48
DATASHEET MAROC3 Draft : 2012,february MAROC project leaders: Sylvie BLIN: [email protected] Pierre BARRILLON: [email protected] Abstract: A new generation of circuit in AMS SiGe 0.35 mm technology has been designed for reading data from photomultiplier. One of these ASICs called MAROC (standing for Multi Anode ReadOut Chip) is an evolution of the 32 channels OPERA_ROC ASIC developed and installed on the OPERA experiment to auto-trigger and readout 64 channels Hamamatsu multi anode PMTs. MAROC is expected to discriminate the 64 channels PMT signals and produce 64 corresponding trigger outputs. The charge measurement is also available. The requirements of MAROC were defined by the ones given to the electronic chain of the ATLAS luminometer for which this chip was designed at first. In order to have the best detection efficiency a 100% trigger rate for signal greater than 1/3 photoelectron is required. This corresponds to a charge of 50fC for a PMT functioning at a gain of 106 (High Voltage = 900 V). The noise is expected to be less than 2fC. The crosstalk between neighboring channels should be better than 1%. Additionally the charge measurement should be feasible up to a signal of 30 photoelectrons with a linearity of 2%. The third version of this chip is made of: 64 low impedance preamplifier with a variable 8 bit gain for each channel. This variable gain allows reaching one of the requirements by compensating the PM gain dispersion up to a factor 4. 64 trigger outputs coming from either a fast shaper and his low offset discriminator in order to have 100% trigger efficiency rate for input signal close to 10fC or a bipolar fast shaper with lower gain followed by his discriminator allowing to trig for higher input charge without saturation. There is a switch to select between the first and the second trigger as the trigger output. The thresholds are set by two internal 10 bit-DACs. 64 variable slow shaper (50-150ns) followed by 2 Track and Hold to provide a multiplexed analog charge output from baseline up to 15pC. A digital version of this measurement is also furnished by a 12 bit ADC Wilkinson

datasheet MAROC3 V7 - Istituto Nazionale di Fisica …musico/DownloadFiles/Maroc/datasheet_MAR… · DATASHEET MAROC3 Draft : 2012,february MAROC project leaders: Sylvie BLIN: [email protected]

Embed Size (px)

Citation preview

DATASHEET

MAROC3 Draft : 2012,february MAROC project leaders: Sylvie BLIN: [email protected] Pierre BARRILLON: [email protected] Abstract:

A new generation of circuit in AMS SiGe 0.35 mm technology has been designed for reading data from photomultiplier. One of these ASICs called MAROC (standing for Multi Anode ReadOut Chip) is an evolution of the 32 channels OPERA_ROC ASIC developed and installed on the OPERA experiment to auto-trigger and readout 64 channels Hamamatsu multi anode PMTs. MAROC is expected to discriminate the 64 channels PMT signals and produce 64 corresponding trigger outputs. The charge measurement is also available.

The requirements of MAROC were defined by the ones given to the electronic chain of the ATLAS luminometer for which this chip was designed at first. In order to have the best detection efficiency a 100% trigger rate for signal greater than 1/3 photoelectron is required. This corresponds to a charge of 50fC for a PMT functioning at a gain of 106 (High Voltage = 900 V). The noise is expected to be less than 2fC. The crosstalk between neighboring channels should be better than 1%. Additionally the charge measurement should be feasible up to a signal of 30 photoelectrons with a linearity of 2%. The third version of this chip is made of:

64 low impedance preamplifier with a variable 8 bit gain for each channel. This variable gain allows reaching one of the requirements by compensating the PM gain dispersion up to a factor 4.

64 trigger outputs coming from either a fast shaper and his low offset discriminator in order to have

100% trigger efficiency rate for input signal close to 10fC or a bipolar fast shaper with lower gain followed by his discriminator allowing to trig for higher input charge without saturation. There is a switch to select between the first and the second trigger as the trigger output. The thresholds are set by two internal 10 bit-DACs.

64 variable slow shaper (50-150ns) followed by 2 Track and Hold to provide a multiplexed analog

charge output from baseline up to 15pC.

A digital version of this measurement is also furnished by a 12 bit ADC Wilkinson

DATASHEET

MAROC die snapshot

Chip characteristics: Technology : AMS SiGe 0.35μm Chip Area : 16mm2 (4mm *3.9mm) Package : CQFP240 Power consumption : 220mW ( 3.5mW/channel) Power supply : 0-3.5 V

DATASHEET

MAROC3 Datasheet 3/48

1. Table of content 1.  Table of content ......................................................................................................................... 3 2.  Table of figures .......................................................................................................................... 4 3.  General description .................................................................................................................... 5 4.  Preamplifier ............................................................................................................................... 7 

4.1.  Super Common Base .............................................................................................................. 7 4.2.  8bit-current mirror ................................................................................................................. 8 

5.  Sum outputs .............................................................................................................................. 8 5.1.  Principe ................................................................................................................................. 8 5.2.  Simulations ........................................................................................................................... 9 

6.  Slow Channel ........................................................................................................................... 10 6.1.  Charge measurement description ........................................................................................... 10 

6.1.1.  RC buffer and Slow Shaper ................................................................................................ 10 6.1.2.  Measurements results ....................................................................................................... 10 

6.2.  Slow shaper linearity ............................................................................................................ 12 6.3.  Slow shaper linearity at different PA gain ................................................................................ 13 6.4.  Crosstalk ............................................................................................................................. 14 6.5.  Wilkinson ADC ..................................................................................................................... 15 

6.5.1.  ADC description ................................................................................................................ 15 6.5.2.  Wilkinson calibration and pedestals measurements ............................................................... 17 6.5.3.  Correlation with DC measurements ..................................................................................... 22 

7.  Fast channel ............................................................................................................................ 23 7.1.  DAC .................................................................................................................................... 23 

7.1.1.  Principle .......................................................................................................................... 23 7.1.2.  DAC measurements .......................................................................................................... 23 

7.2.  Variable Fast Shapers ........................................................................................................... 24 7.3.  Fast Shaper Measurements .................................................................................................... 24 

7.3.1.  DC measurements ............................................................................................................ 24 8.  Trigger outputs ........................................................................................................................ 25 

8.1.  S-curve vs injected charge .................................................................................................... 25 8.1.1.  Bipolar Fast Shaper .......................................................................................................... 25 8.1.2.  Unipolar Fast Shaper ......................................................................................................... 25 8.1.3.  Correlation ...................................................................................................................... 26 

8.2.  S-curve vs injected charge at different feedback resistors settings ............................................. 27 8.2.1.  Bipolar Fast Shaper .......................................................................................................... 27 8.2.2.  Gain adjustement ............................................................................................................. 29 

8.3.  Cross talk ............................................................................................................................ 30 9.  Result summary ....................................................................................................................... 31 10.  TEST BOARD ........................................................................................................................... 32 

10.1.  MAROC3 chip Input/Output.................................................................................................... 32 10.1.1.  Pinout Table ................................................................................................................. 32 

10.2.  ASIC Registers ..................................................................................................................... 36 10.2.1.  D_SC, CK_SC and RST_SC (Static Register) ..................................................................... 36 10.2.2.  D_R, CK_R and RST_R* (Dynamic Register) .................................................................... 38 10.2.3.  Wilkinson calibration ........................................................... Error! Bookmark not defined. 

DATASHEET

MAROC3 Datasheet 4/48

2. Table of figures Figure 1:  Block schematic of MAROC3 chip architecture ........................................................................ 5 Figure 2:  One channel schematic ....................................................................................................... 6 Figure 3:  Block schematic ................................................................................................................. 7 Figure 4:  Super Common Base .......................................................................................................... 7 Figure 5:  Variable Gain block ............................................................................................................. 8 Figure 6:  Sum schematic .................................................................................................................. 8 Figure 7:  Sim: DC voltage and pulse amplitude versus the number of fibers ............................................ 9 Figure 8:  Sim: Waveform of the one sum output versus the number of fiber and linearity versus the number of fiber 9 Figure 9:  Sim: The sum linearity versus input charge for 1 and 8 fibers .................................................. 9 Figure 10:  RC Buffer schematic .......................................................................................................... 10 Figure 11:  Inside the chip: Waveform of the RC buffer (simulation) ....................................................... 10 Figure 12:  a: Slow shaper schematic; b: Slow shaper waveform (simulation) .......................................... 10 Figure 13:  Measurement Slow shaper waveform versus buffer capacitances and feedback SS capacitances for the same input charge (1pC) ................................................................................................................ 12 Figure 14:  Measurement Slow shaper waveform versus hold delay at different input charge and Slow shaper linearity at different shaping time .......................................................................................................... 13 Figure 15:  Charge Linearity at different gain ....................................................................................... 13 Figure 16:  Slow shaper crosstalk ....................................................................................................... 14 Figure 17:  Wilkinson ADC.................................................................................................................. 16 Figure 18:  Wilkinson signal Zoom ...................................................................................................... 16 Figure 19:  Wilkinson ADC digital outputs ............................................................................................ 17 Figure 20:  Delay between start_adc and transmitON ............................................................................ 17 Figure 21:  Ramp waveform for 12-bit conversions ............................................................................... 18 Figure 22:  Histogramme of 3 channel pedestals via the 12-bit Wilkinson ADC .......................................... 19 Figure 23:  Mean and rms of charge pedestal via the ADC ...................................................................... 19 Figure 24:  Ramp waveform for 10-bit conversions ............................................................................... 20 Figure 25:  Histogramme of 2 channel pedestals via the 10-bit Wilkinson ADC .......................................... 21 Figure 26:  Mean and rms of charge pedestal via the ADC ...................................................................... 21 Figure 27:  Ramp waveform for 8-bit conversions ................................................................................. 22 Figure 28:  DC level of the first and second T&H outputs ........................................................................ 22 Figure 29:  DAC schematic ................................................................................................................. 23 Figure 30:  DAC linearity : simulation and measurement ....................................................................... 23 Figure 31:  Fast Shapers schematics ................................................................................................... 24 Figure 32:  Pedestal uniformity: Bipolar and Unipolar DC level vs channel number .................................... 24 Figure 33:  Left: Scurve vs Injected charge at different threshold, Right: 50%trigger efficiency versus threshold 25 Figure 34:  Left: FSB1 gain for all channels , Right: intercept of the fit .................................................... 25 Figure 35:  Left: Scurve vs Injected charge at different threshold, Right: 50%trigger efficiency versus threshold 26 Figure 36:  Left: FSU gain for all channels , Right: intercept of the fit ...................................................... 26 Figure 37:  DC piedestals versus intercept ........................................................................................... 26 Figure 38:  Scurve versus input charge at different threshold and Rf settings ........................................... 27 Figure 39:  Charge at 50%trigger efficiency versus threshold voltage for different Rf settings .................... 27 Figure 40:  Charge at 50%trigger efficiency versus threshold voltage for different Rf settings .................... 28 Figure 41:  Preamplifier gain adjustement for the bipolar fast shaper ...................................................... 29 Figure 42:  Preamplifier gain adjustement for the unipolar fast shaper .................................................... 29 Figure 43:  Scope Slow shaper waveform versus buffer capacitances and feedback SS capacitances for the same input charge (1pC) ...................................................................................................................... 46 Figure 44:  Slow shaper waveform via scope for variable input charge ..................................................... 47 Figure 45:  Slow shaper linearity ........................................................................................................ 47 Figure 46:  Ramp waveform for 12-bit conversions ............................................................................... 48 

