19
1 Supporting Information Biomimetic Total Syntheses of Chromane Meroterpenoids, Guadials B-C, Guapsidial A and Psiguajadial D Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur - 208016, India. Tel: + 91-512-2596537, Fax: + 91-512-2597436. Email: [email protected] Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

1

Supporting InformationBiomimetic Total Syntheses of Chromane Meroterpenoids, Guadials B-C, Guapsidial A

and Psiguajadial D

Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur - 208016, India.

Tel: + 91-512-2596537, Fax: + 91-512-2597436.

Email: [email protected]

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2018

Page 2: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

2

Table of Contents

General Information…………………………………..……………………………………….3

General procedures for the Substrates……………..………………………………..…………4

Preparation of substrates………..……………………………………..………………………5

General procedure for the products……………………………………..…………..…………7

Preparation of compounds……………………………………………...………...……………8

1H and 13C NMR Spectra of substrates…………………………………..…………………20

1H and 13C NMR Spectra of Compounds…………………………….……….…………….25

Page 3: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

3

1. General Information

All reactions were carried out under nitrogen atmosphere with dry solvents under anhydrous

conditions unless otherwise mentioned. All the chemicals used were purchased commercially,

and used without further purification. Anhydrous DMF was prepared by distilling from KOH.

Yields refer to chromatographically pure material, unless otherwise stated. Reactions were

monitored by thin layer chromatography (TLC) carried out on 0.25 mm Merck silica gel

plates (60F-254) using UV light as a visualizing agent and p-anisaldehyde stain as coloring

agent, and heat as development agents. Merck silica gel (particle size 100-200 and 230-400

mesh) was used for flash column chromatography.

Reagents were purchased at the highest commercial quality and used without further

purification, unless otherwise stated. NMR spectra were recorded on JEOL ECX 500 (1H:

500/400 MHz, 13C: 125/100 MHz) in Acetonitrile-D3 or CDCl3 having TMS 0.03% as

internal standard. Mass spectrometric data were obtained using WATERS-Q-T of Premier-

ESI-MS.

The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t

= triplet, q = quartet, dd = doublet of doublet, ddd = doublet of a doublet of a doublet, dt =

doublet of a triplet, td = triplet of a doublet, m = multiplet, br = broad.

Page 4: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

4

Experimental Procedures:

Guadial B (1):

OH

HO OH

H

O OH

HO OH

H

O

Ph

O

Ph H

O+

H O

i) TMEDA (20 mol%)Et3N, MeOH, 25 °C

18 h, 40%ii) SiO2, MeOH

(+)--Pinene (9)

neat, 90 °C, 46%

OMe

CHOHO

OHCOH

Guadial B (1)

OH

H

6 8

Compound 6 was synthesized from commercially available phloroglucinol following the

procedure reported by Liu and co-workers.1

To a mixture of dialdehyde 6 (64 mg, 0.35 mmol, 1 equiv.), triethylamine (146 μL, 1.05

mmol, 3 equiv.) and benzaldehyde (0.36 mL, 3.50 mmol, 10 equiv.) in MeOH (0.500 mL)

was added, at 25°C, N,N,N′,N′-tetramethylethane-1,2-diamine (TMEDA) (10.5 μl, 0.07

mmol, 0.2 equiv.). And the reaction mixture was stirred for 18 h at the same temperature. The

reaction mixture was directly subjected to chromatography on silica gel (DCM/MeOH 20:1)

to give a yellow solid which was passed through a bed of silica gel (DCM) to give crude 8

(40.0 mg, 40 % yield) as colourless oil. Compound 8 was readily undergoing decomposition

hence the next reaction was performed immediately without proper purification.

A mixture of ether 8 (40.0 mg, 0.13 mmol, 1 equiv.) and (+)-α-pinene 9 (63.06 μL, 0.39

mmol, 3 equiv.) was stirred for 24 hrs. at 90 °C without adding any solvent. The mixture was

purified using column chromatography with 1-2% EtOAc-Hexane to separate excess α-

pinene. Then crude fraction obtained was further purified by preparative TLC to isolate

desired natural product (1) in pure state as a colorless oil; yield = 22.6 mg, 42%. Rf = 0.5 in

90:10 hexane-EtOAc; = +126.0° (c 0.025, CHCl3); IR (neat): vmax/cm-1 2921, 1635, [𝛼]28𝐷

