26
Renewable Energy 28 (2003) 2063–2087 www.elsevier.com/locate/renene Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology M. Beccali, M. Cellura  , M. Mistretta  Dipartimento di Ricerche Energetiche e Ambientali, Universita `  degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy Received 19 December 2002; accepted 12 March 2003 Abstract The authors show an application of the multicriteria decision-making methodology used to assess an action plan for the diffusion of renewable energy technologies at regional scale. This methodological tool gives the decision-maker considerable help in the selection of the most suitable innovative technologies in the energy sector, according to preliminary xed objectives. In this paper, a case study is carried out for the island of Sardinia. This region presents, on one hand, a high potential for energy resources exploitation, but on the other hand, it represents a specic case among other Italian regions, because of its socio-economic status and history. Thr ee decisi on scenarios have bee n sup pos ed, eac h one rep res ent ing a cohere nt set of actions, on the basis of which strategies of diffusion are developed. © 2003 Elsevier Science Ltd. All rights reserved. Keywords: Multicriteria decision-making; Renewable energy technologies 1. Introd uction Energy planning processes usually include a study of sectorial demand and supply, forecasts of the trends of input–output items, based on economics and technological models, and a list of actions, collecting several measures voted to fulll the main Corresponding author. Tel.:  +1-39-91236123; fax:  +1-39-91484425.  E-mail address:  [email protected] (M. Cellura). 0960-1481/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0960-1481(03)00102-2

Decision-making in energy planning

  • Upload
    sitesme

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 1/25

Renewable Energy 28 (2003) 2063–2087

www.elsevier.com/locate/renene

Decision-making in energy planning.Application of the Electre method at regional

level for the diffusion of renewable energy

technologyM. Beccali, M. Cellura   ∗, M. Mistretta

 Dipartimento di Ricerche Energetiche e Ambientali, Universita  degli Studi di Palermo,

Viale delle Scienze, 90128 Palermo, Italy

Received 19 December 2002; accepted 12 March 2003

Abstract

The authors show an application of the multicriteria decision-making methodology used toassess an action plan for the diffusion of renewable energy technologies at regional scale. Thismethodological tool gives the decision-maker considerable help in the selection of the mostsuitable innovative technologies in the energy sector, according to preliminary fixed objectives.In this paper, a case study is carried out for the island of Sardinia. This region presents, onone hand, a high potential for energy resources exploitation, but on the other hand, it representsa specific case among other Italian regions, because of its socio-economic status and history.

Three decision scenarios have been supposed, each one representing a coherent set of actions, on the basis of which strategies of diffusion are developed.

©  2003 Elsevier Science Ltd. All rights reserved.

Keywords:  Multicriteria decision-making; Renewable energy technologies

1. Introduction

Energy planning processes usually include a study of sectorial demand and supply,forecasts of the trends of input–output items, based on economics and technologicalmodels, and a list of actions, collecting several measures voted to fulfill the main

∗ Corresponding author. Tel.:   +1-39-91236123; fax:   +1-39-91484425.

 E-mail address:   [email protected] (M. Cellura).

0960-1481/03/$ - see front matter  ©  2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0960-1481(03)00102-2

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 2/25

2064   M. Beccali et al. / Renewable Energy 28 (2003) 2063–2087 

objectives of the energy plan. This action plan (AP) is addressed to specific strategies

and interventions, which are able to fit, in the best way, demand and supply, accord-

ing to the many constraints and factors.

The addressing of these needs could be supported by the adoption of multicriteriaapproaches in the selection of the most suitable action among all the alternatives.

The selection of the alternative options derives from the goal set identified by the

decision-maker (DM), with regard to the environmental, technical and economical

spheres.

A decision support approach, called Electre III  [1],  is presented for energy plan-ning application. This method also represents the  first methodology with fuzzy con-

cepts incorporated in it, able to help the decision-maker to select the most suitable

innovative technologies in the energy sector   [2].

2. Multicriteria decision-making methods and the Electre III approach

In a decisional process the making of choices derives from complex hierarchical

comparisons among alternative options, which are often based on conflictual criteria.

A large number of external variables plays a relevant role in orienting decision-

making. Some of these can be manipulated by numerical models, such as cost –benefit

analysis, market penetration strategies and environmental impacts. Other factors,

dealing with social and cultural context, political drawbacks and aesthetic aspects,

can be assessed only in a qualitative way or with subjective judgment  [3]. The aimsof multicriteria decision-making methods (MDMM) are generally the following  [4]:

  to aid decision-makers to be consistent with  fixed   ‘general’   objectives;

  to use representative data and transparent assessment procedures;

  to help the accomplishment of decisional processes, focusing on increasing its

ef ficiency.