DATASHEET

MAROC3 Datasheet 5/48

3. General description

The MAROC3 chip is a 64-channel input front end circuit to read out MAPMT outputs. It provides one shaped signal proportional to the input charge and 64 trigger outputs. Two outputs are implemented to make OR of the first and the second discriminator in order to perform a charge measurement with an auto trigger. Figure 1 gives a simplified schematic of the whole chip with its main features.

Each channel is made of a variable gain preamplifier (“Super Commun Base”) with low input tunable impedance (50-100), a low offset and a low bias current (5A) in order to minimize the cross talk. This variable gain allows adapting the gain depending on the detector choice, up to a factor 4 to an accuracy of 1% with 8 bits. This gain tuning is also convenient to switch off a noisy channel. The amplified current feeds then two paths:

- A slow shaper path which consists in a CRRC2 shaper with switchable capacitances to allow tuning peaking time and gain and 2 Track and Hold Widlar differential buffer one to measure the baseline and other one to obtain charge measurement. These T&H blocks store the charge in a 2pF capacitor and deliver a multiplexed charge measurement with a 5 MHz readout speed.

- Two possible fast shapers selected with cmd_fsb_fsu switch are followed by a one discriminator to deliver trigger outputs. An other fast shaper with less gain is implemented to trig for higher threshold.

- CK_mux and d1_d2 commands allow selecting the wanted discriminator outputs as the trigger output. The different blocks are described in the next section.

CHANNEL 63

in63

RC

Preamplifier

Gain correction(8 bits)

Variableslow shaper

UnipolarFast shaper

DiscriVth 1

S&H

gnd

S&H

gnd

BipolarFast shaper

Half BipolarFast shaper

MUXEN_ADC=1 andH1H2_choice=0

DiscriVth 0

43

5

4

4

d1

d2

in0

cmd_sum

cmd_ss

cmd_fsu

cmd_fsb

cmd_fsb_fsu

cmd_fsb_fsu

MUX

in_ADCCHANNEL 0

in_ADC

Multiplexcharge output

Hit_ch0

ADC_output

Common to the 64 channels

DAC 010 bits

Vth 0

DAC 110 bits

Vth 1

Bandgap

Bias

Vbandgap

SUM of 8channels

8 SUMs

Hit_ch63

EN_ADC=1 andH1H2_choice=1

Hold 1(pedestal)

Hold 2(pulse max)

d1[63..0]OR1

mask_1

mask_2

d2[63..0]OR2

LVDS/CMOSClk_40M

Clkb_40M

MAROC3

Wilkinson ADC

8bits, 10bits or 12 bits

Figure 1: Block schematic of MAROC3 chip architecture

All the biases of each stage are common for every channels and have an internal default value

referenced at a 2.5V internal bandgap. Each threshold is loaded by a 10-bit DAC and all switch commands are programmed through the Slow Control register. There are 829 Slow Control (SC) parameters which are loaded serially to control the chip.

Few blocks are power pulsed to decrease the power consumption: Bandgap, DAC OTA, Slow Shaper A Read register is used to readout the charge output and the outputs of the selected fast shaper (Unipolar Fast Shaper “FSU”, Bipolar Fast Shaper “FSB1”, Half Gain Bipolar Fast Shaper “FSB2”).

DATASHEET

MAROC3 Datasheet 6/48

Figure 2: One channel schematic

"mod

n"

ng=

1l=

0.35

u

wto

t=2u

"modn"

ng=1l=0.35u

wtot=2u

"modn"

ng=1

l=0.35uwtot=2u

"mod

n"

ng=

1

l=0.

35u

wto

t=10

u

"mod

n"

ng=

1l=

0.35

u

wto

t=10

u

"mod

n"

ng=

1l=

0.35

uw

tot=

2u

"mod

n"

ng=

1l=

0.35

u

wto

t=2u

10u

10u

MN

3

MN35

MN51

MN

1

MN

2

MN

0

MN

6

read

_dc_

fsb1

out_

fsb

vss

out_

fs

cmdb_fsb_fsu

in_discri1

vss

out_fsb

cmd_fsb_fsu

in_discri1

vss

out_fsu

d1

gndd

vss

NO

R64

_1

d2

gndd

vss

NO

R64

_2

read

_dc_

fsu

out_

fsu

vss

out_

fs

read

_dc_

fsb2 in

_dis

cri2

vss

out_

fs

I262

I687

I257

I261

I212

I260

I259

I265

I76

I213

I146

I74

I236

I89

I231

I235

I234

I237

in1.

pola

rbin

2.po

lar

in1.

mas

kb

in2.

mas

km

ask=

0 (d

efau

lt va

lue)

in1.

cmdb

in2.

cmd

in1.

mas

kb

in2.

mas

km

ask=

0 (d

efau

lt va

lue)