1493, 1444, 1388, 1308, 1250, 1224, 1150, 1112, 1082, 1010, 945, 911, 885, 844, 782, 758,

734, 645, 607, 575, 547, 518; 1H NMR (400 MHz, CDCl3) δ 13.53 (s, 1H), 13.21 (s, 1H),

10.19 (s, 1H), 10.03 (s, 1H), 7.30 (br s, 1H), 7.28 (br s, 1H), 7.20 (t, J = 7.3 Hz, 1H), 7.10 (br

s, 1H), 7.08 (br s, 1H), 4.24 (s, 1H), 3.00 (br t, J = 8.6 Hz, 1H), 2.53 – 2.41 (m, 1H), 2.15 –

2.06 (m, 2H), 1.93 (dd, J = 9.3, 3.9 Hz, 1H), 1.57 – 1.49 (m, 1H), 1.28 (s, 3H), 1.06 (s, 3H),

1.01 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 192.23, 191.68, 169.45, 168.90, 166.46, 142.61,

128.73, 127.47, 126.77, 104.10, 103.78, 101.59, 89.01, 56.37, 41.24, 40.69, 40.29, 39.19,

36.61, 29.78, 29.25, 27.97, 27.63, 22.94. HRMS (ESI) m/z calcd. for C25H27O5 [M+H]+

407.1853, found 407.1856.

Page 5: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

5

Guadial C (2):

OH

HO OH

H

O

Ph

O

H O8

(-)- -Pinene (10)neat, 90 °C, 42%

OCHO

HO

OHCOH

Guadial C (2)

A mixture of ether 8 (40.0 mg, 0.13 mmol, 1 equiv.) and (-)-β-pinene 10 (62.02 μL, 0.39

mmol, 3 equiv.) was stirred for 24 hrs. at 90 °C without adding any solvent. The mixture was

purified using column chromatography with 1-2% EtOAc-Hexane to separate excess β-

pinene. Then crude fraction obtained was further purified by preparative TLC to isolate

desired natural product (2) in pure state as a colorless oil; yield = 23 mg, 42%. Rf = 0.5 in

90:10 hexane-EtOAc; = -75.2° (c 0.029, CHCl3); IR (neat): vmax/cm-1 3433, 2923, 1634, [𝛼]28𝐷

1442, 1385, 1302, 1185, 1161, 1146, 1090, 1014, 978, 855, 766, 701, 609, 533; 1H NMR

(400 MHz, CDCl3) δ 13.51 (s, 1H), 13.13 (s, 1H), 10.11 (s, 2H), 7.28 (t, J = 7.2 Hz, 3H), 7.24

– 7.18 (m, 1H), 7.13 (d, J = 7.0 Hz, 2H), 3.99 (dd, J = 10.2, 6.9 Hz, 1H), 2.43 (dd, J = 14.4,

6.9 Hz, 1H), 2.32 – 2.27 (m, 1H), 2.25 – 2.16 (m, 1H), 2.15 – 2.10 (m, 1H), 2.07 (dd, J =

14.4, 3.0 Hz, 1H), 2.03 – 1.97 (m, 2H), 1.78 (ddd, J = 13.8, 11.4, 2.6 Hz, 2H), 1.50 (d, J =

10.2 Hz, 1H), 1.30 (s, 3H), 1.00 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 192.28, 191.66,

169.56, 168.70, 164.73, 144.46, 128.64, 126.85, 126.38, 104.53, 104.17, 103.05, 86.27,

47.63, 43.74, 40.62, 38.39, 35.15, 30.01, 29.78, 27.60, 26.42, 24.65, 23.20; HRMS (ESI) m/z

calcd. for C25H27O5 [M+H]+ 407.1853, found 407.1858.

