13
Sri T. Chowdaiah Road, High Grounds, Bangalore-560 001 Ph: 080-22379725, 22266084, 22203234 ²æà ZËqÀAiÀÄå gÀ¸ÉÛ, ºÉÊ UËæAqïì, ¨ÉAUÀ¼ÀÆgÀÄ-560 001 zÀÆgÀªÁtÂ: 080-22379725, 22266084, 22203234 CAvÀgÀ gÁ¶ÖçÃAiÀÄ RUÉÆüÀ «eÁÕ£À ªÀμÀð-2009 INTERNATIONAL YEAR OF ASTRONOMY - 2009 E-mail: [email protected] ¸ÁªÀiÁæl AiÀÄAvÀæ JA§ÄzÀÄ zÉÆqÀØ ©¹® UÀrAiÀiÁgÀ. EzÀ£ÀÄß ¸ÀªÁAiÀiï dAiÀĹAUï ªÀĺÁgÁd£ÀÄ 18£ÉAiÀÄ ±ÀvÀªÀiÁ£ÀzÀ°è zɺÀ° ªÀÄÄAvÁzÀ LzÀÄ £ÀUÀgÀUÀ¼À°è PÀnÖ¹zÀ£ÀÄ. EzÀgÀ°è ±ÀAPÀĪÀÅ ¨sÀÆ«ÄAiÀÄ DªÀvÀð£ÀzÀ CPÀëPÉÌ ¸ÀªÀiÁAvÀgÀªÁVzÉ. ¥ÀǪÀð ¥À²ÑªÀĪÁV EgÀĪÀ PÀA¸ÁPÁgÀzÀ gÀZÀ£ÉAiÀÄ ªÉÄÃ¯É £ÉgÀ¼ÀÄ ©Ã¼ÀĪÀÅzÀgÀ ¸ÀºÁAiÀÄ¢AzÀ ¸ÀªÀÄAiÀÄzÀ C¼ÀvÉ ªÀiÁqÀĪÀÅzÀÄ ¸ÁzsÀåªÁUÀĪÀAvÉ C°è UÀÄgÀÄvÀÄ ªÀiÁqÀ¯ÁVzÉ. F PÀA¸ÀUÀ¼ÀÄ ¨sÀÆ ¸ÀªÀĨsÁdPÀ ªÀÈvÀÛPÉÌ ¸ÀªÀiÁAvÀgÀªÁVzÀÄÝ ¸ÀÆAiÀÄð£À zÉÊ£ÀA¢£À ZÀ®£ÉAiÀÄ£ÀÄß UÀÄgÀÄw¸ÀÄvÀÛªÉ. «μÀĪÀUÀ¼ÀAzÀÄ CAzÀgÉ ªÀiÁZïð 21 ªÀÄvÀÄÛ ¸É¥ÉÖA§gï 22gÀAzÀÄ EzÀÄ vÉÆÃj¸ÀĪÀ ¸ÀªÀÄAiÀÄ ¤RgÀªÁVgÀÄvÀÛzÉ. gÉÃSÁA±ÀPÉÌ ªÀÄvÀÄÛ ¸ÀÆAiÀÄð£À GvÀÛgÀ-zÀQët ZÀ®£ÉUÉ wzÀÄÝ¥ÀrUÀ¼À£ÀÄß ªÀiÁqÀ¨ÉÃPÀÄ. E°ègÀĪÀ ªÀiÁzÀjAiÀÄ£ÀÄß ¨ÉAUÀ¼ÀÆj£À CPÁëA±ÀPÉÌ «£Áå¸ÀUÉƽ¸À¯ÁVzÉ. F §ÈºÀvï PÀlÖqÀUÀ¼À JvÀÛgÀUÀ¼ÀÄ zɺÀ° 39.1 «ÄÃ; GdӬĤ 16 «ÄÃ. Samrat Yantra is a huge sundial constructed by Sawai Jaisingh in the th 18 century. The central inclined wall is called gnomon, the slope of which points to the Pole Star. The shadow of the gnomon indicates the time. Its shadow traces a path along the graduated arcs as the sun moves from east to west. Therefore the corresponding time of the day can be determined. For a given location, corrections have to be made. This is due to seasonal variations and elliptical nature of the orbit. The graduations on the gnomon can be used to measure accurate position of the sun in the sky. This model is designed for the latitude (13° N) of Bangalore. The gnomon measures 39.2m in Delhi, 16m in Ujjain and 50.1m in Jaipur. The huge size is needed to measure time precisely. Jantar Mantar - Samrat Yantra dAvÀgï ªÀÄAvÀgï - ¸ÁªÀiÁæl AiÀÄAvÀæ eÉÊ¥ÀÅgÀzÀ°è£À ¸ÀªÀiÁæmï AiÀÄAvÀæ /Samrat yantra at Jaipur ªÀiÁzÀj AiÀÄAvÀæ / Model

dAvÀgï ªÀÄAvÀgï - ¸ÁªÀiÁæl AiÀÄAvÀæ · RUÉÆüÀ PÁAiÀÄUÀ¼À G£ÀßvÁA±À ªÀÄvÀÄÛ ... the moon and planets in the ... Vasishta and Marichi

  • Upload
    lybao

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Sri T. Chowdaiah Road, High Grounds, Bangalore-560 001Ph: 080-22379725, 22266084, 22203234

²æà ZËqÀAiÀÄå gÀ¸ÉÛ, ºÉÊ UËæAqïì, ¨ÉAUÀ¼ÀÆgÀÄ-560 001zÀÆgÀªÁtÂ: 080-22379725, 22266084, 22203234

CAvÀgÀ gÁ¶ÖçÃAiÀÄ RUÉÆüÀ «eÁÕ£À ªÀµÀð-2009 INTERNATIONAL YEAR OF ASTRONOMY - 2009

E-mail: [email protected]