cmd_

fsu=

0 --

> in

1-->

pas

inve

rsio

n_

-

-> fs

b ->

pas

inve

rsio

n

_ _cm

d_fs

u=1

-->

in2-

-> in

vers

ion

-->

fsu

-> in

vers

ion

Def

ault

valu

e=0

d1.C

Kb

d2.C

K

if fs

b

if fs

u

anti

sat,

no

casc

dig_

mux

dig_

mux

dig_

mux

dig_

mux

dig_

mux

Dis

crim

inat

or

Uni

pola

r F

S

FS

B H

ALF

GA

IN

Bip

olar

FS

Dis

criA

DC

valid

valid

valid

gnd_

fsb2vss

Q_

R1

vdd_

fsb

rea

d_

dc_

fsu

rea

d_

dc_

fsb

1

vdd_

fsb

Q_

R1

gnd_

fsb2vss

rea

d_

dc_

fsb

2Q

_R

2

vss

gnd_

fsb2

vdd_

fsb

in_d

iscr

i1

vss

out_

fs

vss

read

_dc_

fsb2

out_

fs

in_

fsb

gnd_

fsb1

vbi_

fsb

gnd_

fsb0

in_d

iscr

i2

out_

fsb

vss

vbo_

fsb

vbo

_d

iscr

i

vbi_

dis

criA

DC

vbm

_d

iscr

i

read

_dc_

fsb1

gnd_

fsb2

vss

vss

read

_dc_

fsu

in_f

suvs

s

out_

fsu

mas

k_d2

vddd

gndd

vss

gndd

vss

vss

vddd

vss

vss

gndd

d2

gndd

vddd

vss

gn

dd

gndd

d2

RS

Tb

_G

vddd

gndd

vss

vss

gndd

gndd

gn

dd

mux

_d1d

2

gndd

vss

gndd

vddd

vss

d1

out_

d2

vss

vss

gndd

vddd

vddd

Q_m

ask

d1gn

ddvd

ddvd

dd

vss

ma

sk_

d2

vdd

d

CK

_G

CK

_G

cmd_

fsb_

fsu

out_

d1

valid

b_dc

_fs

valid

_dc_

fsva

lid_d

c_fs

b2

VL

VH

vss

vdd_

fsu1

vdd_

disc

ri1

gnd_

fsu

vdd_

fsu2

gnd_

fsb1

gnd_

disc

riAD

C

vss

vss

vbi_

fsb

vdd_

fsb

gnd_

fsb2

vbo_

fsb

vdd_

disc

ri2

E_f

su

vdd_

fsb

gnd_

disc

ri

gnd_

fsb0

NO

R64

_1

Q_

ma

sk

NO

R64

_2

out_

fs

out_

VH

VL

G_d

iode

vref

_fsb

vbo_

disc

ri

sw_f

su_2

5kvr

ef_f

su

pola

r_di

scri

D_

ma

sk EN

b_tr

ista

teC

K_m

ux

vth2

sw_f

sb2_

100f

sw_f

su_5

0k

sw_f

sb1_

100k

vbm

_dis

cri

vbi_

disc

ri

vbi_

otaf

su

sw_f

su_4

0fvc

asc_

fsu

vbo_

tz

cmdb

_fsb

_fsu

sw_f

su_2

0f

vref

_fsb

sw_f

sb2_

50f

sw_f

sb1_

50kcm

d_fs

b_fs

u

sw_f

su_1

00k

vth1

sw_f

sb2_

100k

sw_f

sb1_

50f

sw_f

sb1_

100f

vbi_

tz

sw_f

sb2_

50k

gnd

vss

vcc

AQ

gnd

vss

vcc

AQ

vssd

gndd

vddd

out

CK

_mux

in1

in2

vssd

gndd

vddd

out

CK

_mux

in1

in2

vssd

gndd

vddd

out

CK

_mux

in1

in2

vssd

gndd

vddd

out

CK

_mux

in1

in2

vssd

gndd

vddd

out

CK

_mux

in1

in2

Vm

inus

Vpl

us

gnd

vcc

vss

AQ

gnd_DFF

vss_DFF

vdd_

DF

F

gnd_DFFvss_DFFvd

d_D

FF

gnd_Discri

vss_Discri

vdd_Discri

out_

Dis

cri

ibm

_Dis

cri

ibi_

Dis

cri

ibo_

Dis

cri

in_D

iscr

i

thre

shol

d

vcasc_FSU

vref_FSU

SW_100K

gnd_FSU

SW_20f

SW_40f

vbo_TZ

E_FSU

vbi_TZ

vbi_OTA

vdd_FSU1

vdd_FSU2

SW_25K

SW_50K

vss_FSU

G_d

iode

out_

FS

U

in_F

SU

SW_50K

SW_100K

SW_100f

gnd_FSB0

vss_FSB

vdd_FSB

vbi_FSB

gnd_FSB2

gnd_FSB1

vbo_FSB

out_

FS

B

SW_50f

in_F

SB

vref_FSB

SW_50K

SW_100K

SW_100f

gnd_FSB0

vss_FSB

vdd_FSBvbi_FSB

gnd_FSB2

gnd_FSB1

vbo_FSB

out_

FS

B

SW_50f

in_F

SB

vref_FSB

gnd_Discri

vss_Discri

vdd_Discri

out_

Dis

cri

ibm

_Dis

cri

ibi_

Dis

cri

ibo_

Dis

cri

in_D

iscr

i

thre

shol

d

gnd

vss

vdd

out

in valid

gnd

vss

vdd

out

in valid

gnd

vss

vdd

out

in valid

10u

0.35u

2u

0.35u

I229

I230

I195

I148

I194

slow

_sha

per

I149

I145

I215

I216

I225

in1.

invb

_dis

cri

_in2

.inv_

disc

ri

(=E

nd

Ra

mp

b o

f th

e g

ray

cou

nte

r)

Def

ault

valu

e=0

sw_s

sci=

3.5V

a la

mis

e so

us t

ensi

on

_(so

rtie

Q*

des

basc

ules

du

SC

)

Rpr

ot=

50 a

u ni

veau

des

Pad

s

Var

iabl

e C

f

mar

oc3

cmd_

sum

anti

sat,

no

casc

MA

RO

C3

dig

_m

ux

bu

ffer

ga

in_

reg

iste

rs

Dis

criA

DC

NM

OS

_mirr

or

du

al_

TH

CO

NV

EY

OR

in_f

sb

in_f

su

in_b

uf

cmd3

out_

ss

out_

pmos

cmd2

vss

cmd0

vss

vdd_

pa RS

Tb_

G

Q_G

cmd5

cmd7

CK

_G

cmd4

in_b

uf

vss

cmd6

cmd1

ou

t_b

uf

gnd_

pa

cmd4

cmd3

cmd2

cmd6

cmd7

cmd5

cmd1

vss

gnd_

pmos

cmd0

vbm

_dis

cri

vbo_

disc

ri

vddd

vss

vddd

gndd

gndd

vss

out_

ss_t

o_ad

c

sum

vdd

_p

mo

s

vss

gn

d_

dis

criA

DC

gndd

vddd

vdd

_d

iscr

iAD

C

vss

vdd

_p

a

vdd_

th

vss

gnd_

capa

gn

d_

bu

f

vdd

_b

uf1

gnd_

w

vdd

_ss

gn

d_

pm

os

vss

vbi_

bu

f

vdd

_ss

vbi_

pa

gnd_

thvs

s

gn

d_

pa

gn

d_

ss

vdd

_n

mo

s

vss

vdd_

w

vga

in_

pa

gn

d_

nm

os

Q_

G

ou

tb_

AD

Cco

mp

Q_

R2

Q_

test

Q_

R1

ss_

tra

ck

CK

_G

D_

G

RS

Tb

_G

vbi_

disc

riAD

C

inv_

dis

criA

DC

Ra

mp

swb_

buf_

2p

D_R

2

D_R

1

vbi_

ss

EN

_AD

C

H1H

2b_C

hoic

e

RS

Tb_

R

swb_

buf_

1p

sw_

ss_

12

00

f

D_

test

vre

f_ss

vca

sc_

pm

os

CK

_R

H2b

H1b

H1H

2_C

hoic

e

sw_

ss_

30

0f

cmd

_fs

u

swb_

buf_

250f

in_

pa

vca

sc_

nm

os

vbo_

ss

sw_

ss_

60

0f

cmd

_fs

bcm

d_

ss

swb_

buf_

500f

vb_w

c_te

st

gnd

vss

vcc

vssd

gndd

vddd

out

CK

_mux

in1

in2

gnd_DFFvss_DFF

vdd_

DF

F

swb_

bufc

0

swb_

bufc

1

swb_

bufc

2

swb_

bufc

3

gnd_

buf

vss_

buf

vdd_

buf2

vdd_

buf1

out_

buf

in_b

uf

vbi_

buf

cmd7

cmd6

gnd_DFF

cmd5

vss_DFF

vdd_DFF

RST_G*

cmd4

cmd3

cmd2

cmd1

cmd0

Q_G

CK

_G

D_G

vboswss1_c2

swss1_c1

swss1_c0 gnd

vbi

vdd vss

out

in vref

gnd_Discri

vss_Discri

vdd_Discri

out_

Dis

cri

ibm

_Dis

cri

ibi_

Dis

cri

ibo_

Dis

cri

in_D

iscr

i

thre

shol

d

cmd_

ss

cmd_

fsu

cmd_

sum

vdd_nmos

sum

out_

to_f

sb

out_

to_s

s

in_n

mos

out_

to_f

su

vcasc_nmos

cmd_

fsb

gnd_nmos

vss_nmos

D_R

1

gnd_capa

gnd_w

gndd

vss_th

vdd_w

vddd

Q_R

1

Q_R

2

out_

to_A

DC

ss_t

rack

CK

_R

D_R

2

EN

_AD

C

H1H

2_C

hoic

e

H1H

2b_C

hoic

e

H1b

H2b

RS

Tb

in vb_w

cmd1

cmd0

vss_pa

gnd_pa

gnd_pmos

cmd2

cmd3

cmd4

cmd5

cmd6

cmd7

ibi_pa

vgain_pa

vcasc_pmos

vdd_pa

out_

pmos

in_p

a

DATASHEET

MAROC3 Datasheet 7/48

4. Preamplifier

4.1. Super Common Base The preamplifier (PA) is a super common base to minimise the input impedance following by scaled

mirror to set the gain for each channel. The gain of 0 allows inhibiting the signal at input. Otherwise the gain can be tuned from 0 to about 4.

Figure 3: Block schematic

Figure 4: Super Common Base

Rc

vb_pa

Q1

Q2

in_pa

ibi_pa

vdd_pa

in_pmos

cmd 0 à cmd 7

SUMVariable Gain

Super Commun Base

input

cmd_SUM

current mirrors

cmd_ss

cmd_fsu

cmd_fsb

in_buf

in_fsu

in_fsb

in

DATASHEET

MAROC3 Datasheet 8/48

After the variable gain block (figure 5), the current is copied to provide the sum outputs and to send or not signal at the slow shaper and fast shapers inputs (figure 3). The input impedance of the SBC is given by: which is a low value resulting in small currents in the mirrors and thereby reducing the crosstalk. The polarisation current ibi_pa is small (5uA) to minimize the power consumption.

4.2. 8bit-current mirror The PA output is a current that is copied by 8 variable size current mirrors that can be selected using the slow control parameters. There are 8bits/channel to command these switches. These 8 bits correspond to a binary Gain tuneable between 0 and 255 and to an analog gain varying from 0 up to 3.984 (=1/64+ 1/32 …+1/2+1+2). The gain value 64 corresponds to the analog unity gain. The current mirrors are quite big and cascaded to decrease the early effect and thus to increase the linearity. The chosen length (L=0.5 µm) is a compromise between speed and linearity.