Compound 7:OH

HO OH

H

O

OPh7

OH

HO OH

OPh7a

POCl3, DMF

EtOAc, rt, 1h, 91%

Compound 7a was synthesized from commercially available phloroglucinol following the

procedure reported by Jonathan and co-workers.2

According the procedure reported by Bharate and co-workers3, To the solution of benzoyl-

phloroglucinol 7a (400 mg, 1.74 mmol, 1 equiv.) in ethyl acetate (12 mL) were added DMF

(0.15 mL, 1.91 mmol, 1.1 equiv.) and phosphoryl chloride (0.18 mL, 1.91 mmol, 1.1 equiv.)

at room temperature. The reaction mixture was further stirred for 30 min at the same

temperature. Water was added to the reaction mixture and extracted with ethyl acetate (2 x 50

Page 6: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

6

mL). The combined ethyl acetate layers were washed with brine and dried over Na2SO4 and

concentrated to afford the crude product. Column chromatography over silica gel using

hexane/EtOAc (70:30) as eluent provided 7 as a pale yellow solid. Yield = 408 mg, 91 %. Rf

= 0.3 in 70:30 hexane-EtOAc; MP = 170 °C ; IR (neat): vmax/cm-1 3242, 2925, 2854, 1627,

1599, 1523, 1489, 1434, 1380, 1307, 1274, 1228, 1192, 1130, 1100, 973, 927, 896, 875, 817,

802, 761, 730, 691, 607, 577, 432; 1H NMR (400 MHz, CD3CN) δ 13.46 (s, 1H), 10.02 (s,

1H), 7.59 – 7.54 (m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.7 Hz, 2H), 5.90 (s, 1H); 13C

NMR (100 MHz, CD3CN) δ 198.96, 192.23, 140.55, 131.79, 128.16, 127.91, 117.41, 104.52,

103.83, 94.69; HRMS (ESI) m/z calcd. for C14H11O5 [M+H]+ 259.0606, found 259.0609.

Compound 11:OH

HO OH

H

O

OPh

KOH, MeI, MeOH

rt to reflux, 2 h, 50%

OH

HO OH

H

O

OPh

CH3

117

According the procedure reported by Bharate and co-workers3, to the solution of formylated

benzoyl phloroglucinol 7 (258 mg, 1 mmol, 1 equiv.) in methanol (10 mL), was added

potassium hydroxide (112 mg, 2 mmol, 2 equiv.) was added, at room temperature, methyl

iodide (0.3 mL, 5 mmol, 5 equiv.). The reaction mixture was refluxed for 2 h. Solvent was

evaporated and the crude product was purified by silica gel column chromatography using

hexane/EtOAc (80:20) as eluent to afford 11 (136 mg, 50%) as pale yellow solid. Rf = 0.5 in

70:30 hexane-EtOAc. MP =140 °C; IR (neat): vmax/cm-1 2955, 2925, 2853, 1626, 1492, 1448,

1429, 1377, 1321, 1276, 1226, 1157, 1097, 976, 948, 836, 734, 697, 624, 607, 541, 476, 440; 1H NMR (400 MHz, CDCl3) δ 13.13 (s, 1H), 10.78 (s, 1H), 10.16 (s, 1H), 8.56 (s, 1H), 7.60

(t, J = 19.6 Hz, 5H), 2.00 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 192.33, 166.22, 132.90,

129.75, 127.91, 29.78, 6.58; HRMS (ESI) m/z calcd. for C15H13O5 [M+H]+ 273.0757, found

273.0762.

Guapsidial A (3) and Psiguajadial D (4):

OH

HO OH

H

O

OPh

CH3

DDQ, CH3NO2, 50 °C, 2 hO

H H

Me

OH

OH

Psiguajadial D (4), 28%

CHO

O

O

OH H

Me

OH

OHCHO

Guapsidial A (3), 32%

-Caryophyllene (5)

H

+

11

To a solution of 11 (50 mg, 0.184 mmol, 1 equiv.) and DDQ (41.7 mg, 0.184 mmol, 1 equiv.)

in nitromethane (5 mL) was added β-caryophyllene (37.6 mg, 0.184 mmol) and the reaction

Page 7: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

7

mixture was stirred at 50 °C for 2 h. The solvent was then evaporated under vacuum and the

crude product was purified by silica gel column chromatography (hexane/ EtOAc = 95:5) to

get a viscous liquid as a mixture of two isomers. They could not be separated through silica

gel column chromatography. However, they were separated by careful preparative thin layer

chromatography (hexane/ EtOAc = 98:2) to afford 3 and 4 as colorless oils in 1:1 ratio in

60% combined yield (52 mg); Rf = 0.5 in 95:5 hexane-EtOAc.