¸ÁªÀiÁæl AiÀÄAvÀæ JA§ÄzÀÄ zÉÆqÀØ ©¹® UÀrAiÀiÁgÀ. EzÀ£ÀÄß ¸ÀªÁAiÀiï dAiÀĹAUï ªÀĺÁgÁd£ÀÄ 18£ÉAiÀÄ ±ÀvÀªÀiÁ£ÀzÀ°è zɺÀ° ªÀÄÄAvÁzÀ LzÀÄ £ÀUÀgÀUÀ¼À°è PÀnÖ¹zÀ£ÀÄ. EzÀgÀ°è ±ÀAPÀĪÀÅ ̈ sÀÆ«ÄAiÀÄ DªÀvÀð£ÀzÀ CPÀëPÉÌ ¸ÀªÀiÁAvÀgÀªÁVzÉ. ¥ÀǪÀð ¥À²ÑªÀĪÁV EgÀĪÀ PÀA¸ÁPÁgÀzÀ gÀZÀ£ÉAiÀÄ ªÉÄÃ¯É £ÉgÀ¼ÀÄ ©Ã¼ÀĪÀÅzÀgÀ ¸ÀºÁAiÀÄ¢AzÀ ¸ÀªÀÄAiÀÄzÀ C¼ÀvÉ ªÀiÁqÀĪÀÅzÀÄ ¸ÁzsÀåªÁUÀĪÀAvÉ C°è UÀÄgÀÄvÀÄ ªÀiÁqÀ¯ÁVzÉ. F PÀA¸ÀUÀ¼ÀÄ ¨sÀÆ ¸ÀªÀĨsÁdPÀ ªÀÈvÀÛPÉ Ì ¸ÀªÀiÁAvÀgÀªÁVzÀÄÝ ¸ÀÆAiÀÄð£À zÉÊ£ÀA¢£À ZÀ®£ÉAiÀÄ£ÀÄß UÀÄgÀÄw¸ÀÄvÀÛªÉ. «µÀĪÀUÀ¼ÀAzÀÄ CAzÀgÉ ªÀiÁZïð 21 ªÀÄvÀÄÛ ¸É¥ÉÖA§gï 22gÀAzÀÄ EzÀÄ vÉÆÃj¸ÀĪÀ ¸ÀªÀÄAiÀÄ ¤RgÀªÁVgÀÄvÀÛzÉ. gÉÃSÁA±ÀPÉÌ ªÀÄvÀÄÛ ¸ ÀÆAi À Äð£ À Gv À Ûg À -z ÀQ ët Z À®£ ÉU É wzÀÄÝ¥ÀrUÀ¼À£ÀÄß ªÀiÁqÀ¨ÉÃPÀÄ.

E°ègÀĪÀ ªÀiÁzÀjAiÀÄ£ÀÄß ¨ÉAUÀ¼ÀÆj£À CPÁëA±ÀPÉÌ «£Áå¸ÀUÉƽ¸À¯ÁVzÉ. F §ÈºÀvï PÀlÖqÀUÀ¼À JvÀÛgÀUÀ¼ÀÄ zɺÀ° 39.1 «ÄÃ; GdӬĤ 16 «ÄÃ.

Samrat Yantra is a huge sundial constructed by Sawai Jaisingh in the

th18 century. The central inclined wall is called gnomon, the slope of which points to the Pole Star. The shadow of the gnomon indicates the time. Its shadow traces a path along the graduated arcs as the sun moves from east to west. Therefore the corresponding time of the day can be determined. For a given location, corrections have to be made. This is due to seasonal variations and elliptical nature of the orbit. The graduations on the gnomon can be used to measure accurate position of the sun in the sky.

This model is designed for the latitude (13° N) of Bangalore. The gnomon measures 39.2m in Delhi, 16m in Ujjain and 50.1m in Jaipur. The huge size is needed to measure time precisely.

Jantar Mantar - Samrat YantradAvÀgï ªÀÄAvÀgï - ¸ÁªÀiÁæl AiÀÄAvÀæ

eÉÊ¥ÀÅgÀzÀ°è£À ¸ÀªÀiÁæmï AiÀÄAvÀæ /Samrat yantra at JaipurªÀiÁzÀj AiÀÄAvÀæ / Model

Jantar Mantar - Rama YantradAvÀgï ªÀÄAvÀgï - gÁªÀÄAiÀÄAvÀæ

Rama Yantra is an instrument designed for measuring the position of a celestial body. We have to measure how high it is above the horizon (altitude). We also have to measure the angle by which we have to turn from the North direction along the horizon (azimuth). The horizontal plane has graduated concentric circles and radial lines At the central pole a viewing tube is held for viewing the celestial body. The celestial body is viewed through a viewing tube which is held at the centre. This immediately determines the altitude and the azimuth. (For the sun, the shadow of the viewing tube on the floor or a pillar is noted). The observer needs to move to take measurement. The movement can interfere with the measurement process. Therefore, a complimentary version of the Yantra is provided adjacent to the first one. The model shows only one of them. These instruments in Delhi have diameters of 16.65m. The big size allows more precise measurement.