Vdd VddVddVddVddVdd

cmd5 cmd3cmd4 cmd2 cmd1 cmd0

in_pmos

vdd_PA

out_pmos

64u/0.5u 2u/0.5u4u/0.5u8u/0.5u16u/0.5u32u/0.5u

x 2 x 1/16x 1/8x 1/4x 0.5x 1

vcasc_pmos

Vdd

cmd6

Vdd

cmd7

x 1/32 x 1/64

1u/0.5u 0.5u/0.5u

Gain variable

Figure 5: Variable Gain block

5. Sum outputs

5.1. Principe We added the possibility to perform a sum up to 8 successive channel preamplifier signals.

Vcascode_nmoscmd 0 à cmd 7

input i

Sum output4k

vdd_ss

Variable Gain

Super Common Base

Vcascode_nmos

cmd 0 à cmd 7

input i+7

x1

cmd_sum i cmd_sum i+7

Figure 6: Sum schematic

cm

m

Rg

gRZin

1

20

1

/1

DATASHEET

MAROC3 Datasheet 9/48

5.2. Simulations In this simulation, a same charge (100fC ) is injected in all channels and the preamplifier gain is 1.

Figure 7: Sim: DC voltage and pulse amplitude versus the number of fibers

The DC voltage is proportional with the number of fibers used for the sum.

Figure 8: Sim: Waveform of the one sum output versus the number of fiber and linearity versus the number of fiber

Figure 9: Sim: The sum linearity versus input charge for 1 and 8 fibers

DATASHEET

MAROC3 Datasheet 10/48

6. Slow Channel

6.1. Charge measurement description

6.1.1. RC buffer and Slow Shaper

The preamplifier signal goes to the slow channel part thanks to a NMOS current mirror. The charge measurement will be performed through a RC buffer with variable capacitors to change the gain and a slow shaper to improve the signal/noise ratio at different rise time settings.

Figure 10: RC Buffer schematic

Figure 11: Inside the chip: Waveform of the RC buffer (simulation)

The waveform on the right graph cannot be seen on a scope because it is only an internal signal. The simulation shows the capacitor settings influence.

Figure 12: a: Slow shaper schematic; b: Slow shaper waveform (simulation)

Its gain and speed can be tuned changing the RC buffer network and SS feedback capacitor (SC parameters). The peaking time (tp5-100%) is expected to vary from 30 ns up to 150ns. (tp5-100%=0.98τ). The SS is followed by 2 Track and Hold to store the baseline and maximum charge in a 2pF capacitor. The output can be read by selecting the channel using the Read register.

6.1.2. Measurements results The analogue output has been studied as a function of different tuneable capacitors. There are 3

feedback capacitors on the slow shaper (Css varies from 0.3pF to 2.1pF) and 4 buffer capacitors (Cbuf varies from 0pF to 3.75pF) common to all the channels, that can be switched on and off independently in order to vary the signal shape and its duration.

To reconstruct the waveform of the slow shaper, internal ADC conversions have been performed at different hold delays. This measure allows finding the best delay for the hold signal (hold value that corresponds to the signal maximum) for 8 capacitor configurations.

x 1

50k

swb_buf_2p

2pF

swb_buf_1p

1pF

swb_buf_500f

500fF

swb_buf_250f

250fF

vdd_buf1

in_buf

vbi_buf

gnd_buf

in_slow_shaper

RC Buffer

sw_ss_1200f

sw_ss_600f

vref_ss +

-out_slow_shaper

in_slow_shaper

sw_ss_300f

300fF

600fF

1.2pF

100k

0.9pF

1.8pF

3.6pF

33k

sw_ss_1200f

sw_ss_600f

sw_ss_300f

SLOW SHAPER

DATASHEET

MAROC3 Datasheet 11/48

Converted data are plotted for different values of the hold (range 0-500, step 10n ns) in the following way: a pulse of 100 mV amplitude has been sent to a 10pF capacitor connected to channel 8.

SS capa 0.3p 0.9p 1.5p 2.1p DC level (V) 269.6 270 269.6 269.3 Tmax (ns) 50 66 76 84 Vmax V) 1252.6 1216.8 1070.6 965.7

SS capa 0.3p 0.9p 1.5p 2.1p DC level 276.8 276.5 276.8 277.5 Tmax 54 76 89 95 Vmax 956.6 1009.4 932.1 859.2

SS capa 0.3p 0.9p 1.5p 2.1p DC level (V) 269.1 268.9 269.3 269.5 Tmax (ns) 54 79 97 110 Vmax V) 833.9 884.7 825.9 773.2

SS capa 0.3p 0.9p 1.5p 2.1p DC level (V) 277.5 276.9 277.1 276.8 Tmax (ns) 58 88 100 121 Vmax V) 713 805.2 763.5 723.9

SS capa 0.3p 0.9p 1.5p 2.1p DC level (V) 268.9 268.8 270.4 277.1 Tmax (ns) 59 88 112 124 Vmax V) 645.9 737.2 705.1 672.7

SS capa 0.3p 0.9p 1.5p 2.1p DC level (V) 277.1 277.9 277 277.2 Tmax (ns) 59 92 116 135 Vmax V) 595.6 692.1 669.8 643.7

DATASHEET

MAROC3 Datasheet 12/48

Figure 13: Measurement Slow shaper waveform versus buffer capacitances and feedback SS capacitances for the same input charge (1pC)

For few Cbuf and Css combinaisons, we can see a coupling with the FSB1. But this problem doesn’t disturb the hold position at the maximum.

6.2. Slow shaper linearity A scan of the hold delay at few input voltage amplitude has been performed. The data converted as function of hold delay have been plotted for 3 shaping configurations.

SS capa 0.3p 0.9p 1.5p 2.1p DC level (V) 276.8 276.8 276.6 276.8 Tmax (ns) 61 93 122 139 Vmax V) 557.6 650.5 633.6 613.6

SS capa 0.3p 0.9p 1.5p 2.1p DC level (V) 277.3 277 276.9 277.6 Tmax (ns) 62 92 126 142 Vmax (V) 527.6 616.3 606.1 589.9

DATASHEET

MAROC3 Datasheet 13/48

Figure 14: Measurement Slow shaper waveform versus hold delay at different input charge and Slow shaper linearity at different shaping time

6.3. Slow shaper linearity at different PA gain With a fixed hold value of 100n (that means at the signal peak) and Cbuf=0pF and Css=2.1pF, a scan on

the input voltage amplitude has been performed to test the linearity of the ASIC. The input charge has been varied from 0 to 30pC while 4 values for the preamplifier gain have been chosen (4 - 8 - 16 – 32 – 40).

Figure 15: Charge Linearity at different gain

The table shows the gain of slow shaper and the limit of the fit to obtain a non linearity of about 2%.

Gain 4 8 16 32 40 64

Slope (adc count/pC) 35 70 148 305 383 636

Intercept (adc count) 271 271 269 265 262 271

Fit limit (pC) 30 20 10 5 4 3

The same measurement has been performed with the lowest shaping time: Cbuf=3.75pF and Css=2.1pF and hold delay=160ns.

config 0p+0.3p 0p+2.1p 3.75p+2.1p

Hold delay 50ns 85ns 150ns

gain 980.6 adc/pC 717.2 adc/pC 276.3 adc/pC

intercept 288 adc 286 adc 313a dc

DATASHEET

MAROC3 Datasheet 14/48

The table shows the gain of slow shaper and the limit of the fit to obtain a non linearity of about 2%.

Gain 4 8

12 16

24 32 40 64

Slope (adc count/pC) 13 26 9 52 79 107 138 225

Intercept (adc count) 247 249 246 247 247 247 246 244

Fit limit (pC) 85 85 75 75 51 39.1 30.6 18.9

Data at fit limit 1292.5 2325.6 2991.7 3801.7 4026.7 4054.6 4073.5 4034.3

6.4. Crosstalk

To measure the crosstalk a large signal has been send in channel 8. The ratio between the adjacent channels and the channel 8 signal gives 0.25% crosstalk

Figure 16: Slow shaper crosstalk

Slow shaper cross‐talk

‐0.2

‐0.1

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800

Time (ns)

Amplitude (V)

ch8

ch7x100

ch9x100

DATASHEET

MAROC3 Datasheet 15/48

6.5. Wilkinson ADC

6.5.1. ADC description

Ch.0

Ch.1

Ch.62

Ch.63

Ramp generator

12 bits register

12 bits register

12 bits register

12 bits register

12 bits gray counter

12

Start Ramp Reset Ramp

64 Channel hitRegister in Wilkinson control

Vref_sh

Start Cmpt

99 vref_Ramp97 Ramp output

95 vslope

Start_ADC

RST_ADC

out_ADC

TransmitOn_ADC

startstopreset overflow

115

114

184

116

The Analog to Digital conversion chosen is a Ramp ADC working at 40MHz. The voltage to digital conversion is performed by measuring the time between the start of a voltage ramp (or another position) and its crossing, detected by the comparator, of the voltage to be converted. The time measurement is achieved by a gray counter not started simultaneously with the ramp. Indeed the launching of the ramp is ordered by the start_ADC falling edge signal. The crossing between the ramp and the reference voltage of the slow shaper generates a trigger pulse which becomes the start of the gray counter. When a comparator triggers, its output is synchronized by the clock to memorize the state of the counter which will be the digital data.

The 12-bit gray counter and the ramp generator are shared between the channels. The ADC part replicated in each channel can be reduced to a discriminator and a memory used to copy and memorize the counter state when the discriminator triggers. So the power consumption and the area used can be very small even for high dynamic range.

The use of this kind of ADC is limited by its long conversion time. In fact, for an N bit conversion, it requires 2N/Fck, where Fck is the clock period of the counter. So for a 12-bit conversion, making use of a 40 MHz clock, 102.4µs are required.

On the test board, the RST_ADC is synchronised by the Hold1 pulse falling edge and stays at 0 during

25ns. The Start_ADC is synchronised by the rising edge of the RST_ADC pulse and have to stay at zero during 3 clock ticks.