Guapsidial A (3): Yield = 28mg (32%); = -25.4° (c 0.032, CHCl3); IR (neat): vmax/cm-1 [𝛼]28𝐷

2924, 2853, 1628, 1447, 1432, 1367, 1294, 1227, 1206, 1170, 1147, 1116, 1057, 1005, 888,

868, 773, 754, 695, 662, 606, 459; 1H NMR (400 MHz, CDCl3) δ 13.69 (s, 1H), 13.60 (s,

1H), 10.00 (d, J = 3.7 Hz, 1H), 7.61 (br d, J = 7.0 Hz, 2H), 7.51 (br t, J = 7.4 Hz, 1H), 6.4 Hz,

1H), 7.41 (br t, J = 7.6 Hz, 2H), 4.92 (br s, 1H), 4.89 (br s, 1H), 2.71 (dd, J = 11.2, 10.6 Hz,

1H), 2.53 – 2.39 (m, 2H), 2.20 (m, 2H), 2.12 (br d, 2H), 2.01 – 1.88 (m, 2H), 1.78 (m, 1H),

1.74 (m, 2H), 1.6 (m, 2H), 1.47 (m, 1H), 1.24 (s, 3H), 1.00 (s, 6H); 13C NMR (100 MHz,

CDCl3) δ 199.73, 191.80, 169.53, 166.88, 162.08, 152.04, 140.84, 131.58, 128.15, 127.87,

110.61, 104.20, 102.89, 101.36, 84.42, 53.39, 41.90, 38.00, 36.48, 35.36, 33.93, 33.88, 33.68,

30.33, 24.80, 22.59, 22.29, 21.31; HRMS (ESI) m/z calcd. for C30H35O5 [M+H]+ 475.2479,

found 475.2484.

Psiguajadial D (4): Yield = 24.3mg (32%); = -122.4° (c 0.046, CHCl3); IR (neat): [𝛼]28𝐷

vmax/cm-1 2924, 2853, 1628, 1447, 1431, 1367, 1226, 1206, 1169, 1147, 1057, 1005, 888,

868, 773, 754, 695, 662, 606, 459; 1H NMR (400 MHz, CDCl3) δ 13.70 (s, 1H), 13.23 (s,

1H), 10.23 (s, 1H), 7.46 (dd, J = 9.0, 4.7 Hz, 1H), 7.39 (m, 4H), 4.82 (d, J = 10.9 Hz, 2H),

2.61 (dd, J = 16.6, 5.4 Hz, 1H), 2.41 – 2.20 (m, 2H), 2.08 – 1.97 (m, 2H), 1.86 – 1.77 (m,

1H), 1.72 – 1.41 (m, 9H), 1.00 (s, 3H), 0.93 (s, 3H), 0.87 (s, 3H); 13C NMR (101 MHz,

CDCl3) δ 200.25, 192.04, 168.76, 167.16, 162.09, 151.90, 142.35, 130.12, 127.63, 126.62,

110.21, 104.08, 103.55, 100.63, 84.49, 53.06, 41.36, 37.36, 36.21, 34.88, 33.54, 33.43, 33.02,

30.09, 24.18, 21.98, 20.32; HRMS (ESI) m/z calcd. for C30H35O5 [M+H]+ 475.2479, found

475.2482.

REFERENCES:

1) Gao, Y.; Wang, G. Q.; Wei, K.; Hai, P.; Wang, F.; Liu, J. K. Org. Lett. 2012, 14, 5936–5939.

Page 8: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

8

2) Pepper, H. P.; Tulip, S. J.; Nakano, Y.; George, J. H. J. Org. Chem. 2014, 79, 2564−2573.

3) Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. I.; Jacob, M. R.; Khan, I. A.; Singh, I. P. Bioorganic Med. Chem., 2006, 14, 1750–1760.

Specific rotation comparison of reported and synthesized natural products:

Natural product Specific rotation ( ) of the [𝛼]28𝐷

natural products isolated

Specific rotation ( ) of the [𝛼]28𝐷

synthesized natural products

(Current manuscript)

Guadial B (1)

(Chem. Eur. J., 2015, 21,

9022-9027)

+ 122.5° (c 0.56, CHCl3) +126.0° (c 0.025, CHCl3)

Guadial C (2)

(Chem. Eur. J., 2015, 21,

9022-9027)

- 75.1° (c 0.64, CHCl3) -75.2° (c 0.029, CHCl3)

Guapsidial A (3)

(Chem. Eur. J., 2015, 21,

9022-9027)

- 32.7° (c 0.95, CHCl3) -25.4° (c 0.032, CHCl3)

Psiguajadial D (4)

(Sci. Rep., 2017, 7, 1-15.)−149.0° (c 0.2, CHCl3) -122.4° (c 0.046, CHCl3)

1H and 13C NMR comparison of reported and synthesized Guadial B (1):

S.N.