The Electre III method, in which the criteria of the set of decisional alternatives

are compared by means of a binary relationship, defined as ‘outranking relationship’,

are more   ‘flexible’  than the ones based on a multi-objective approach   [5].In detail, the following paragraphs will describe the steps, which characterize the

Electre III methodology.

3. The Electre III methodology

3.1. Definition of the actions to be assessed (decisional objectives)

This consists in the definition of a set of potential alternatives or actions   A   =

( A1, A2,... Ai) to be assessed in the evaluation process.It is quite relevant because the selected actions have to synthesize significantly

the state of art, as regards technological issues, economic factors and production

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 3/25

2065 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

systems at different levels of intervention. In such a way, the DM can have a com-

plete framework of different performances of planning alternatives.

3.2. Criteria of evaluation and evaluation of alternatives, according to eachcriterion

The criteria of evaluation have to provide tools of judgment for DM, which must

verify the consistence of choices with the expectations of the DM and with the needs

of the other involved actors. The main target of the analyst is to show the effectsof each alternative, by means of a set of suitable criteria,  F   =  {1,2,...j,... m}, which

allows constitution of a rank order of the alternatives  [6].

Given two alternatives   Ai  and   Ak , assume that   g j   =   g j( Ai) and   g j   =   g j( Ak ) express

the performance values of   Ai  and   Ak , respectively, according to the   jth criterion.   Ai

is predominant over   Ak , if and only if:

g j( Ai) g j( Ak )   ∀ jF    (1)

The inequality (1) must be verified for at least one criterion.   F   is consistent if it

is accepted by all the actors involved in the decisional process.

Criteria express qualitative or quantitative viewpoints, objectives, aptitudes, and

constraints of an action, and allow assessment of the alternatives, by means of a

rank order.

A coherent set of criteria has to fulfill the following requirements:

Exhaustivity: criteria must not be insuf ficient or in excess:

If   ∀F,  g j( Ai)   =   g j( Ak ) ⇒  Ai  and   Ak  are indifferent

If the DM does not consider the previous statement to be true, then it implies that

some important evaluation criteria have not been taken into account.

Coherence: the set of decision-maker’s preferences on each criterion has to be con-

sistent with the global preferences:If   g j( Ai)   =   g j( Ak )   ∀ j     k   and   gk ( Ai)     gk ( Ak ) ⇒ Ai   is preferred to   Ak 

Not redundancy: criteria must not be in excess and must not be duplicated. Deleting

some criteria can make invalid one of the previous condition for

at least a pair of actions.

3.3. De finition of aggregation procedure

Aggregation of criteria is necessary to give a synthetic judgment, stemming from

the results of the criteria application. In particular, the Electre III approaches are

characterized by a partial aggregation of preferences.

Under the above considerations, it is possible to define the outranking relation of 

the alternative   Ai  on the alternative   Ak , as a binary relation on   A, if it is possible

clearly to assert that   ‘ Ai   is at least as good as   Ak , given the problem essence,   the

DM’s preferences and the quality of the assessment about each alternative’   [7].The hypothesis of outranking is supported by two test conditions: (1) concordance;

and (2) discordance. An index, which is defined in the range [0,1], provides a judg-

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 4/25

2066   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

ment on the degree of credibility of each outranking relation and represents a test

to verify the performance of each alternative.

While a criterion is defined as a rigid tool1 according to the classic conception,

the Electre methodology introduces the flexible concept of pseudo-criterion. It definesan indifference condition in a   ‘zone’   where the difference between   Ai   and   Ak   is

rather small.

A zone of weak preference is also defined between the zones of indifference and

strict preference. Such zones represent uncertainty between indifference and strict

preference conditions [8].The above procedure allows net judgments to be avoided, when data are not com-

pletely available and are uncertain.

An indifference threshold   q j   and a strict preference threshold   p j   are   fixed, with

regard to the  jth criterion. In particular, q j indicates the minimum boundary of uncer-

tainty, associated with the performed calculations, while  p j  can be considered as the

maximum boundary of error, connected to the performed calculations. Therefore, a

pseudo-criterion is a function  g j, in which the discriminant capacity is characterized

by two   ∀Ai and Ak    A  thresholds, indicated with   q j  and  p j  and defined as follows:

 Ai  and  Ak   are indifferent if:

|g j( Ai) g j( Ak )| q j   (2)

 Ai  is weakly preferred to   Ak   if:

q j [g j( Ai) g j( Ak )]  p j   (3)

 Ai  is strictly preferred to   Ak   if:

g j( Ai) g j( Ak )  p j   (4)

According to the same criterion it is always true that:

q j  p j   (5)

A pseudo-criterion becomes a real criterion if:

q j  p j   (6)

For the   jth criterion it can be defined the so-called veto threshold  v j, as the limitvalue of the difference  g j( Ak )g j( Ai), over which it is reasonable to reject the hypoth-

esis of outranking of   Ai   over   Ak , with regard to the considered criterion. It implies

that:

q j p j v j   (7)

The above thresholds are not experimental values, of which the exact score is

required, but they are suitable quantities that experts introduce in order to make the

methodology more   flexible, taking into account data uncertainty and approxi-

mation  [9].