RUÉÆüÀ PÁAiÀÄUÀ¼À G£ÀßvÁA±À ªÀÄvÀÄÛ Q ë weÁA± ÀU À ¼ À £ À Ä ß C¼ Àv ɪ À i Áq À® Ä gÁªÀÄAiÀÄAvÀæªÀ£ÀÄß «£Áå¸ÀUÉƽ¸À¯ÁVzÉ. QëwfÃAiÀÄ vÀ®zÀ ªÉÄÃ¯É CjÃAiÀÄ ªÀÈvÀÛUÀ¼À£ÀÆß (radial lines) ¸ÀªÀÄ PÉÃA¢ævÀ ªÀÈvÀÛUÀ¼À£ÀÄß (concentric circles) gÀa¸À¯ÁVzÉ. £ÀqÀÄ«£À PÀA§zÀ ªÉÄÃ¯É «ÃQë¸ÀĪÀ £À½PÉAiÀÄ£ÀÄß ¤°è¹ CzÀgÀ ªÀÄÆ®PÀ RUÉÆüÀ PÁAiÀĪÀ£ÀÄß «ÃQë¹, CzÀgÀ ¸ÁÜ£ÀªÀ£ÀÄß UÀÄgÀÄvÀÄ ªÀiÁrPÉƼÀî¨ÉÃPÀÄ. ªÀÈvÀÛUÀ¼À ªÉÄð£À CAP À U À ¼ À Ä G£ À ß v ÁA± À ª À Ä v À Ä Û ÷ QëweÁA±ÀUÀ¼À£ÀÄß ¸ÀÆa¸ÀÄvÀÛªÉ. «ÃPÀëPÀ£À ¤®Äª À£ À Ä ß U Àª À Ä£ À z À ° è l Ä Ö P É ÆAq À Ä MAzÀPÉÆÌAzÀÄ ¥ÀÇgÀPÀªÁVgÀĪÀAvÉ JgÀqÀÄ A i À Ä A v À æ U À ¼ À £ À Ä ß ¤ « Ä ð ¸ À ¯ Á Vz É . zɺÀ°AiÀÄ°ègÀĪÀ AiÀÄAvÀæzÀ ªÀÈvÀÛzÀ ªÁå¸À 16.65 «ÄÃ.

ªÀiÁzÀj AiÀÄAvÀæ / Model zɺÀ°AiÀÄ°è£À gÁªÀÄ AiÀÄAvÀæ / Rama Yantra at Delhi

ªÀiÁzÀj AiÀÄAvÀæ / Model zɺÀ°AiÀÄ°è£À £Árà ªÀ®AiÀÄ / Nadi Valaya at Delhi

The Sun does not pass exactly above our head at noon throughout the year. It is usually to the North (Uttarayana) or to the South (Dakshinayana) of the zenith. Naadi Valaya is an instrument designed t o m e a s u r e t h e n o r t h - s o u t h displacement of the sun during the course of a year. The displayed model is designed for the latitude of Bangalore (13°N). In Bangalore as well as all places to the South of the Tropic of Cancer (Karkataka Sankranti Vruttha), the sun crosses zenith twice in a year - on April 24th and August 18th. Accordingly, the shadow of the instrument is seen on the southern dial as well as the northern dial. For places to the North of Tropic of Cancer the Sun is never at Zenith. The corresponding instrument in Delhi has the dial only to the south. The exact changeover date of the sun's position can be determined with this instrument. The instrument in Delhi has a diameter of 11.81m. The big s ize al lows more precise measurement.

Jantar Mantar - Naadi Valaya¸ÀÆAiÀÄð£À GvÀÛgÀ - zÀQët ZÀ®£ÉAiÀÄ£ÀÄß C¼ÀvÉ ªÀiÁqÀ®Ä ¤«Äð¹gÀĪÀ AiÀÄAvÀæªÉà £Árà ªÀ®AiÀÄ E°ègÀĪÀ ªÀiÁzÀjAiÀÄ£ÀÄß ̈ ÉAUÀ¼ÀÆj£À

CPÁ ëA± ÀP É Ì Az À Ä «£Á å¸ À UÉƽ¸À¯ÁVzÉ. DzÀÝjAzÀ £ÉgÀ¼ÀÄ GvÀÛgÀ ªÀÄvÀÄÛ zÀQëtzÀ JgÀqÀÆ ¥sÀ®PÀUÀ¼À°è £ÉgÀ¼ÀÄ ©Ã¼ÀĪÀ ¸ÁzsÀåvÉUÀ½ªÉ. (K¦æ¯ï 24 ªÀÄvÀÄÛ DUÀ¸ïÖ 18gÀAzÀÄ £ÉgÀ¼ÀÄ AiÀiÁªÀ ¥sÀ®PÀzÀ ªÉÄÃ®Æ ©Ã¼ÀƪÀÅ¢®è). zɺÀ°AiÀÄ°ègÀĪÀ AiÀÄAvÀæPÉÌ zÀQëtzÀ ¥sÀ®PÀ ªÀiÁvÀæ EzÉ. AiÀiÁªÀ ¢£À ¸ ÀÆAi ÀÄð ²gÉÆéAzÀĪ À£ ÀÄ ß ºÁzÀÄ ºÉÆÃUÀÄvÀ Ûz É JA§ÄzÀ£ÀÄß ¤RgÀªÁV UÀÄgÀÄw¸À§ºÀÄzÀÄ. C®èzÉ ¸ÀÆAiÀÄð£À GvÀÛgÀ - zÀQët ¸ÁÜ£À ¤zÉÃð±ÀPÀªÀ£ÀÄß ¤RgÀªÁV C¼ÉAiÀħºÀÄzÀÄ. zɺÀ°AiÀÄ AiÀÄAvÀæzÀ ªÁå¸À 11.81 «ÄÃlgï.

(13°N)

dAvÀgï ªÀÄAvÀgï - £Árà ªÀ®AiÀÄ

The discovery of comets and asteroids uses the idea that the solar system objects change their position relative to the fixed star background. The technique uses comparison of two photographs of the same region of the sky, but taken at different times of the month. The stars appear in the same position in two photographs; the solar system body changes its position. When the two frames are flashed in quick succession, it appears as though the body is moving back and forth. This is demonstrated here by automatically switching between two slide projectors which are alternately turned on and off. The same technique can be applied to identify stars which vary in brightness. The star appears to blink, justifying the name given to the apparatus. Pluto was discovered by this technique.