The ramp begins at the Start_ADC falling edge and the readout of the data starts automatically at the end of the conversion. Data are synchronised with the rising edge of the TransmitOn_ADC.

Be careful: The TransmitOn_ADC and the out_ADC signals are either on pin 114 or 115 depending of

the chip production run. The swapping can be easily done in the FPGA.

DATASHEET

MAROC3 Datasheet 16/48

Figure 17: Wilkinson ADC

Figure 18: Wilkinson signal Zoom

Figure 18 shows that the ADC conversion only depends on RST_ADC, Start_ADC and 40Mhez clock. The first has to be low for one clock cycle (25 ns) and on its rising edge, Start_ADC goes low.

Rst_adc

start_adc

Ck_40M

DATASHEET

MAROC3 Datasheet 17/48

Figure 19: Wilkinson ADC digital outputs

Figure 20: Delay between start_adc and transmitON

6.5.2. Wilkinson calibration and pedestals measurements

With this ASIC we don’t have a dedicated input to calibrate the better reference and slope of the ramp. So we have to send a huge input charge to saturate the slow shaper and tune the ramp in order to have the highest data converted without to be at the over flow (means data equal 0). The saturation voltage of the slow shaper depends of the buffer capacitor and feedback capacitor settings.

The calibration has been performed with the highest shaping time: with Cbuf=3.75pF and Css=2.1pF and with 10 different charge inputs. On the test board a 470k resistor has been added at the pin 95 to change the slope of the ramp and to be able to convert the saturation voltage of the slow shaper. (V(pin 95=0.584V).

19.2µs=12bit*64channels*25ns

Data readout=40MHz

DATASHEET

MAROC3 Datasheet 18/48

12 bits ramps

Figure 21: Ramp waveform for 12-bit conversions

Input charge (pC)

Tmax (µs)

Vmax (V)

Data (adc unit)

Rms (adc unit)

Start_ counter

(µs)

Voltage at start

counter (V)

LSB (mV/adc

unit)

slope (mV/µs)

intercept (V)

0 18.06 1.05 263 2 11.51 0.976 0.265 9.972 0.861 0.1 19.21 1.06 333.2 1.9 10.88 0.97 0.264 9.971 0.861 0.5 25.79 1.12 593.5 2.3 10.95 0.971 0.258 10.01 0.861 1 33.39 1.2 896.1 2.1 10.99 0.971 0.258 10.06 0.86

2.5 52.59 1.4 1674 2.2 10.75 0.969 0.255 10.08 0.86 5 72.34 1.59 2454 2 10.99 0.971 0.254 10.06 0.861

7.5 80.96 1.68 2803 2 10.88 0.97 0.254 10.09 0.86

10 82.56 1.7 2865 2.1 10.95 0.97 0.254 10.09 0.86

25 87.41 1.75 3063 1.8 10.83 0.969 0.254 10.09 0.859 50 90.39 1.78 3183 1.9 10.82 0.969 0.254 10.1 0.86

mean 10.95 0.97 0.257 10.05 0.861

rms 0.21 0.002 0.004 0.05 0.0007

Thanks to all ramp waveforms and the data converted the temporal position the start counter can be estimated at 10.95µs. The subtraction between the voltage max and the voltage at start counter divided by the data in time unit give us the value of the LSB. In our case the LSB of the 12-bit ADC is 257µV. Conversion formula: Analog voltage [mV]=970[mV] +data*LSB[mV/adc]

DATASHEET

MAROC3 Datasheet 19/48

Pedestals 12-bit conversion

Figure 22: Histogramme of 3 channel pedestals via the 12-bit Wilkinson ADC

The histogram rms corresponds of the noise of the slow shaper. In our case the slow shaper noise is 2 adc unit or about 514µV. The scope measurement gives about 580µV.

Figure 23: Mean and rms of charge pedestal via the ADC

These graphs show a good uniformity for the pedestals and for the noise et the output of the slow shaper. The mean of the charge pedestal id about 270 adc unit or 1.039V.

DATASHEET

MAROC3 Datasheet 20/48

Now we can to the same calibration for the 10 and 8 bits conversion.

10 bits ramps

Figure 24: Ramp waveform for 10-bit conversions

Tmax (µs)

Vmax (V)

Data (adc unit)

Rms (adc unit)

Start_ counter

(µs)

Voltage at start

counter (V)

LSB (mV/adc

unit)

slope (mV/s)

intercept (V)

0pC 4.12 1.06 60.5 0.55 2.61 0.975 1.421 45.581 0.856 0.1pC 4.53 1.07 78.7 0.56 2.57 0.973 1.276 45.885 0.856 0.5pC 6.11 1.15 143.4 0.56 2.52 0.972 1.235 45.919 0.856 1pC 7.82 1.23 215.1 0.55 2.44 0.968 1.220 46.285 0.855 5pC 16.78 1.64 574.1 0.56 2.43 0.968 1.176 46.238 0.855 10pC 19.12 1.75 662 0.52 2.57 0.974 1.170 46.229 0.855 50pC 21.50 1.86 756.6 0.53 2.59 0.976 1.171 46.119 0.856

mean 2.53173 0.972 1.238 46.04 0.856

rms 0.072 0.003 0.09 0.0003 <0.001

Thanks to all ramp waveforms and the data converted the temporal position the start counter can be estimated. The subtraction between the voltage max and the voltage at start counter divided by the data in time unit give us the value of the LSB. In our case the LSB of the 10-bit ADC is 1.24mV.

DATASHEET

MAROC3 Datasheet 21/48

Pedestals 10bit conversion

Figure 25: Histogramme of 2 channel pedestals via the 10-bit Wilkinson ADC

The histogram rms corresponds of the noise of the slow shaper. In our case the slow shaper noise is 0.5 adc unit or about 620µV. The scope measurement gives about 600µV.

Figure 26: Mean and rms of charge pedestal via the ADC

These graphs show a good uniformity for the pedestals and for the noise et the output of the slow shaper. The mean of the charge pedestal id about 60 adc unit or 1.044.V.

DATASHEET

MAROC3 Datasheet 22/48

8 bits ramps

Figure 27: Ramp waveform for 8-bit conversions

Thanks to all ramp waveforms and the data converted the temporal position the start counter can be estimated. The subtraction between the voltage max and the voltage at start counter divided by the data in time unit give us the value of the LSB. In our case the LSB of the 10-bit ADC is 5.13mV.

Pedestals

6.5.3. Correlation with DC measurements

Figure 28: DC level of the first and second T&H outputs

The DC measurements show the same uniformity than the 12 or 10 or 8 bits pedestals conversions.

Tmax (µs)

Vmax (V)

Data (adc unit)

Rms (adc unit)

Start_counter

(µs)

Voltage at start counter

(V)

LSB (mV/adc

unit)

slope (mV/s)

intercept (V)

0pC 1.05 1.06 14 0 0.704 0.983 5.598 192.2 0.848 0.1pC 1.15 1.08 18 0 0.705 0.984 5.354 192.5 0.848 0.5pC 1.54 1.16 33.5 0.5 0.706 0.984 5.115 192.9 0.8488 1pC 1.97 1.24 50.5 0.5 0.710 0.984 5.107 194.6 0.846 5pC 4.1 1.66 136 0.08 0.698 0.982 4.947 194.2 0.847 10pC 4.64 1.76 157.6 0.48 0.702 0.983 4.896 194.1 0.847 50pC 5.22 1.87 180 0.03 0.719 0.987 4.893 193.8 0.847

mean 0.706 0.984 5.13 193.48 0.847

rms 0.006 0.001 0.3 0.009 <0.001

DATASHEET

MAROC3 Datasheet 23/48

7. Fast channel To deliver the trigger information there are 3 variable fast shapers and two discriminators. Two fast shapers (one unipolar and another bipolar) followed by one discriminator are dedicated for the photon electron counting and one bipolar fast shaper with lower gain followed by its discriminator has been added to provide a trigger signal at higher input charge. The 2 discriminator outputs are multiplexed to provide only 64 trigger outputs. The thresholds are loaded by 2 internal 10-bit DACs common for the 64 channels.

7.1. DAC

7.1.1. Principle The threshold of each discriminator is set by a 10 bit-DAC which is different that those integrated in MAROC1 or MAROC2. The 2 DACs are identical except that the reference current for DAC0 can be chosen using SC parameter (small dac) equal or half of the Iref. This is to allow finest tunings of the thresholds for small dynamic range charge inputs. Reference voltages are referred to an integrated band gap (v_bg=2.5V).

Figure 29: DAC schematic

7.1.2. DAC measurements

Figure 30: DAC linearity : simulation and measurement

DAC0 DAC0 small DAC1

slope 2.3mV/UDAC 1.1mV/UDAC 2.2mV/UDAC

DAC=0 2.3V 2.3V 2.3V

Linearity: ±0.2%

DC_FSB

DC_FSU

DATASHEET

MAROC3 Datasheet 24/48

7.2. Variable Fast Shapers There are 2 variable CRRC fast shapers. The network feedback of each amplifier can be changed independently thanks to the SC parameters. The peaking time is ≈ 20-25 ns.