1H-NMR data of 1(500 MHz, CDCl3)from natural source

(Chem. Eur. J. 2015, 21, 9022 – 9027)

1H-NMR data of 1(400 MHz, CDCl3)synthesized by us

(current manuscript)

13C-NMR data of 1(125 MHz, CDCl3)from natural source

(Chem. Eur. J. 2015, 21, 9022 – 9027)

13C-NMR data of 1(100 MHz, CDCl3)synthesized by us

(current manuscript)

1 13.52 (s, 1H) 13.53 (s, 1H) 192.3 192.23

2 13.21 (s, 1H) 13.21 (s, 1H) 191.7 191.68

3 10.19 (s, 1H) 10.19 (s, 1H) 169.5 169.45

4 10.03 (s, 1H) 10.03 (s, 1H) 169.0 168.90

5 7.28 (t, 7.4, 1H) 7.28 (br s, 1H) 166.5 166.46

6 7.28 (t, 7.4, 1H) 7.30 (br s, 1H) 142.7 142.61

7 7.20 (t, 7.4, 1H) 7.20 (t, J = 7.3 Hz, 1H) 128.8 128.73

8 7.09 (d, 7.4, 1H) 7.10 (br s, 1H) 126.8 126.77

9 7.09 (d, 7.4, 1H) 7.08 (br s, 1H) 127.5 127.47

10 4.24 (br s, 1H) 4.24 (s, 1H) 104.2 104.10

11 3.00 (ddd, 9.5, 9.0, 1.0, 1H) 3.00 (br t, J = 8.6 Hz, 1H) 103.9 103.78

Page 9: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

9

12 2.47 (ddd, 13.5, 9.5, 3.5, 1H) 2.53 – 2.41 (m, 1H) 101.7 101.59

13 2.11, 2.13 (2H) 2.15 – 2.06 (m, 2H) 89.1 89.01

14 1.93 (m, 1H) 1.93 (dd, J = 9.3, 3.9 Hz, 1H) 56.5 56.37

15 1.53 (ddd, 13.5, 9.0, 1.6, 1H) 1.57 – 1.49 (m, 1H) 41.3 41.24

16 1.28 (s, 3H) 1.28 (s, 3H) 40.8 40.69

17 1.06 (s, 3H) 1.06 (s, 3H) 40.4 40.29

18 1.01 (s, 3H) 1.01 (s, 3H) 39.3 39.19

19 -- -- 36.7 36.61

20 -- -- 29.3 29.25

21 -- -- 28.1 27.97

22 -- -- 27.7 27.63

23 -- -- 23.0 22.94

1H and 13C comparison of reported and synthesized Guadial C (2):

S.N.

1H-NMR data of 2(500 MHz, CDCl3)from natural source

(Chem. Eur. J. 2015, 21, 9022 – 9027)

1H-NMR data of 2(400 MHz, CDCl3)synthesized by us

(current manuscript)

13C-NMR data of 2(125 MHz, CDCl3)from natural source

(Chem. Eur. J. 2015, 21, 9022 – 9027)

13C-NMR data of 2(100 MHz, CDCl3)synthesized by us

(current manuscript)