Blink Comparator¹ÜgÀ £ÀPÀëvÀæUÀ¼À »£É߯ÉAiÀÄ°è ¸ËgÀªÀÄAqÀ®zÀ PÁAiÀÄUÀ¼ÀÄ ¸ÁÜ£À §zÀ°¸ÀÄvÀÛªÉ JA§ CA±ÀªÀ£ÀÄß §¼À¹PÉÆAqÀÄ QëÃtPÁAiÀÄUÀ¼ÁzÀ PÀÄëzÀæ UÀæºÀ ª À Ä v À Ä Û z s À Æ ª À Ä P É Ã v À Ä U À ¼ À £ À Ä ß P ÀAq ÀÄ»rAi ÀįÁU ÀÄv À Ûz É . ¨ ÉÃg É ¨ ÉÃg É ¸ÀªÀÄAiÀÄUÀ¼À°è vÉUÉzÀ RUÉÆüÀzÀ CzÉà ¨sÁUÀzÀ JgÀqÀÄ avÀæUÀ¼À£ÀÄß ºÉÆð¹zÁUÀ ¸ËgÀ ªÀÄAqÀ®zÀ PÁAiÀÄzÀ ZÀ®£É UÉÆÃZÀgÀªÁUÀÄvÀÛzÉ. F Jg Àq ÀÆ av À æU À¼ À£ À Ä ß ª É ÃU ÀªÁV MAzÁzÀªÉÄïÉÆAzÀgÀAvÉ ©A©¸ÀĪÀ ªÀåªÀ¸ÉÜUÉ ©èAPï PÀA¥ÀgÉÃlgï JAzÀÄ ºÉ¸ÀgÀÄ. E°è JgÀqÀÄ ¸ÉèöÊqï ¥ÉÇæeÉPÀÖgï UÀ¼À ¸ÀºÁAiÀÄ¢AzÀ F vÀvÀéªÀ£ÀÄß ¤gÀƦ¸À¯ÁVzÉ. EzÉà vÀvÀé¢AzÀ ZÀAZÀ® £ÀPÀëvÀæUÀ¼À£ÀÆß PÀAqÀÄ»rAiÀħºÀÄzÀÄ. £ÀPÀëvÀæªÀÅ PÀtÄÚ ªÀÄÄaÑ vÉgÉzÀAvÉ PÁtĪÀÅzÀÄ. ¥ ÀÆ èm ÉÆê À£ À Ä ß Ez Éà G¥ÁAi À Ä¢Az À PÀAqÀÄ»rAiÀįÁ¬ÄvÀÄ.

©èAPï PÀA¥ÀgÉÃlgï

January 23, 1930

January 29, 1930

Discovery photographs of Pluto – taken six days apart by Clyde Tombaugh

The night sky is filled with stars which appear to be randomly thrown around. To map the sky some patterns are imagined. These patterns are called constellations. This model shows the star field as well as the pattern that has been imagined. The entire sky is divided into 88 constellations, boundaries of which were set by International Astronomical Union in 1930. The constellations are named after mythological heroes, imaginary creatures, objects of daily use, animals and birds. The movement of the sun, the moon and planets in the sky over a period of one year is confined to a belt consisting of twelve constellations. These are called the Zodiacal Constellations, eg., Aries, Taurus etc.

gÁwæAi ÀÄ DPÁ±ÀzÀ°è £ÀPÀ ëv À æU À¼ ÀÄ Cª À åª À¹ Üv ÀªÁV º Àg ÀrP ÉÆAq ÀAv É PÁtÄvÀÛªÉ. EªÀÅUÀ¼À£ÀÄß UÀÄgÀÄw¸À®Ä PÉ®ªÀÅ «£Áå¸ÀUÀ¼À£ÀÄß PÀ°à¹PÉƼÀî¯ÁVzÉ. EªÉà £ÀPÀëvÀæ¥ÀÅAdUÀ¼ÀÄ. F UÉÆüÀzÀ°è £ÀPÀëvÀæUÀ¼À£ÀÆß ªÀÄvÀÄÛ PÀ°àvÀ avÀæUÀ¼À£ÀÆß vÉÆÃj¸À¯ÁVzÉ. 1930gÀ°è CAvÀgÀ-gÁ¶ÖçÃAiÀÄ RUÉÆüÀ «eÁÕ£À MPÀÆÌlªÀÅ RUÉÆüÀªÀ£ÀÄß 88 £ÀPÀëvÀæ ¥ÀÅAdUÀ¼À£ÁßV «AUÀr¹, J¯ÉèUÀ¼À£ÀÄß UÀÄgÀÄw¹vÀÄ. ¥ËgÁtÂPÀ ¥ÁvÀæUÀ¼ÀÄ ¥ÁætÂUÀ¼ÀÄ, ¥ÀQëUÀ¼ÀÄ ¢£À§¼ÀPÉAiÀÄ ªÀ¸ÀÄÛUÀ¼À ºÉ¸ÀgÀ£ÀÄß £ÀPÀëvÀæ

Constellations Globe

£ÀPÀëvÀæ UÉÆüÀ

The Saptharishi Mandala

The best known constellation contains the Saptharishi Manadala also known as the Big Dipper. This is the constellation of Ursa Major (latin word for Great Bear). The various names are a consequence of the different imagery applied to same seven stars in different ways. The model shows how the bear is imagined from the group of stars. Saptharshi Mandala refers to the seven sages called Krithu, Pulaha, Pulastya, Angeerasa, Atri, Vasishta and Marichi.

¸À¥ÀÛ¶ð ªÀÄAqÀ® §ºÀ¼À ¥ÀjavÀªÁzÀ £ÀPÀëvÀæ ¥ÀÅAd. PÀÈvÀÄ, ¥ÀÅ®ºÀ, ¥ÀÅ®¸ÀÜ÷å, DAVÃgÀ¸À, Cwæ, ªÀ¹µÀ×, ªÀÄjÃa »ÃUÉ K¼ÀÄ IĶUÀ¼À ºÉ¸ÀgÀÄUÀ¼À£ÀÄß F £ÀP À ëv À æU À½UÉ EqÀ¯ÁVzÉ . ¥Á±ÁÑvÀågÀ°è C¸Áð ªÉÄÃdgï JA§ ºÉ¸ÀjzÉ. zÉÆqÀØ PÀgÀr JAzÀÄ CxÀð. K¼ÀÄ £ÀPÀëvÀæUÀ¼À eÉÆvÉUÉ E£ÀßµÀÄÖ £ÀPÀëvÀæUÀ¼À£ÀÄß ¸ÉÃj¹ PÀgÀrAiÀÄ£ÀÄß PÀ°à¹PÉƼÀî¯ÁVzÉ. F ªÀiÁzÀj PÀgÀrAiÀÄ PÀ®à£É ºÉÃUÉ JAzÀÄ vÉÆÃj¹PÉÆqÀÄvÀÛzÉ.