Bipolar Fast Shaper

Cf: 20fF

Rf: 100k

100fF

100k

50k

50fF

30k

3pF

sw_fsb2_100K

sw_fsb2_50K

sw_fsb2_100f

sw_fsb2_50f

in_F

SB

10u/2u 10u/2u

vdd_fsb

Half Bipolar Fast Shaper

30k

3pF

in_F

SB

10u/2u 5u/2u

vdd_fsbCf: 20fF

Rf: 100k

100fF

100k

50k

50fF

sw_fsb2_100K

sw_fsb2_50K

sw_fsb2_100f

sw_fsb2_50f

Figure 31: Fast Shapers schematics

7.3. Fast Shaper Measurements

7.3.1. DC measurements The DC levels, named also pedestals, of each fast shaper outputs for all channels are measured.

Figure 32: Pedestal uniformity: Bipolar and Unipolar DC level vs channel number

Bipolar fast shaper n°1 Bipolar fast shaper n°2 Unipolar fast shaper

DC level Mean=1.926V Rms=1.5mV

Mean=1.926V Rms=1.5mV

Mean=1.005V Rms=1.2mV

Equivalent DAC value 353 (small DAC) 169 569

TZ

OTA

Cf: 10fF

Rf: 100k

40fF

100k

50k

25k

20fF

Unipolar Fast Shaper

sw_fsu_100K

sw_fsu_50K

sw_fsu_25K

sw_fsu_40f

sw_fsu_20f

in_F

SU

DATASHEET

MAROC3 Datasheet 25/48

8. Trigger outputs

8.1. S-curve vs injected charge

8.1.1. Bipolar Fast Shaper In order to characterize the FSB1, the Scurves versus injected charge has been performed at variable

DAC values (Figure. 32 left). All scurves have been fitted and charges corresponding of 50%trigger efficiency have been extracted and plotted versus the threshold.

Figure 33: Left: Scurve vs Injected charge at different threshold, Right: 50%trigger efficiency versus threshold

The inverse slope is equivalent of the gain of the bipolar fast shaper: 2.4V/pC and the intercept is equivalent at the DC through the discriminator. This measure has been done for all channels to check the channel uniformity.

Figure 34: Left: FSB1 gain for all channels , Right: intercept of the fit

8.1.2. Unipolar Fast Shaper Same measurements have been performed with the unipolar fast shaper.

Slope inverse = 2.4V/pCIntercept ~ 1.920V

Slope inverse = 4.3V/pC Intercept ~ 0.995V

DATASHEET

MAROC3 Datasheet 26/48

Figure 35: Left: Scurve vs Injected charge at different threshold, Right: 50%trigger efficiency versus threshold

The inverse of the slope gives the Unipolar fast shaper gain: 4.4V/pC

Figure 36: Left: FSU gain for all channels , Right: intercept of the fit

Very good results in trigger measurements have been obtained. Thanks to the S-Curve tests with

different injected charges, it has been demonstrated that the discriminator threshold can be set at lower than 1/3 of pe for the bipolar and the unipolar fast shaper.

8.1.3. Correlation The bipolar and unipolar fast shapers are followed by the same discriminator. So the influence of the offset could be seen through the next graph where the DC pedestals have been plotted en function of the intercept for all channels.

Figure 37: DC piedestals versus intercept

DATASHEET

MAROC3 Datasheet 27/48

8.2. S-curve vs injected charge at different feedback resistors settings

8.2.1. Bipolar Fast Shaper The FS feedback resistor is made of one 100k resistor and in parallel of two resistors (50k and 100k) can be added by slow control register.

Figure 38: Scurve versus input charge at different threshold and Rf settings

*

Figure 39: Charge at 50%trigger efficiency versus threshold voltage for different Rf settings

Rf settings

Equivalent

resistor Gain

(V/pC)

Minimum charge

detected

0k 100k 2.32 4fC 100k 50k 1.89 7.5fC

50k 33k 1.56 10fC

150k 25k 1.32

Bipolar Fast Shaper

Cf: 20fF

Rf: 100k

100fF

100k

50k

50fF

30k

3pF

sw_fsb2_100K

sw_fsb2_50K

sw_fsb2_100f

sw_fsb2_50f

in_F

SB

10u/2u 10u/2u

vdd_fsb

DATASHEET

MAROC3 Datasheet 28/48

Figure 40: Charge at 50%trigger efficiency versus threshold voltage for different Rf settings

The feedback resistors chosen modify the fast shaper gain.

DATASHEET

MAROC3 Datasheet 29/48

8.2.2. Gain adjustement

Figure 41: Preamplifier gain adjustement for the bipolar fast shaper

The gain adjustement improve the trigger uniformity inside the asic.

Figure 42: Preamplifier gain adjustement for the unipolar fast shaper

With the Unipolar fast shaper, the Scurves show different slope at 50% trigger efficiency which dhould be correlated with channel noise. The noise measurement in function of channel should be performed. Slope versus channels? Correlation avec le noise rms?

DATASHEET

MAROC3 Datasheet 30/48

8.3. Cross talk

1.5% 3.1pC ch7

1.6% 2.9pC ch9

47fC ch8

Cross talk 50% trigger

efficiency

FSB

0.9% 5.1pC ch7

1% 4.8pC ch9

48fC ch8

Cross talk 50% trigger

efficiency

FSU

DATASHEET

MAROC3 Datasheet 31/48

9. Result summary

MAROC3

inputs

number 64

polarity negative

outputs

triggers 64 triggers (Vhi=1.5V and Vlo=0.7V)

charge 1 analog multiplex output 1 digital charge (12, 10 or 8 bits)

PA Gain variable 8 bits

(0 to ~4)

BFS

Gain 4.5V/pC

Noise 1.6mV

Min charge 5fC

UFS

Gain 2.3V/pC

Noise 2.4mV

Min charge 3fC

Slow

shaper

Gain 55mV/pC (gain64) – shaping=160ns

Noise 0.58mV

DATASHEET

MAROC3 Datasheet 32/48

10. TEST BOARD

10.1. MAROC3 chip Input/Output

10.1.1. Pinout Table

MAROC3 is pin-pin compatible with MAROC2. GND is the ground layer (0V) and AVDD and DVDD are power layers (3.5V) for the Asic

MAROC3

pin number pin name

Comments

DC voltage

Bias (internal resistors and level value)

1 in<3> 0.8V

29 in<31>

30 gnd_pa

31 in<32>

60 in<61>

61 IN<62>

63 IN<63>

63 gnd_pa GND

64 D_SC The same signal, only the name is changed TTL 3.3 from FPGA

65 vssa GND

66 RSTn_SC The same signal, only the name is changed 3.5V TTL 3.3 from FPGA

67 vdd_pa AVDD

68 CK_SC The same signal, only the name is changed TTL 3.3 from FPGA

69 vgain_pa The same signal, only the name is changed 2.5V 150 vdd_PA

70 ibi_ss 0.8V 125k vdd_SS

71 vcasc_pmos 1V 2,5k vdd_PA // 1kgnd_PMOS

72 ibo_ss 0.8V 125k vdd_SS

73 gnd_nmos GND

74 ibi_buf 0.8V 80k vdd_BUF2

75 vref_ss 1.1V 14k vdd_BG // 11kgnd_SS

76 Qbuf_R TTL 3.3 to FPGA

77 gnd_w The same signal, only the name is changed GND

78 CK_R TTL 3.3 from FPGA

79 Hold1 default value=3,3V or 3.5V

80 RSTb_R The same signal, only the name is changed 3.5V TTL 3.3 from FPGA

81 Hold2 default value=3,3 or 3.5VV

82 D_R TTL 3.3 from FPGA

83 vdd_w The same signal, only the name is changed AVDD

DATASHEET

MAROC3 Datasheet 33/48

84 ibo_dac 0,6V 100k vdd_DAC

85 gnd_dac GND

86 iref_dac 0,46V 305kvdd_DAC

87 vdd_dac AVDD

ibi_dac 15kvdd_DAC

88 vref_dac 2V 50kvdd_BG //200k gnd_DAC

89 vbi_tz 2,6V 170k gnd_FSU

90 vdd_fsu1 AVDD

91 G_diode 1V 1kgnd_FSU//2,5kW vdd_FSU1

92 E_fsu GND

93 vbo_tz 0.96V 40k vdd_FSU2

94 vcasc_fsu 1V 2,5k vdd_FSU1 // 10kgnd_FSU

95 vslope 800mV 154k vdd_BG // 46kgnd_Wilk

96 vref_fsu 1V 1,5k vdd_BG // 1kgnd_FSU

97 ramp Scope waveform

98 gnd_wilk GND

99 vref_ramp 0.8V 126k vdd_BG // 74kgnd_Wilk

100 vdd_wilk AVDD

101 ib_integ 15kgnd_Wilk

102 vssa GND

103 vssm GND

104 vbi_discri The same signal, only the name is changed 0.8V 100k vdd_discri

105 vdd_discri The same signal, only the name is changed AVDD

106 vbm_discri The same signal, only the name is changed 2.5V 100k gnd_discri

107 vdd_discriADC The same signal, only the name is changed AVDD

108 vbo_discri The same signal, only the name is changed 2.5V 100k gnd_discri

109 gnd_discri The same signal, only the name is changed GND

110 PWR_ON should be set to vdd value (3.5V)

111 vssd GND

112 gndd GND

113 vddd2 DVDD

114 TransmitOn The same signal, only the name is changed VH-VL logic to FPGA

115 out_ADC The same signal, only the name is changed VH-VL logic to FPGA

116 start_ADC The same signal, only the name is changed TTL 3.3 from FPGA

117 vbi_discriADC Rx to vdda and Rx to gnd if needed 0,8V

118 out<63> VH-VL logic to FPGA

119 out<62>

120 out<61>

121 out<60>

DATASHEET

MAROC3 Datasheet 34/48

150 vssd GND

180 out<2>

181 out<1>

182 out<0>

183 gndd GND

184 RST_ADC The same signal, only the name is changed TLL 3.3 from FPGA

185 vddd DVDD

186 CKb_40M The same signal, only the name is changed LVDS from FPGA

187 VL

Low value of the trigger voltage and ADC outputs (700mV,100nF to gnd) 700mV analog input voltage: can be changed