1 13.51 13.51 (s, 1H) 192.3 192.28

2 13.13 13.13 (s, 1H) 191.7 191.66

3 10.12 10.11 (s, 2H) 169.6 169.56

4 7.28 (t, 7.4, 1H) 7.28 (t, J = 7.2 Hz, 3H) 168.8 168.70

5 7.28 (t, 7.4, 1H) 7.24 – 7.18 (m, 1H) 164.8 164.73

6 7.13 (d, 7.4, 1H) 7.13 (d, J = 7.0 Hz, 2H) 144.5 144.46

7 3.99 (dd, 10.2, 7.0 Hz, 1H) 3.99 (dd, J = 10.2, 6.9 Hz, 1H) 128.7 128.64

8 2.43 (dd, 14.5, 7.0 Hz, 1H) 2.43 (dd, J = 14.4, 6.9 Hz, 1H) 126.9 126.85

9 2.30 (dd, 5.0, 4.8 Hz, 1H) 2.32 – 2.27 (m, 1H) 126.4 126.38

10 2.20 (m, 1H) 2.25 – 2.16 (m, 1H) 104.6 104.53

11 2.12 (dd, 14.5, 10.2, 1H) 2.15 – 2.10 (m, 1H) 104.2 104.17

12 2.08 (m, 1H) 2.07 (dd, J = 14.4, 3.0 Hz, 1H) 103.1 103.05

13 2.00, 1.98 2.03 – 1.97 (m, 2H) 86.3 86.27

Page 10: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

10

14 1.80 (m, 1H) 1.78 (ddd, J = 13.8, 11.4, 2.6 Hz, 2H) 47.7 47.63

15 1.50 (d, 10.0, 1H) 1.50 (d, J = 10.2 Hz, 1H) 43.8 43.74

16 1.30 (s, 3H) 1.30 (s, 3H) 40.7 40.62

17 1.00 (s, 3H) 1.00 (s, 3H) 38.5 38.39

18 -- -- 35.2 35.15

19 -- -- 30.1 30.01

21 -- -- 27.7 27.60

22 -- -- 26.5 26.42

23 -- -- 24.7 24.65

24 -- -- 23.3 23.20

1H and 13C comparison of reported and synthesized Guapsidial A (3):

S.N.

1H-NMR data of 3(400 MHz, CDCl3)from natural source

(Chem. Eur. J. 2015, 21, 9022 – 9027)

1H-NMR data of 3(400 MHz, CDCl3)

synthesized(current manuscript)

13C-NMR data of 3(100 MHz, CDCl3)from natural source

(Chem. Eur. J. 2015, 21, 9022 – 9027)

13C-NMR data of 3(100 MHz, CDCl3)

synthesized(current manuscript)

1 13.69 (s, 1H) 13.69 (s, 1H) 199.8 199.73

2 13.60 (s, 1H) 13.60 (s, 1H) 191.9 191.80

3 10.00 (s, 1H) 10.00 (d, J = 3.7 Hz, 1H) 169.6 169.53

4 7.61 (d, 7.5, 1H)7.61 (d, 7.5, 1H) 7.61 (br d, J = 7.0 Hz, 2H) 167.0 166.88

5 7.51 (t, 7.5, 1H) 7.51 (br t, J = 7.4 Hz, 1H) 162.2 162.08

6 7.41 (t, 7.5, 1H)7.41 (t, 7.5, 1H) 7.41 (br t, J = 7.6 Hz, 2H) 152.1 152.04

7 4.92 (br s, 1H) 4.92 (br s, 1H) 140.9 140.84

8 4.89 (br s, 1H) 4.89 (br s, 1H) 131.6 131.58

9 2.70 (dd, 11.0, 10.6, 1H) 2.71 (dd, J = 11.2, 10.6 Hz, 1H) 128.2 128.15

10 2.48 (m, 1H)2.45 (m, 1H) 2.53 – 2.39 (m, 2H) 127.9 127.87

11 2.20 (m, 2H) 2.20 (m, 2H) 110.7 110.61

12 2.17 (2H) 2.12 (br d, 2H) 104.3 104.20

13 1.97 (m, 1H)1.92 (m, 1H) 2.01 – 1.88 (m, 2H) 103.0 102.89

14

1.78 (m, 1H)1.74 (m, 2H)1.71 (m, 2H)1.47 (m, 1H)

1.78 (m, 1H)1.74 (m, 2H)1.6 (m, 2H)1.47 (m, 1H)

101.4 101.36

15 1.24 (s, 3H) 1.24 (s, 3H) 84.5 84.42

16 0.99 (s, 6H) 1.0 (s, 6H) 53.5 53.39

17 -- -- 42.0 41.90

Page 11: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

11

18 -- -- 38.1 38.00

19 -- -- 36.6 36.48

20 -- -- 35.4 35.36

21 -- -- 34.0 33.93

22 -- -- 34.0 33.88

23 -- -- 33.8 33.68

24 -- -- 30.4 30.33

25 -- -- 24.9 24.80

26 -- -- 22.7 22.59

27 -- -- 22.3 22.29

28 -- -- 21.4 21.31

1H and 13C comparison of reported and synthesized Psiguajadial D (4):

S.N.