¸À¥ÀÛ¶ð ªÀÄAqÀ®

Distances to Stars of a ConstellationThe vast distances to the stars which are beyond our perception, make us see the sky as its sphere (celestial sphere). The pattern of different stars constitutes a constellation. All the stars however, are not at the same distance from us. In this model the stars of the Ursa Major constellation are displayed as separated by distances according to scale. From a long distance it appears as though all stars lie on the same plane. The separation becomes obvious as we approach closer. The sixth star Mizar (Vasishta) has a faint companion Alcor (Arundathi)

¨ÉÃgÉ ¨ÉÃgÉ £ÀPÀëvÀæUÀ¼À UÀÄA¥À£ÀÄß £ÀPÀëvÀæ¥ÀÅAd JAzÀÄ ºÉ¸Àj¹zÀgÀÆ D J¯Áè £ÀPÀëvÀæUÀ¼ÀÄ £À«ÄäAzÀ MAzÉà zÀÆgÀzÀ°è EgÀĪÀÅ¢®è. CªÀÅUÀ¼À CUÁzsÀ zÀÆgÀªÀ£ÀÄß UÀ滸À¯ÁUÀzÉà £ÁªÀÅ CªÉ¯Áè MAzÉà zÀÆgÀzÀ°èªÉ JAzÀÄPÉƼÀÄîvÉÛêÉ. DzÀÝjAzÀ UÉÆüÀ JA§ PÀ®à£É ªÀÄÆr, RUÉÆüÀ JAzÀÄ PÀgÉAiÀÄÄvÉÛêÉ. F ªÀiÁzÀjAiÀÄ°è ¸À¥ÀÛ¶ð ªÀÄAqÀ® ¥ÀÅAdzÀ K¼ÀÄ £ÀPÀëvÀæUÀ¼À£ÀÄß C¼ÀvÉUÉ vÀPÀÌ zÀÆgÀUÀ¼À°è EqÀ¯ÁVzÉ. §ºÀ¼À zÀÆgÀ¢AzÀ £ÉÆÃrzÁUÀ K¼ÀÆ MAzÉà ¸ÀªÀÄvÀ®zÀ°èzÉ J¤ß¸ÀÄvÀÛzÉ. ¸À«Äæ¹zÀAvÉ zÀÆgÀzÀ ªÀåvÁå¸À UÉÆÃZÀj¹vÀÛzÉ. DgÀ£ÉAiÀÄ £ÀPÀëvÀæ ªÀ¹µÀ×PÉÌ MAzÀÄ QëÃt ¸ÀAUÁw EzÉ. EzÀPÉÌ CgÀÄAzsÀw JAzÀÄ ºÉ¸ÀgÀÄ.

£ÀPÀëvÀæ ¥ÀÅAdUÀ¼À £ÀPÀëvÀæUÀ¼À zÀÆgÀUÀ¼ÀÄ

All celestial objects rise in the east and set in the west, making it appear as if sky (the celestial sphere) is rotating. Actually, it is the earth which is rotating about its rotation axis. The circle which divides earth into two equal parts and is perpendicular to the rotation axis is called the earth's equator. By extending the equator on to the celestial sphere, it will divide celestial spheres into two equal halves. This imaginary Great Circle is called the celestial equator.

Against the fixed star background, the apparent path of the sun in the sky traces the circle on the celestial sphere. This is called the Ecliptic. As the earth completes one revolution around the sun, to us it appears that the sun has completed a revolution along the ecliptic on the celestial sphere. The equator and the ecliptic are inclined to each other by 23.5 degrees. This model explains the meaning of ecliptic and the celestial equator. The sun is seen at the southern most point on Dec 22nd, (the date known as the Winter solistice (Uttarayana) and on this day the duration of the day is shortest. At the northern most point on June 22nd (cal led the summer sol ist ice, Dakshinayana) the day is longest. On March 21st and September 22nd (the dates called equinoxes) the sun's position is on the intersection of the equator and the ecliptic.

