12
Surface Temperature Anomalies for the Medieval Warm Period, Little Ice Age, and 20th Century Warming Determined from Borehole Temperatures David S. Chapman, Robert N. Harris and Michael G. Davis

David S. Chapman, Robert N. Harris and Michael G. Davis

  • Upload
    nuncio

  • View
    27

  • Download
    1

Embed Size (px)

DESCRIPTION

Surface Temperature Anomalies for the Medieval Warm Period, Little Ice Age, and 20th Century Warming Determined from Borehole Temperatures. David S. Chapman, Robert N. Harris and Michael G. Davis. I t*. Concept: surface temperature - PowerPoint PPT Presentation

Citation preview

Page 1: David S. Chapman, Robert N. Harris and  Michael G. Davis

Surface Temperature Anomalies for the Medieval Warm Period, Little Ice Age, and 20th Century Warming Determined from Borehole

Temperatures

David S. Chapman, Robert N. Harrisand Michael G. Davis

Page 2: David S. Chapman, Robert N. Harris and  Michael G. Davis

Concept:surface temperaturehistories have distinctive borehole temperature signatures.

It*

Snapshot at t*

Page 3: David S. Chapman, Robert N. Harris and  Michael G. Davis

Mann et al. [2009], Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256 – 1260.

Medieval Climate Anomaly (MCA)

Little Ice Age (LIA)

Background I

Page 4: David S. Chapman, Robert N. Harris and  Michael G. Davis

Mann et al. [2009], Science, 326.

MCA – LIA Temperature Difference in Proxy-based Temperature Reconstruction

Background II

1. Temp differences avoid “zero problem”2. Mean difference 0.24 °C3. Local differences > 1 °C4. Variability

Page 5: David S. Chapman, Robert N. Harris and  Michael G. Davis

LIA MCA -0.5 0.0

LIA MCA-0.5 +0.25

Amplitude (oC) LIA MCA -0.5 +0.5

LIA MCA-0.25 +0.5

LIA MCA 0.0 +0.5

Temperature Anomaly (°C)

Page 6: David S. Chapman, Robert N. Harris and  Michael G. Davis

Regions having multiple boreholes with depth > 600m

Page 7: David S. Chapman, Robert N. Harris and  Michael G. Davis

N = 45

Page 8: David S. Chapman, Robert N. Harris and  Michael G. Davis

N = 12

Page 9: David S. Chapman, Robert N. Harris and  Michael G. Davis

N = 45

Page 10: David S. Chapman, Robert N. Harris and  Michael G. Davis

Problems:Small sampleSuspicious profilesLack of thermal conductivity info.

N = 5

Page 11: David S. Chapman, Robert N. Harris and  Michael G. Davis

Chapman & DavisEos, Sept 14, 2010

Page 12: David S. Chapman, Robert N. Harris and  Michael G. Davis

Conclusions1. Borehole T(z) useful complement to multiproxy methods.

2. MCA, LIA, and recent warming have distinctive signatures in borehole temperature profiles (shape, amplitude, depth extent).

3. Four regions (NE N. America; S. Africa; Cent. Europe; Cent. Asia) do not have borehole T(z) anomalies identifiable as MCA, LIA.

a) Amplitudes no greater than suggested by Mann et al.

b) MCA/LIA stronger seasonal rather than annual signal?

c) Borehole temperature noise level too great.

4. Extensive warm period prior to 1000 CE inconsistent with baseline temperature from borehole studies

5. More deep (> 600 m) boreholes with thermal conductivity information needed.

6. If geog. variability real, less reliance on stacking.