1H-NMR data of 4(400 MHz, CDCl3)from natural source(Sci. Rep. 2017, 7, 1-15)

1H-NMR data of 4(400 MHz, CDCl3)synthesized by us

(current manuscript)

13C-NMR data of 4(100 MHz, CDCl3)from natural source(Sci. Rep. 2017, 7, 1-15)

13C-NMR data of 4(100 MHz, CDCl3)synthesized by us

(current manuscript)

1 13.71 (s, 1H) 13.70 (s, 1H) 200.3 200.25

2 13.23 (s, 1H) 13.23 (s, 1H) 192.1 192.04

3 10.23 (s, 1H) 10.23 (s, 1H) 168.9 168.76

4 7.47 (m, 1H) 7.46 (dd, J = 9.0, 4.7 Hz, 1H) 167.3 167.16

5 7.40 (m, 2H)7.39 (m, 2H) 7.39 (m, 4H) 162.2 162.09

6 4.83 (br s, 1H) 4.83 (br s, 1H) 152.0 151.90

7 4.80 (br s, 1H) 4.80 (br s, 1H) 142.5 142.35

8 2.61 (dd, J = 16.6, 5.4 Hz, 1H) 2.61 (dd, J = 16.6, 5.4 Hz, 1H) 130.2 130.12

9 2.26 (m, 2H) 2.41 – 2.20 (m, 2H) 127.7 127.63

10 2.03 (m, 1H) 2.08 – 1.97 (m, 2H) 126.7 126.62

11 1.82 (m, 1H) 1.86 – 1.77 (m, 1H) 110.3 110.21

12

1.66 (m, 2H)1.61 (m, 2H)1.60 (m, 2H)1.57 (m, 2H)1.49 (m, 1H)

1.72 – 1.41 (m, 9H) 104.2 104.08

13 1.00 (s, 3H) 1.00 (s, 3H) 103.7 103.55

14 0.93 (s, 3H) 0.93 (s, 3H) 100.9 100.63

15 0.87 (s, 3H) 0.87 (s, 3H) 84.6 84.49

16 -- -- 53.2 53.06

Page 12: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

12

17 -- -- 41.5 41.36

18 -- -- 37.5 37.36

19 -- -- 36.4 36.21

20 -- -- 35.0 34.88

21 -- -- 33.7 33.54

22 -- -- 33.5 33.43

23 -- -- 33.2 33.02

24 -- -- 30.2 30.09

26 -- -- 24.3 24.18

27 -- -- 22.1 21.98

28 -- -- 20.4 20.32

Page 13: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

13

1H and 13C NMR Spectra of Guadial B (1):

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.511.512.513.5f1 (ppm)

S#454958

3.77

3.83

4.18

1.82

1.36

2.65

1.45

1.37

1.25

1.17

1.24

1.32

1.94

1.18

1.14

1.25

1.27

1.01

1.06

1.28

1.50

1.50

1.54

1.56

1.56

1.92

1.93

2.09

2.11

2.13

2.98

3.00

3.02

4.24

7.08

7.10

7.18

7.20

7.22

7.28

7.30

10.0

310

.19

13.2

1

13.5

3

OCH3

CH3

CH3

OH

OH

O

O

Guadial B (1)

Page 14: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

14

0102030405060708090100110120130140150160170180190200210f1 (ppm)

S#601343

22.9

427

.63

27.9

729

.25

36.6

139

.19

40.2

940

.69

41.2

4

56.3

7

89.0

1

101.

5910

3.78

104.

10

126.

7712

7.47

128.

73

142.

61

166.

4616

8.90

169.

45

191.

6819

2.23

OCH3

CH3

CH3

OH

OH

O

O

Guadial B (1)

1H and 13C NMR Spectra of Guadial C (2):

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.511.512.513.5f1 (ppm)

S#461393

3.01

1.34

2.19

2.04

1.31

1.08

1.23

1.11

1.17

1.13

2.05

1.16

2.14

2.01

1.00

1.01

1.00

1.48

1.51

1.80

1.98

1.99

2.08

2.11

2.12

2.15

2.30

2.40

2.42

2.44

2.45

3.97

3.99

4.00

4.01

7.12

7.14

7.19

7.21

7.23

7.23

7.23

7.27

7.28

7.30

10.1

1

13.1

3

13.5

1

OOH

OH

CH3

CH3

O

O

Guadial C (2)

Page 15: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

15

0102030405060708090100110120130140150160170180190200f1 (ppm)

S#601411

23.2

024

.65

26.4

227

.60

29.7

830

.01

35.1

538

.39

40.6

243

.74

47.6

3

86.2

7

103.