Celestial Equator and Ecliptic¨sÀÆ«ÄAiÀiï ̧ ÀªÀĨsÁdPÀ ªÀÈvÀÛªÀÅ DªÀvÀð£À CPÀëPÉÌ ®A§ªÁVzÉ. DªÀvÀð£ÀzÀ PÁgÀt J®è RUÉÆüÀ PÁAiÀÄUÀ¼ÀÄ ¥ÀǪÀðzÀ°è GzÀ¬Ä¹ ¥À²ÑªÀÄzÀ°è PÀAvÀĪÀAvÉ PÁtĪÀŪÀÅ. RUÉÆüÀ JA§ PÁ®à¤PÀ UÉÆüÀzÀ°è ¸ÀªÀĨsÁdPÀ ªÀÈvÀÛPÉÌ ¸ÀªÀiÁAvÀgÀªÁV ªÀÈvÀÛªÉÇAzÀ£ÀÄß PÀ°à¹PÉÆAqÀgÉ CzÉà RªÀÄzsÀå ªÀÈvÀÛ CxÀªÁ «µÀĪÀzï ªÀÈvÀÛ. ¸ÀÆAiÀÄð£À ZÀ®£ÉAiÀÄ£ÀÄß ¸ÀÆa¸ÀĪÀ ªÀÈvÀÛªÉà PÁæAwªÀÈvÀÛ. ¨sÀÆ«ÄAiÀÄÄ MAzÀÄ ªÀµÀðzÀ°è ¸ÀÆAiÀÄð£À£ÀÄß ¥Àj¨s À æ«Ä¸ÀÄvÀ Ûz É ; EzÉà CªÀ¢üAiÀÄ°è ¸ÀÆAiÀÄð £ÀPÀëvÀæUÀ¼À »£É߯ÉAiÀÄ°è PÁæAwªÀÈvÀÛzÀ ªÉÄÃ¯É ZÀ°¹zÀ ºÁUÉ vÉÆÃgÀÄvÀÛzÉ. EzÀ£ÀÄß ¥ÀgÉÆÃPÀëªÁV UÀÄgÀÄw¸À§ºÀÄzÀÄ. PÁ æAwªÀ Èv À Ûª À Å ¨ s ÀÆPÀP É ëAi ÀÄ vÀ®ªÀ£ ÀÄß ¸ÀÆa¸ÀÄvÀÛzÉ. «µÀĪÀzï ªÀÈvÀÛ ªÀÄvÀÄÛ PÁæAw ªÀÈvÀÛUÀ¼À £ÀqÀÄ«£À PÉÆãÀ 23.5 rVæUÀ¼ÀÄ. F ªÀiÁzÀjAiÀÄÄ F JgÀqÀÆ ªÀÈvÀ ÛUÀ¼À£ÀÄß vÉÆÃj¸ÀÄvÀÛzÉ. ¸ÀÆAiÀÄð r¸ÉA§gï 22gÀAzÀÄ Cw zÀQët ©AzÀÄ«£À°è ªÀÄvÀÄÛ dÆ£ï 22gÀAzÀÄ Cw GvÀÛgÀzÀ ©AzÀÄ«£À°è PÁtÄvÀÛzÉ. ªÀiÁZïð 21 ªÀÄvÀÄÛ ¸É¥ÉÖA§gï 22 «µÀĪÀ ©AzÀÄUÀ¼À°è CAzÀgÉ «µÀĪÀzï ªÀÈvÀÛ ªÀÄvÀÄÛ PÁæAw ªÀÈvÀÛ UÀ¼ÀÄ ¥ÀgÀ¸ÀàgÀ ̧ ÀA¢ü¸ÀĪÀ ©AzÀÄUÀ¼À°è EgÀÄvÀÛzÉ.

«µÀĪÀzï ªÀÈvÀÛ ªÀÄvÀÄÛ PÁæAw ªÀÈvÀÛ

Telescope is an instrument to see objects at great distances and with better clarity. A telescope achieves this by collecting more light than can be collected by our eyes as also by magnifying the images. The first telescope was used to observe the celestial objects by Galileo in 1609. His telescope was constructed after hearing about the discovery of magnifying glasses by a Dutch optician Hans Lippershey. The telescope collects the light through an objective lens and focuses into a sharp, bright diminished image. Another lens called the eye piece provides a magnified view. The model explaining the action of the objective and the eye piece. Telescopes which use objective lens are called refractors or Galilean telescopes.

Refractor Telescope

§ºÀ¼À zÀÆgÀzÀ°ègÀĪÀ QëÃtªÁzÀ ¨É¼ÀQ£À ªÀÄÆ®¢AzÀ ºÉZÀÄÑ ¨É¼ÀPÀ£ÀÄß ¸ÀAUÀ滹 PÉÃA¢æÃPÀj¹ ¥ÀæPÁ±ÀªÀiÁ£À ©A§ªÀ£ÀÄß vÉÆÃj¸ÀĪÀ G¥ÀPÀgÀtªÉà zÀÆgÀzÀ±ÀðPÀ. EzÀ£ÀÄß RUÉÆüÀPÁAiÀÄUÀ¼À CzsÀåAiÀÄ£ÀPÉÌ ªÉÆzÀ®Ä §¼À¹zÀªÀ£ÀÄ UÉ°°AiÉÆà UÉ°¯ÉÊ. zÀÆgÀzÀ±ÀðPÀªÀ£ÀÄß ºÀ£ïì ¯É¥À±Éð JA§ÄªªÀÀ£ÀÄ vÀAiÀiÁj¹zÀ ¸ÀÄ¢ÝAiÀÄ£ÀÄß PÉý UÉ°°AiÉÆà vÁ£Éà F zÀÆgÀzÀ±ÀðPÀªÀ£ÀÄß ¤«Äð¹zÀ£ÀÄ. ªÀ¸ÀÄ ÛPÀ JA§ ªÀĸÀÆgÀªÀÅ ¨É¼ÀPÀ£ÀÄß ¸ÀAUÀ滸ÀĪÀÅzÀÄ. CzÀgÀ £Á©üAiÀÄ ¸À«ÄÃ¥À EqÀĪÀ £ÉÃvÀæPÀ zÉÆqÀØzÁV PÁtĪÀAvÉ ªÀiÁqÀĪÀÅzÀÄ. E°è F §UÉAiÀÄ ªÀQæèsÀªÀ£À z À Æ g À z À ± À ð P À z À ª À i Á z À j A i À Ä £ À Ä ß ¤gÀƦ¸À¯ÁVzÉ. EªÀÅUÀ½UÉ ¸ÁzsÁgÀtªÁV U É°°Ai À Ä£ï z ÀÆg Àz À± À ðP À JAz À Ä PÀgÉAiÀÄÄvÁÛgÉ.

ªÀQæèsÀªÀ£À zÀÆgÀzÀ±ÀðPÀ

Focal length of Objective

Eyepiece lens

Focal lengthof eyepiece

Objective lens

The telescopes which use mirrors to collect light are called reflectors or Newtonian telescopes. They are widely used in the observatories in preference to refractors. Usually a parabolic mirror is used to bring the light into focus. Then a secondary mirror is introduced to divert the beam toward the eye piece. This is usually a plane mirror. The model shows a telescope, where the objective or the primary mirror is a spherical concave one. This design due to comfortable viewing is very popular with small telescopes.