188 CK_40M The same signal, only the name is changed LVDS from FPGA

189 vssd GND

190 VH

High value of the trigger voltage and ADC outputs(1.5V,100nF to gnd) 1,5V analog input voltage:can be changed

191 OR_0 OR of the first discriminators TTL output

192 OR_1 OR of the second discriminators TTL output

193 vdd_discriADC The same signal, only the name is changed AVDD

194 vth1 100nF to gnd pin test: threshold second discri

195 gnd_discri The same signal, only the name is changed GND

196 vth0 100nF to gnd pin test: threshold first discri

197 vssm GND

198 vss GND

199 Qbuf_SC The same signal, only the name is changed TTL 3,3 to FPGA

200 v_bg internal bandgap (value 2,5V) 2.5V modification between MAROC2 (external bandgap 3,3V) and MAROC3 (internal bandgap 2,5V)

201 out_fs a buffer should be added 1V // 2V test output (1V for FSU or 2V for FSB1)

202 gnd_fsu GND

203 vb_otafsu The same signal, only the name is changed 2.7V 500k gnd_FSU

204 vdd_fsu2 AVDD

205 vbo_fsb 2,3V 100k gnd_FB1

206 gnd_fsb1 GND

207 vbi_fsb 2.5V 60k gnd_FB1

208 vref_fsb 2V vdd_BG // 2kgnd_FB1

209 ib_w 0.8V 250k vdd_w

210 vdd_fsb AVDD

ib_otaq 15k vdd_otaq

211 gnd_fsb0 GND

212 ib_sum 1V 5,6k vdd_ss

213 EN_otaq TTL 3.3V from FPGA: default value should be 3.3V

DATASHEET

MAROC3 Datasheet 35/48

214 sum8

215 out_q a buffer should be added 1V Charge ouput

216 sum7

217 gnd_capa GND

218 sum6

219 gnd_ss GND

220 sum5

221 vdd_ss AVDD

222 sum4

223 vdd_buf1 AVDD

224 sum3

225 vdd_otaq AVDD

226 sum2

227 gnd_otaq GND

228 sum1

229 vcasc_nmos 1.5V 2k vdd_NMOS //1,5kgnd_NMOS

230 vbi_pa Rx to vdda and Rx to gnd if needed 0,65V 500k vdd_pa

231 gnd_nmos GND

232 NC

233 vdd_pa AVDD

234 Ctest input signal for internal capacitors Test input

235 vssi GND

236 vdd_pad The same signal, only the name is changed AVDD

237 gnd_pa GND

238 in<0>

239 in<1>

240 in<2>

power pin name Pin

number current (mA)

power pin name Pin

number current (mA)

vdd_w 83 2.4 vdd_FSU2 204 5.2 vdd_DAC 87 0.65 (dac max) to 1.92 (dac min) vdd_FSB 210 8.3 vdd_FSU1 90 1,4 vdd_SS 221 8 vdd_wilk 100 4.6 vdd_buf1 223 0.6

vdd_discri 105 3,6 vdd_OTAQ 225 5 vddd2 113 7.1 vdd_pa 233 5.4 vddd 185 0,8 vdd_pad 236 0

vdd_discriADC 193 7.6 Consumption Current ~ 62mA

DATASHEET

MAROC3 Datasheet 36/48

10.2. ASIC Registers

10.2.1. D_SC, CK_SC and RST_SC (Static Register)

DAC1

10bits

sm

all_

da

c

ON

/OF

F_

ota

bg

ON

/OF

F_

da

c

DAC0

10bits

en

b_

ou

tAD

C

inv

_s

tartC

mp

tGra

y

ramp

_8 bit

ramp

_10 bit

Mask

128 bits

Global Configuration

34 bits

Gain

576 bits

Ctest

64 bits

RS

T_S

CD

_SC

CK

_SC

DACs bits

D_S

CC

K_S

CD

_SC

10 bits10 bits

DAC1 DAC0

MS

B

LS

B

bit

9

bit

0

MS

B

LS

B

bit

9

bit

0

ZOOM DAC

Mask bits

DATASHEET

MAROC3 Datasheet 37/48

D_S

CC

K_S

C

mask

ma

sk

_O

R2

_c

h6

3

ma

sk

_O

R2

_c

h6

2

ma

sk

_O

R1

_c

h1

ma

sk

_O

R1

_c

h0

ma

sk

_O

R2

_c

h0

ma

sk

_O

R2

_c

h1

ma

sk

_O

R1

_c

h6

3

ma

sk

_O

R1

_c

h6

2

Global Config

CK

_SC

D_S

C

po

lar_

dis

cri

EN

b_

trista

te

va

lid_

dc

_fs

b2

sw

_fs

b2

_5

0f

cm

d_

CK

_m

ux

d1

_d

2

inv

_d

isc

riAD

C

sw

_fs

b2

_1

00

f

sw

_fs

b2

_1

00

k

sw

_fs

b2

_5

0k

va

lid_

dc

_fs

cm

d_

fsb

_fs

u

sw

_fs

b1

_5

0f

sw

_fs

b1

_1

00

f

sw

_fs

b1

_1

00

k

sw

_fs

b1

_5

0k

sw

_fs

u_

10

0k

sw

_fs

u_

50

k

sw

_fs

u_

25

k

sw

_fs

u_

20

f

sw

_fs

u_

40

f

EN

_A

DC

sw

_s

s_

12

00

f

H1

H2

_c

ho

ice

sw

_s

s_

60

0f

sw

_s

s_

30

0f

ON

/OF

F_

ss

sw

b_

bu

f_2

p

sw

b_

bu

f_1

p

sw

b_

bu

f_5

00

f

sw

b_

bu

f_2

50

f

cm

d_

fsb

cm

d_

fsu

cm

d_

ss

Gain, Sum and Ctest

CK

_SC

D_S

C

data channel 63

LS

B

MS

B

8 bits

cm

d_

SU

M6

3

data channel 0

LS

B

MS

B

8 bits

cm

d_

SU

M0

bit

0

bit

7

bit

0

bit

7

Cte

st_

ch

63

Cte

st_

ch

62

Cte

st_

ch

0

Cte

st_

ch

1Ctest

DATASHEET

MAROC3 Datasheet 38/48

10.2.2. D_R, CK_R and RST_R* (Dynamic Register)

For multiplex charge output

Multiplex charge output

CK

_RR

ST

_RD

_RQ

_Ro

ut

CH

0

CH

1

CH

2

CH

3

CH

60

CH

61

CH

62

CH

63

CH

59

Ho

ld Hold=3.3V TrackHold=0V Hold

CH

1

CH

61

CH

62

CH

63

CH

0

HOLD1 HOLD2

For DC_FS output (pin 201)

DATASHEET

MAROC3 Datasheet 39/48

SC bits and name description observations

0 ON/OFF_otabg power pulsing bit for bandgap not active on MAROC3 test board because power pulsing pin is connected to vdd

1 ON/OFF_dac power pulsing bit for all DACs not active on MAROC3 test board because power pulsing pin is connected to vdd

2 small_dac to decrease the slope of DAC0 -> better accuracy

small dac OFF: threshold VTH0 min= and max= small dac ON: threshold VTH0 min= and max=

3 DAC1[9]

DAC value for the second discri (with the fast shaper FSB2)

4 DAC1[8]

,,,

11 DAC1[1]

12 DAC1[0]

13 DAC0[9]

DAC value for the first discri (with the fast shaper FSB1 or FSU)

14 DAC0[8]

,,,

21 DAC0[1]

22 DAC0[0]

23 enb_outADC wilkinson ADC parameter: enable data output to use the wilkinson ADC should be OFF

24 inv_startCmptGray wilkinson ADC parameter: the start compteur polarity switching to use the wilkinson ADC should be OFF

25 ramp_8bit wilkinson ADC parameter: ramp slope change to have quickly conversion on 8 bits

26 ramp_10bit wilkinson ADC parameter: ramp slope change to have quickly conversion on 10 bits

27 mask _OR2_ch63 mask the second discri output of ch63 (FSB2 to generate the trigger)

mask bit ON: no trigger output , mask bit OFF: trigger output visible

28 mask_OR1_ch63 mask the first discri output of ch63 (FSB1 or FSU to generate the trigger)

mask bit ON: no trigger output , mask bit OFF: trigger output visible

29 mask _OR2_ch62 mask the second discri output of ch62 (FSB2 to generate the trigger)

30 mask_OR1_ch62 mask the first discri output of ch62 (FSB1 or FSU to generate the trigger)

,,,

151 mask _OR2_ch1 mask the second discri output of ch1 (FSB2 to generate the trigger)

152 mask_OR1_ch1 mask the first discri output of ch1 (FSB1 or FSU to generate the trigger)

153 mask _OR2_ch0 mask the second discri output of ch0 (FSB2 to generate the trigger)

154 mask_OR1_ch0 mask the first discri output of ch0 (FSB1 or FSU to generate the trigger)

155 cmd_CK_mux Should be OFF

156 d1_d2 trigger output choice d1_d2='0' -> trigger from FSB1 and DAC0 ; d1_d2='1' -> trigger from FSB2 and DAC1

