incident) bar

    Lucas da Silva JCBE2011 Adhesive bonding technologies 187

    time

    Reflected pulse Transmitted pulse

    Control Destructive tests

    Impact (Inertial wheel impact) Loureiro et al. (2010)

    Impactor

    Inertia wheel

    Swing armLoad cell

    AC Motor

    Lucas da Silva JCBE2011 Adhesive bonding technologies 188

    SpecimenAnvil

  • 95

    Control Destructive tests

    FatigueASTM D 3166 Banea et al. (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 189

    Control Destructive tests

    FatigueFernndez et al. (2010)

    S i 2Specimen 2

    da e/dN (CBBM) = 0.0058x1.7956 0.01

    0.10.1 1

    G Imax/G Ic

    (mm

    /cyc

    le)

    sss

    dae/dN

    Lucas da Silva JCBE2011 Adhesive bonding technologies 190

    da /dN (BEFM)= 0.0046x 1.4131

    0.0001

    0.001

    da/dN

    da/dN

  • 96

    Control Destructive tests

    CreepASTM D 2294

    Lucas da Silva JCBE2011 Adhesive bonding technologies 191

    Control Destructive tests

    Creep ASTM D 2294

    Lucas da Silva JCBE2011 Adhesive bonding technologies 192

  • 97

    Control Destructive tests

    EnvironmentASTM D 896

    Lucas da Silva JCBE2011 Adhesive bonding technologies 193

    Control Destructive tests

    Environemnt (Boeing wedge test)ASTM D 3762

    Lucas da Silva JCBE2011 Adhesive bonding technologies 194

  • 98

    Control Non-destructive tests

    Defects Poor adhesion Porr cohesive strength

    V id di b d it Voids, disbonds or porosity

    Lucas da Silva JCBE2011 Adhesive bonding technologies 195

    Control Non-destructive tests

    Visual inspection Porosity, misalignments, non-uniform adhesive

    thickness, etc.

    Hart-Smith (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 196

  • 99

    Control Non-destructive tests

    Tap test Tapping on the bonded joint

    Sh l t d dh i Sharp clear tone good adhesion Dull hollow tone void or unattached area Can be instrumented (solenoid operated

    hammer and microphone pickup)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 197

    Control Non-destructive tests

    Ultrasonic method Petrie (2000)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 198

  • 100

    Control Non-destructive tests

    Ultrasonic method Assler (2006)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 199

    Control Non-destructive tests

    Acoustic emission Joint must be loaded (semi-destructive) Stress waves emitted by crack propagation or micro-cracking

    d d ith i l t i t dare recorded with piezoelectric transducers The only method that can detect poor adhesion

    Lucas da Silva JCBE2011 Adhesive bonding technologies 200

    Magalhes (1999)

  • 101

    Control Non-destructive tests

    Radiography Voids or discontinuities Contrast improved with metal powder or other suitable p p

    filler

    Lucas da Silva JCBE2011 Adhesive bonding technologies 201

    Magalhes (1999)

    Control Non-destructive tests

    Thermal methods Petrie (2000)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 202

  • 102

    Control Post-fracture tests

    Optical microscopy Failure mechanism

    S f l i Surface analysis

    Lucas da Silva JCBE2011 Adhesive bonding technologies 203

    Control Post-fracture tests

    Scanning electron microscopy Surface analysis

    da Silva & Adams (2005)

    Failure surface of a toughened adhesive

    Failure surface of an untoughened adhesive

    ( )

    Lucas da Silva JCBE2011 Adhesive bonding technologies 204

  • 103

    Control Post-fracture tests

    Scanning electron microscopy Surface analysis Banea & da Silva (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 205

    Control Post-fracture tests

    Atomic force microscopy Surface analysis da Silva et al. (2008)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 206

  • 104

    Control Post-fracture tests

    X-ray Photoelectron Spectroscopy (XPS) Chemical composition of the surface

    da Silva & Adams (2005)

    Surface of a bi l i id

    da Silva & Adams (2005)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 207

    bismaleimide

    Control Post-fracture tests

    Fourier transform infrared (FTIR) Identification of a material Suarez (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 208

    FTIR spectrum of vulcanized styrene-butadiene rubber

  • 105

    Applications in the automotive industry RequirementsRequirements Areas of application Adhesives Strength Durability

    Lucas da Silva JCBE2011 Adhesive bonding technologies 209

    y Repair

    Automotive industry RequirementsBonding of multi-materials

    Mangino (Fiat)

    Dune Buggy 1970s Renault Espace 1984-1996

    Volvo V70 XC AWD 2000Fiat 8V 1954

    Lucas da Silva JCBE2011 Adhesive bonding technologies 210

    Chevrolet Corvette 1953

    BMW M3 Sport Coup 2003Ford Thunderbird 2002

    Ferrari Enzo 2003Aston Martin V12 Vanquish 2002

  • 106

    Automotive industry RequirementsBonding of multi-materials in S-Class Coup of

    DaimlerChrysler

    Flegel (2002)Flegel (2002)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 211

    Automotive industry Requirements

    Automatic application Good filling capacity (~1 mm) Fast hardening Cognard Fast hardening Flexible and tough Crash test Reduce cost

    D bilit ( 15 )

    Cognard

    Lucas da Silva JCBE2011 Adhesive bonding technologies 212

    Durability (~15 years) Repair

  • 107

    Automotive industry Areas of application

    Body shopHem flange bonding

    Burchardt (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 213

    Automotive industry Areas of application

    Body shopAnti-flutter bonding

    Burchardt (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 214

  • 108

    Automotive industry Areas of applicationBody shopHybrid bonding

    Lucas da Silva JCBE2011 Adhesive bonding technologies 215

    Automotive industry Areas of applicationAssembly lineDirect glazing Sika

    Lucas da Silva JCBE2011 Adhesive bonding technologies 216

  • 109

    Automotive industry Areas of application

    Lucas da Silva JCBE2011 Adhesive bonding technologies 217

    Automotive industry Areas of application

    Aston Martin DB9 CoupeNorton (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 218

    1C epoxy

  • 110

    Automotive industry Adhesives

    Tljsten (2005)Tljsten (2005)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 219

    Automotive industry StrengthIncrease in stiffness compared to welded structures

    Lucas da Silva JCBE2011 Adhesive bonding technologies 220

    Flegel (2002)

  • 111

    Automotive industry Strength

    Plastic deformation of the adherend controls failure (see joint design)

    Grant et al. (2009)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 221

    Automotive industry Strength

    Use flexible and ductile adhesives (crash suitable)

    Burchardt (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 222

  • 112

    Automotive industry Strength

    ImpactDroste (2006)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 223

    Automotive industry Strength

    Jost (2000)Impact

    Lucas da Silva JCBE2011 Adhesive bonding technologies 224

  • 113

    Automotive industry DurabilityFatigue strength

    Dilger (2005)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 225

    Automotive industry DurabilityTemperature (-30 to +80C)

    Burchardt (2010)Structural adhesive

    1C PU

    Lucas da Silva JCBE2011 Adhesive bonding technologies 226

  • 114

    Automotive industry DurabilityHumidity

    Davies (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 227

    Automotive industry RepairDismantable adhesives Sato (2010)

    Lucas da Silva JCBE2011 Adhesive bonding technologies 228

  • 115

    Bibliography

    Lucas da Silva JCBE2011 Adhesive bonding technologies 229

    Bibliography

    Lucas da Silva JCBE2011 Adhesive bonding technologies 230