26
Data integration in Multicarrier Reflectometry Sensors by Afshin Edrissi

Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data integrationin

Multicarrier Reflectometry Sensorsby

Afshin Edrissi

Page 2: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Introduction

• What is a Smart Sensor?

Page 3: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Introduction

• Important to detect faults to prevent hazards

Page 4: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Purpose and Function

• Why Data communication?– Communicate to the outside world– Increase the capability of the sensors– Expanding the capabilities to new

applications

Page 5: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Fault located

Info transmitted to pilot

Purpose and Function

• Example – Real-time feedbackin emergencies

Page 6: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Purpose and Function

sTe

Page 7: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Project Design

• Design Specification:– Designed for up to 100 ft cables– Can operate without interference to

existing systems– Uses the unused portion of frequency

spectrum

Page 8: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Project Design

• Simulation– Matlab and Simulink– Xilinx ISE and Modelsim

• Implementation– Xtreme DSP

• Analog to Digital Converter• Digital to Analog Converter• Field Programmable Gate Array (FPGA)• LEDs and other analog components

Page 9: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Project Design

• Goals– Digital Signal Processing (DSP)– Minimum of 2kHz per data channel– Minimum of 24 real-time adjustable

channels– Adjustable in frequency spectrum

Page 10: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Possible integration methods– Use the MCR waves to transfer data

• High hardware and software cost• Difficult to implement• Lower accuracy on the detected faults

Page 11: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Possible integration methods– Use the unused frequency spectrum

• More beneficial and cost effective• Many algorithms to modulate

– ASK– FSK– BPSK– Many more to achieve high data rate

ω

64 MCR

6447448

1ω Nω

DataChannels

64748

Page 12: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration• Overall system

Page 13: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Pulse shaping (hamming)– Filter to limit the

frequency spectrum– Removes high freq

components of coded data

2000 4000 6000 8000 10000-1.5

-1

-0.5

0

0.5

1

1.5

Samples

Am

plitu

de

Time domain

0 0.2 0.4 0.6 0.8-20

-10

0

10

20

30

40

50

60

Normalized Frequency (×π rad/sample)

Mag

nitu

de (d

B)

Frequency domain

Page 14: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Modulator– Shifts the signal in

frequency spectrum

2000 4000 6000 8000 10000-300

-200

-100

0

100

200

300

SamplesA

mpl

itude

Time domain

0 0.2 0.4 0.6 0.840

50

60

70

80

90

100

110

120

Normalized Frequency (×π rad/sample)

Mag

nitu

de (

dB)

Frequency domain

Page 15: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Digital to Analog Converter– Converts to analog in

order to transmit

3.27 3.28 3.29 3.3 3.31 3.32 3.33 3.34

-150

-100

-50

0

50

100

150

-8.0180, 8.6319, 24.2043, 31.9007, 27.4103, 11.0809, …

Page 16: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Low pass filter– Removes high freq– smooth signal– Uses lower spectrum

3.27 3.28 3.29 3.3 3.31 3.32 3.33 3.34

-150

-100

-50

0

50

100

150

Page 17: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Anti-Aliasing Filter– Limits the freq

spectrum to Nyquist Freq of sampling

0 0 . 1 0 . 2 0.3 0.4 0 . 5 0 . 6 0.7 0.8 0.92 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

Normal ized Frequency (× π rad/sample)M

agni

tude

(dB

)

F requency domain

Page 18: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Automatic Gain Control– Signal is not too small for

the sampler– Signal is not saturated for

the sampler3.3 3.32 3.34 3.36 3.38 3.4

-1-0.875-0.75

-0.625-0.5

-0.375-0.25

-0.1250

0.1250.25

0.3750.5

0.6250.75

0.8751

3.3 3.32 3.34 3.36 3.38 3.4-1

-0.875-0.75

-0.625-0.5

-0.375-0.25

-0.1250

0.1250.25

0.3750.5

0.6250.75

0.8751

3.3 3.32 3.34 3.36 3.38 3.4-1

-0.875

-0.75

-0.625

-0.5

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

Page 19: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Sampling(Analog to Digital Converter)

– Brings the Signal for digital processing

-8.0180, 8.6319, 24.2043, 31.9007, 27.4103, 11.0809, …

3 .26 3 .27 3.28 3.29 3 .3 3.31 3.32 3 .33 3 .34 3 .35-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Page 20: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Demodulator– Shifts the freq– DC and 2xCarrier

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-300

-200

-100

0

1 0 0

2 0 0

3 0 0

Samples

Am

plitu

de

T ime domain

0 0 . 2 0 . 4 0.6 0 . 84 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

Normal ized Frequency ( ×π rad/sample)

Mag

nitu

de (d

B)

F requency domain

Page 21: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Low pass filter– Removes the high freq

components– Cleans up the signal

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-150

-100

- 5 0

0

5 0

1 0 0

1 5 0

Samples

Am

plitu

de

T ime domain

0 0 . 2 0 . 4 0.6 0 . 83 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

Normal ized Frequency ( ×π rad/sample)

Mag

nitu

de (d

B)

F requency domain

Page 22: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration

• Decision Circuitry– Removes the noise– Compares to zero and

produces clean digital output

1 2 3 4 5 6 7 8 9 10-1.5

-1

-0.5

0

0.5

1

1.5

Page 23: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Data Integration• Overall system

Page 24: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Conclusion

• Achievements– 28 Real-time adjustable channels– 6.1kHZ frequency separation– Adjustable in frequency spectrum location with

starting from 10MHz– Works up to 100 ft wires

Page 25: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Conclusion

• Open-ended design– New algorithms with minimal hardware cost– M-Array modulation– Spread Spectrum– Frequency Hopping– Serial to parallel transmission using many

channels– Many more…

Page 26: Data integration in Multicarrier Reflectometry Sensorscs4710/archive/2005/MCR_thesis_pres.pdf · Data Integration • Automatic Gain Control – Signal is not too small for the sampler

Conclusion

• Some applications– Cars– Power lines– Computer cables– Networks– Any device that uses wires!