157 inv_discriADC ADC discri output could be inverted Should be OFF

158 polar_discri polarity of trigger output polar_discri='0' ->High polarity ; polar_discri='1' -> Low polarity

159 Enb_tristate enable all trigger outputs Should be ON to see trigger outputs 160 valid_dc_fsb2 enable FSB2 DC measurements

161 sw_fsb2_50f Feedback capacitor for FSB2 better if ON 162 sw_fsb2_100f Feedback resistor for FSB2

163 sw_fsb2_100k Feedback resistor for FSB2

164 sw_fsb2_50k Feedback resistor for FSB2

165 valid_dc_fs enable FSB and FSU DC measurements

166 cmd_fsb_fsu Choice between FSB1 or FSU for the first discri input (with DAC0) cmd_fsb_fsu='1'-> FSU ; cmd_fsb_fsu='0'-> FSB

DATASHEET

MAROC3 Datasheet 40/48

167 sw_fsb1_50f Feedback capacitor for FSB1 better if ON 168 sw_fsb1_100f Feedback capacitor for FSB1 better if ON 169 sw_fsb1_100k Feedback resistor for FSB1

170 sw_fsb1_50k Feedback resistor for FSB1

171 sw_fsu_100k Feedback resistor for FSU

172 sw_fsu_50k Feedback resistor for FSU

173 sw_fsu_25k Feedback resistor for FSU

174 sw_fsu_40f Feedback capacitor for FSU better if ON 175 sw_fsu_20f Feedback capacitor for FSU better if ON

176 H1H2_choice ADC wilkinson: choice between the first or the second track and hold for the input of the ADC

177 EN_ADC ADC wilkinson: enable ADC conversion inside the asic Should be ON to make a conversion

178 sw_ss_1200f Feedback capacitor for Slow Shaper

179 sw_ss_600f Feedback capacitor for Slow Shaper

180 sw_ss_300f Feedback capacitor for Slow Shaper

181 ON/OFF_ss Power supply of Slow Shaper

182 swb_buf_2p capacitor for the buffer before the slow shaper

183 swb_buf_1p capacitor for the buffer before the slow shaper

184 swb_buf_500f capacitor for the buffer before the slow shaper

185 swb_buf_250f capacitor for the buffer before the slow shaper

186 cmd_fsb enable signal at the FSB inputs Should be ON if we want to use FSB1 or FSB2 187 cmd_ss enable signal at the SS inputs Should be ON if we want to do charge measurement 188 cmd_fsu enable signal at the FSU inputs Should be ON if we want to use FSU 189 cmd_SUM63 enable signal to do sum

190 GAIN63[7]

preamplifier gain value channel 63

191 GAIN63[6]

192 GAIN63[5]

193 GAIN63[4]

194 GAIN63[3]

195 GAIN63[2]

196 GAIN63[1]

197 GAIN63[0]

198 cmd_SUM62 enable signal to do sum

199 GAIN62[7]

preamplifier gain value channel 63

200 GAIN62[6]

201 GAIN62[5]

202 GAIN62[4]

203 GAIN62[3]

204 GAIN62[2]

205 GAIN62[1]

206 GAIN62[0]

,,,

759 GAIN0[5]

preamplifier gain value channel 0

760 GAIN0[4]

761 GAIN0[3]

762 GAIN0[2]

763 GAIN0[1]

764 GAIN0[0]

765 Ctest_ch63 enable signal in Ctest input

766 Ctest_ch62 enable signal in Ctest input

DATASHEET

MAROC3 Datasheet 41/48

767 Ctest_ch61 enable signal in Ctest input

,,, enable signal in Ctest input

826 Ctest_ch2 enable signal in Ctest input

827 Ctest_ch1 enable signal in Ctest input

828 Ctest_ch0 enable signal in Ctest input

DATASHEET

MAROC3 Datasheet 42/48

ANNEXE ANNEXE 1 : Waveforms which can be seen on the scope from the test board Input pulse goes to Ctest Slow shaper waveform:

DATASHEET

MAROC3 Datasheet 43/48

Bipolar fast shaper waveform:

DATASHEET

MAROC3 Datasheet 44/48

Unipolar fast shaper waveform:

DATASHEET

MAROC3 Datasheet 45/48

ANNEXE 2: Slow Shaper waveform from scope

The slow shaper behaviour can be analysed by the waveforms come from the scope in track mode (hold signal =3.5V). The analogue output has been studied as a function of different tuneable capacitors. There are 3 feedback capacitors on the slow shaper (Css varies from 0.3pF to 2.1pF) and 4 buffer capacitors (Cbuf varies from 0pF to 3.75pF) common to all the channels, that can be switched on and off independently in order to vary the signal shape and its duration. Only 7 possible configurations have been investigated and the result is shown in figure 13 with scope and figure 16 with the internal conversions.

Capa buffer 0pF 1pF 2pF 3pF 3.75pF DC level (V) 1.064 1.061 1.064 1.063 1.064 Tmax (ns) 108.9 148.4 149.4 156.1 174.6 Vmax V) 1.210 1.174 1.155 1.142 1.133

Capa buffer 0pF 1pF 2pF 3pF 3.75pF DC level (V) 1.063 1.062 1.063 1.062 1.064 Tmax (ns) 112.1 142.4 151.9 157.4 168.4 Vmax V) 1.217 1.178 1.157 1.142 1.134

Capa buffer 0pF 1pF 2pF 3pF 3.75pF DC level (V) 1.064 1.063 1.063 1.062 1.061 Tmax (ns) 112.9 126.9 149.6 141.4 145.6 Vmax V) 1.227 1.183 1.160 1.143 1.135

Capa buffer 0pF 1pF 2pF 3pF 3.75pF DC level (V) 1.064 1.065 1.064 1.061 1.059 Tmax (ns) 103.9 1099 130.4 151.9 154.9 Vmax V) 1.235 1.187 1.163 1.143 1.135

Capa buffer 0pF 1pF 2pF 3pF 3.75pF DC level (V) 1.061 1.063 1.063 1.063 1.063 Tmax (ns) 100.6 110.1 122.9 131.6 114.1 Vmax V) 1.245 1.19 1.163 1.1431 1.134

Capa buffer 0pF 1pF 2pF 3pF 3.75pF DC level (V) 1.061 1.063 1.063 1.063 1.063 Tmax (ns) 92.4 96.9 106.1 107.1 112.9 Vmax V) 1.244 1.186 1.156 1.139 1.130

DATASHEET

MAROC3 Datasheet 46/48

Figure 43: Scope Slow shaper waveform versus buffer capacitances and feedback SS capacitances for the same input charge (1pC)

Capa buffer 0pF 1pF 2pF 3pF 3.75pF DC level (V) 1.064 1.063 1.062 1.065 1.063 Tmax (ns) 76.1 84.4 83.6 86.4 90.6 Vmax V) 1.217 1.163 1.135 1.121 1.113

DATASHEET

MAROC3 Datasheet 47/48

ANNEXE 3: Slow Shaper linearity from scope With the settings corresponding of the slower output signal (Cbuf=3.75pF and Css=2.1pF) we checked the linearity of the slow shaper.

Figure 44: Slow shaper waveform via scope for variable input charge

In the next graph, the maximum of the waveform and the value at 160ns have been plotted in function of injected charge.

Figure 45: Slow shaper linearity

The gain of the slow channel in this configuration (Cbuf=3.75pF and Css=2.1pF) is 55mV/pC. The rms noise is 580µV that is equivalent at 10.5fC for the lower shaping time.

DATASHEET

MAROC3 Datasheet 48/48

ANNEXE 4: other Wilkinson calibration Other Wilkinson calibration On the test board a 180k resistor has been added at the pin 95 to change the slope of the ramp and to be able to convert the saturation voltage of the slow shaper. (V(pin 95)=0.771V).

12 bits ramps

Figure 46: Ramp waveform for 12-bit conversions

Input charge (pC) Tmax (µs) Vmax (V) Data

(adc unit) Rms (adc unit)

Start_ counter (µs)

Voltage at start counter (V)

LSB (mV/adc unit)

slope (mV/µs)

intercept (V)

0 14.949 1.04 191.86 1.46 10.15 0.972 0.3802 13.98 0.8298 0.066 18.179 1.09 339.55 1.3 9.69 0.965 0.3651 14.05 0.8287 1.32 21.429 1.13 469.9 1.46 9.682 0.965 0.3538 13.98 0.8292 1.98 24.629 1.18 597.15 1.47 9.7 0.965 0.3548 13.87 0.83 3.3 30.579 1.26 836.31 1.21 9.671 0.964 0.3513 13.86 0.8302 6.6 43.829 1.44 1366.03 1.53 9.678 0.964 0.3481 13.82 0.8305 13.2 67.491 1.76 2312.32 1.5 9.683 0.965 0.3452 13.75 0.8319

19.8 86.935 2.03 3090.76 1.33 9.666 0.966 0.3431 13.71 0.8332

26.4 100 2.21 3613.05 1.4 9.674 0.966 0.344 13.69 0.8336 33 107 2.3 3897.58 1.37 9.561 0.964 0.3427 13.68 0.8332

49.5 110 2.34 4010.61 1.44 9.735 0.966 0.3422 13.67 0.8334

mean 9.72 0.966 0.352 13.82 0.831

rms 0.15 0.002 0.012 0.13 0.002

Thanks to all ramp waveforms and the data converted the temporal position the start counter can be estimated. The subtraction between the voltage max and the voltage at start counter divided by the data in time unit give us the value of the LSB. In our case the LSB of the 12-bit ADC is 352µV.