Reflector Telescope«ÃPÀëuÁ®AiÀÄUÀ¼À°è ºÉZÁÑV ¥Àæw¥sÀ®£À zÀÆgÀzÀ±ÀðPÀUÀ¼À£ÀÄß §¼À¸ÀÄvÁÛgÉ. E°è P À£ À ßrAi À Ä Ä ¨ ɼ ÀP À£ À Ä ß ¸ ÀAU À 滹 PÉÃA¢æÃPÀj¸ÀÄvÀÛzÉ. ¸ÀAUÀ滹zÀ ¨É¼ÀPÀÄ ¥ÀPÀÌPÉÌ wg À Ä V P É Ã A¢ æ à P À È v À ª ÁU À Ä ª À Av É Jg Àq À£ ÉAi À Äz ÉÆAz À Ä P À£ À ßrAi À Ä£ À Ä ß G¥ÀAiÉÆÃV¹ K¥ÁðlÄ ªÀiÁqÀ¯ÁVzÉ. EzÀjAzÀ «ÃPÀëuÉUÉ C£ÀÄPÀÆ®ªÁUÀÄvÀÛzÉ. EzÀ£ÀÄß £ÀÄåmÉÆäAiÀÄ£ï zÀÆgÀzÀ±ÀðPÀ J£ À Ä ßvÁ Ûg É . F «z s Á£ Àª À Å ¸ Àt Ú zÀÆgÀzÀ±ÀðPÀUÀ½UÉ §ºÀ¼À d£À¦æAiÀĪÁVzÉ.

¥Àæw¥sÀ®£À zÀÆgÀzÀ±ÀðPÀ

The faint stars and galaxies can be seen through a telescope by collecting more light. This is achieved by increasing the size of the objective lens. When the size of the lens is increased although the amount of light collected increases, other problems such as Chromatic aberration become severe. The images in different colours are brought to focus at different points, leading to a multi coloured images. Amount of refraction is different for different colours and cannot be overcome. The Chromat ic aberrat ion can be overcome by using mirrors instead of lenses as discovered by Isaac Newton. Most observator ies therefore use reflector telescopes. The model demonstrates Chromatic aberration.

Chromatic AberrationQëÃtªÁzÀ £ÀPÀëvÀæUÀ¼ÀÄ ªÀÄvÀÄÛ UɯÁQìUÀ¼À£ÀÄß zÀÆgÀzÀ±ÀðPÀzÀ ªÀÄÆ®PÀ £ÉÆÃqÀ®Ä ºÉZÀÄÑ ¨É¼ÀPÀ£ÀÄß ¸ÀAUÀ滸À®Ä ¸ÁzsÀåªÁUÀĪÀ ªÀĸÀÆgÀUÀ¼À£ÀÄß §¼À¸À¨ÉÃPÀÄ. CAzÀgÉ ªÀ¸ÀÄÛPÀzÀ UÁvÀæ ºÉaѸÀ¨ÉÃPÀÄ. ªÀĸÀÆgÀzÀ UÁvÀæ ºÉaÑzÀAvÉ ¨ÉÃgÉ ¨ÉÃgÉ vÉÆAzÀgÉUÀ¼ÀÄ PÁt¹PÉƼÀÄ îvÀ ÛªÉ. EzÀjAzÀ ©A§zÀ UÀÄtªÀÄlÖ PÉqÀÄvÀÛzÉ. ¨ÉÃgÉ ¨ÉÃgÉ §tÚUÀ¼ÀÄ ¨ÉÃgÉ ¨ÉÃgÉ ©AzÀÄUÀ¼À°è PÉÃA¢æÃPÀÈvÀ- ªÁUÀÄvÀÛªÉ. F zÉÆõÀPÉÌ ªÀtð «¥ÀxÀ£À JAzÀÄ ºÉ¸ÀgÀÄ. EzÀ£ÀÄß ¤ªÁj¸À®Ä ̧ ÁzsÀå«®è. DzÀgÉ ¥Àæw¥sÀ®PÀ zÀÆgÀ zÀ±ÀðPÀUÀ¼À£ÀÄß CAzÀgÉ PÀ£ÀßrAiÀÄ£ÀÄß §¼À¸À§ºÀÄzÉAzÀÄ L¸ÁPï £ÀÆål£ï vÉÆÃj¹PÉÆlÖ£ÀÄ. F ªÀiÁzÀjAiÀÄ°è ªÀtð «¥ÀxÀ£ zÉÆõÀªÀ£ÀÄß ¤gÀƦ¸À¯ÁVzÉ.

ªÀtð «¥ÀxÀ£À

Focal pointfor both colours

Focal pointfor red light

Focal pointfor blue light

(a) The problem (b) The solution

We know that a pencil immersed in water appears bent; this is because of refraction. The earth's atmosphere consists of air whose density and refractive index increase towards the ground. The amount of bending is not as large as in case of water but can create some noticeable effects. Thus setting or rising sun appears elliptical, since the effect is more pronounced near the horizon. This causes the sun to be visible before it has risen and also after it has set for a few minutes. This experimental model here has the increasing density of sugar solution. This is achieved by slowly pouring sugar so lu t ion o f ve ry h igh concentration over water. The beam of light can be seen to bend as it encounters a change in the density.