0510

4.17

104.

53

126.

3812

6.85

128.

64

144.

46

164.

7316

8.70

169.

56

191.

6619

2.28

OOH

OH

CH3

CH3

O

O

Guadial C (2)

1H and 13C NMR Spectra of Compound 7:

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.511.512.513.5f1 (ppm)

S#700970

1.19

2.19

1.14

2.11

1.13

1.00

5.90

7.37

7.39

7.41

7.49

7.51

7.53

7.55

7.55

7.57

10.0

2

13.4

6

OH

OH OH

H

O

O

7

Page 16: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

16

0102030405060708090100110120130140150160170180190200f1 (ppm)

S#723103

94.6

9

103.

8310

4.52

117.

41

127.

9112

8.16

131.

79

140.

55

192.

23

198.

96

OH

OH OH

H

O

O

7

1H and 13C NMR Spectra of Compound 11:

01234567891011121314f1 (ppm)

S#574611

3.27

5.06

1.03

1.00

1.05

1.03

2.00

7.54

7.62

7.64

8.56

10.1

6

10.7

8

13.1

3

OH

OH OH

H

O O

CH3

11

Page 17: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

17

0102030405060708090100110120130140150160170180190200f1 (ppm)

S#703308

6.58

29.7

8

127.

9112

9.75

132.

90

166.

22

192.

33

OH

OH OH

H

O O

CH3

11

1H and 13C NMR Spectra of Guapsidial A (3):

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.511.512.513.5f1 (ppm)

S#683746

6.07

3.35

1.61

2.73

2.69

1.18

2.45

2.30

2.23

2.47

1.30

0.99

0.99

2.47

1.24

2.31

1.04

0.97

1.00

1.00

1.24

1.59

1.61

1.63

1.64

1.66

1.69

1.71

1.74

1.76

1.77

1.78

1.92

1.94

1.95

1.96

2.11

2.14

2.16

2.17

2.19

2.20

2.44

2.46

2.47

2.48

2.70

2.72

4.89

4.92

7.39

7.41

7.43

7.49

7.51

7.53

7.60

7.62

9.99

13.6

013

.69

O

O

CH3

CH3

H H

CH3

CH2 OH

OH

O

Guapsidial A (3)

Page 18: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

18

0102030405060708090100110120130140150160170180190200f1 (ppm)

S#699713

21.3

122

.29

22.5

924

.80

30.3

333

.68

33.8

833

.93

35.3

636

.48

38.0

041

.90

53.3

9

84.4

2

101.

3610

2.89

104.

20

110.

61

127.

8712

8.15

131.

58

140.

84

152.

04

162.

0816

6.88

169.

53

191.

80

199.

73

O

O

CH3

CH3

H H

CH3

CH2 OH

OH

O

Guapsidial A (3)

1H and 13C NMR Spectra of Psiguajadial D (4):

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.511.512.513.5f1 (ppm)

S#689023

3.75

3.61

3.57

9.36

1.54

2.58

2.58

1.15

1.11

1.03

4.00

1.07

1.16

1.32

1.35

0.87

0.93

1.00

1.52

1.54

1.54

1.56

1.58

1.61

1.64

1.65

1.66

1.99

2.02

2.03

2.06

2.26

2.34

2.58

2.60

2.63

2.64

4.80

4.83

7.39

7.40

7.44

7.46

7.47

7.48

10.2

3

13.2

3

13.7

0

OCH3

CH3

H H

CH3

CH2 OH

OH

O

O

Psiguajadial D (4)

Page 19: Dattatraya H. Dethe*, Vijay Kumar B. and Rakesh Maiti

19

0102030405060708090100110120130140150160170180190200210f1 (ppm)

S#699667

20.5

422

.20

24.4

029

.79

30.3

133

.24

33.6

533

.76

35.1

036

.43

37.5

841

.58

53.2

8

84.7

1

100.

8510

3.77

104.

30

110.

43

126.

8412

7.85

130.

33

142.

57

152.

12

162.

3116

7.38

168.

98

192.

26

200.

47

OCH3

CH3

H H

CH3

CH2 OH

OH

O

O

Psiguajadial D (4)