Effect of Earth's Atmosphere¤Ãj£À°è ¥É¤ì¯ï ¨ÁVzÀAvÉ PÁtĪÀÅzÀPÉÌ ªÀQæèsÀªÀ£ÀªÉà PÁgÀt. ¨sÀÆ ªÁvÁªÀgÀtzÀ°è ¨ÉÃgÉ ¨ÉÃgÉ JvÀÛgÀzÀ°è ¨ÉÃgÉ ¨ÉÃgÉ ¸ÁAzÀævÉ EgÀÄvÀÛzÉ. PɼÀ¸ÀÛgÀUÀ¼À°è PÀæªÉÄÃt ºÉZÁÑUÀÄvÀÛzÉ. E°è ªÀQæèsÀªÀ£ÀzÀ ¥Àæ¨sÁªÀ ¤Ãj£ÀµÀÄÖ ºÉZÁÑVgÀĪÀÅ¢®è; DzÀgÀÆ PÉ®ªÀÅ ̧ ÀAzÀ¨sÀðUÀ¼À°è UÉÆÃZÀj¸ÀÄvÀÛzÉ. GzÁºÀgÀuÉUÉ ¢UÀAvÀzÀ CAa£À°è ¸ÀÆAiÀÄð PÀAzÀĪÁUÀ ªÀÄvÀÄÛ Gz À¬ Ä ¸ À Ä ª Á U À C z À g À D P Á g À ¢ÃWÀðªÀÈvÀÛzÀAvÉ DUÀÄvÀÛzÉ. C®èzÉ ¢UÀAvÀzÀ ¸ÀAeÉ PɼÀUÉ ¸ÀjzÀ ªÉÄÃ¯É ªÀÄvÀÄÛ ªÀÄÄAeÁ£É ¢UÀAvÀzÀ PɼÀUÉà EgÀĪÁUÀ PɼÀUÉ ¤«ÄµÀUÀ¼À PÁ® PÁtÄvÀÛzÉ. E°ègÀĪÀ ªÀiÁzÀjAiÀÄ°è ¸ ÀP À Ìg ÉAi À Ä zÁ æª Àtz À ¸ ÀºÁAi ÀÄ¢AzÀ ªÀQæèsÀªÀ£ÀzÀ ¥Àæ¨sÁªÀªÀ£ÀÄß ¤gÀƦ¸À¯ÁVzÉ.

¨sÀÆ ªÁvÁªÀgÀtzÀ ¥Àæ¨sÁªÀ

If the light is put through a dispersive device such as a prism or a grating it separates into different colours. The light which is spread out into different colours is called spectrum. The nature of the spectrum is decided by the mechanism of production. For eg., the light produced by heating a filament emits all colours (wavelengths). This is continuous spectrum. If the light is produced by an ionized gas spectrum consists of sharp coloured l ines at specif ic wavelengths. This is emission spectrum. The wavelengths of lines are characteristic of the gas emitting them. With the help of telescopes, we get the spectra of s t a r s . The spec t r a g i ve information on the colour, temperature and chemical composition of stars.

Emission and Continuous Spectra

©¹®£ÀÄß C±ÀæUÀ CxÀªÁ ¥ÀlÖPÀzÀ ªÀÄÆ®PÀ ºÁ¬Ä¹zÁUÀ CzÀÄ PÁªÀÄ£À©°è£À C£ÉÃPÀ §tÚUÀ¼ÁV «¨sÀd£ÉAiÀiÁUÀĪÀÅzÀPÉÌ ªÀt𠫨sÀd£É JAzÀÄ ºÉ¸ÀgÀÄ. F §tÚzÀ ¥ÀnÖUÉ gÉÆûvÀ JAzÀÄ ºÉ¸ÀgÀÄ. AiÀiÁªÀÅzÉà ¨É¼ÀQ£À ªÀÄÆ®zÀ §UÉÎ «ªÀgÀUÀ¼À£ÀÄß ¥ÀqÉAiÀÄ®Ä gÉÆûvÀ¢AzÀ ¸ÁzsÀå. §¯ïâ gÉÆûvÀzÀ°è ¸ÀÆAiÀÄð£À gÉÆûvÀzÀAvÉ ºÀ®ªÁgÀÄ §tÚUÀ¼ÀÄ PÁtÄvÀÛªÉ. EzÀPÉÌ C«aÒ£Àß gÉÆûvÀ JAzÀÄ ºÉ¸ÀgÀÄ. DzÀgÉ ¥ÁzÀgÀ¸À ¢Ã¥ÀzÀ gÉÆûvÀzÀ°è ¥ÀæPÁ±ÀªÀiÁ£À UÉgÉUÀ¼ÀÄ PÁtÄvÀÛªÉ. EzÀPÉÌ GvÀìdð£À gÉÆûvÀ JAzÀÄ ºÉ¸ÀgÀÄ. ¸ ÀÆAi À Äð£ À g ÉÆûv Àª À£ À Ä ß U É æ ÃnAUï ¸ÀºÁAiÀÄ¢AzÀ «¸ÀÛj¹zÁUÀ PÀ¥ÀÅöàUÉgÉUÀ¼ÀÄ PÁtÄvÀÛªÉ. £ÀPÀëvÀæ gÉÆûvÀUÀ¼À°èAiÀÄÆ ºÁUÉÃ. EzÀPÉÌ ±ÉÆõÀt gÉÆûvÀ JAzÀÄ ºÉ¸ÀgÀÄ. EªÀÅUÀ¼À Czs ÀåAiÀÄ£À¢AzÀ gÁ¸ÁAiÀĤPÀ ¸ÀAAiÉÆÃd£ÉAiÀÄ£ÀÆß w½AiÀħºÀÄzÀÄ. ̧ ÀÆAiÀÄð£À ¨É¼ÀQ£À §zÀ®Ä £ÀPÀëvÀæzÀ ¨É¼ÀPÀ£ÀÄß ºÁ¬Ä¹zÀgÉ DUÀ®Æ «¨sÀd£É DUÀÄvÀÛzÉ. DzÀgÉ §tÚUÀ¼À ºÀAaPÉAiÀÄ°è ¸Àé®à ªÀåvÁå¸À EgÀÄvÀÛzÉ. EzÀjAzÀ CzÀÄ ¤Ã° £ÀPÀëvÀæªÉà CxÀªÁ PÉA¥ÀÅ £ÀPÀëvÀæªÉà JAzÀÄ w½AiÀħºÀÄzÀÄ. CzÀgÀ GµÀÚvÉAiÀÄ£ÀÆß CAzÁdÄ ªÀiÁqÀ§ºÀÄzÀÄ. ¥ÀlÖPÀzÀ §zÀ®Ä UÉæÃnAUï C£ÀÄß G¥ÀAiÉÆÃV¹zÀgÉ CzÀgÀ gÁ¸ÁAi À ĤP À ¸ À AA i É Æ Ãd£ É A i À Ä£ À Æ ß w½AiÀħºÀÄzÀÄ.

C«aÒ£Àß ªÀÄvÀÄÛ GvÀìdð£À gÉÆûvÀ