1 If  Ai  and  Ak  are not mutually indifferent, then   Ai   is preferred to  Ak  or vice versa.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 5/25

2067 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

3.4. Weighting of criteria

Weighting is carried out, according to the simplified Simos approach [10],  basedon the following items:

–   a  first ranking of criteria;–   a subsequent assignment of weights, depending on each criterion rank.

Table 1  shows a detailed example of the above weighting procedure.

3.5. Indices of concordance

In the comparisons among different alternatives, the analyst calculates the twofollowing indices to assess the degree of concordance between such comparisons

and the adopted system of weights and thresholds:

–  The index of concordance under a given criterion;

–   The index of global concordance.

The  first one, indicated by   c j( Ai,   Ak ), informs us about the strength of preference

for the alternative  Ai, with respect to the alternative  Ak , under the   jth criterion. This

is a function of the difference   g j( Ak )

g j( Ai) and is defined in this way:c j( Ai,  Ak ) 0⇔ p j g j( Ak )g j( Ai)   Ak  is strictly preferred to  Ai   (8)

0 c j( Ai, Ak ) 1⇔q j g j( Ak )g j( Ai) p j   Ak  is weakly preferred to  Ai   (9)

c j( Ai,  Ak ) 1⇔g j( Ak )g j( Ai)q j   Ak  and  Ai  are indifferent (10)

where  p j  and  q j  are the strict preference and indifference thresholds, respectively. In

other words,   c j( Ai,   Ak ) shows the degree of concordance with the judgmental state-

ment that   Ai   outranks (is at least as good as)   Ak . It decreases linearly from the toplevel as soon as   g j( Ak ) has passed the indifference threshold, and it arrives at the

bottom level as soon as   g j( Ak ) has reached the preference threshold.The index of global concordance  C ik  represents the amount of evidence to support

the concordance among all the criteria, under the hypothesis that  Ai outranks Ak  [11].

It is defined as the weighted average of all  c j( Ai, Ak )   ∀F, with regard to the statement

that   Ai   outranks   Ak :

C ik 

m

 j 1

W  jc j( Ai,  Ak )

m

 j 1

W  j

(11)

where   W  j   is the weight associated with the   jth criterion.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 6/25

2068   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

    T   a    b    l   e    1

    E   x   a   m   p    l   e   o    f   c   r    i   t   e   r    i   a   w   e    i   g    h   t    i   n   g   a   c   c   o   r    d    i   n   g   t   o    S    i   m   o   s   a   p   p   r   o   a   c    h

    R   a   n    k    i   n   g

   a

    C   r    i   t   e   r    i   a

    N   u   m    b   e   r   o    f   c   r    i   t   e   r    i   a

    i   n   e   a   c    h   p    l   a   c   e

    W   e    i   g    h   t    W

    A   v   e   r   a   g   e   w   e    i   g    h   t   s    W    =

      Σ    W    /

    R   e

    l   a   t    i   v   e   w   e    i   g    h   t    (   r   o   u   n    d   e    d

    T   e   s   t

    N      r

    N      r

   o    f    f    %    )    W

      r

    =

    W    /      Σ    W

    1

   c ,   g ,    l

    3

    1 ,    2 ,    3

    (    1     +

    2     +    3    )    /    3    =

    2

    2

    3       ∗    2    =

    6

    2

    d

    1

    4

    4

    5

    1       ∗    5    =

    5

    3

    (    5    )

    4

    b ,    f ,    i ,    j    4

    6 ,    7 ,    8 ,    9

    (    6     +

    7     +    8     +

    9    )    /    4    =

    7 .    5

    9

    4       ∗    9    =

    3    6

    5

   e

    1

    1    0

    1    0

    1    2

    1       ∗    1    2    =

    1    2

    6

   a ,    h

    2

    1    1 ,    1    2

    (    1    1     +

    1    2    )    /    2    =

    1    1 .    5

    1    3

    2       ∗    1    3    =

    2    6

    7

    k

    1

    1    3

    1    3

    1    5

    1       ∗    1    5    =

    1    5

    8    6     b

    1    0    0

   a

    F   r   o   m

   t    h   e   w   o   r   s   t   t   o   t    h   e    b   e   s   t   c   r    i   t   e   r    i   o   n .

     b

    W    i   t    h   o   u   t   t    h   e   w   e    i   g    h   t   s    i   n    b   r   a   c    k   e   t   s .

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 7/25

2069 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

3.6. The index of discordance

The index of discordance of alternative   Ai   vs.   Ak , under the   jth criterion, is

defined as:

d  j( Ai, Ak ) 1⇔v j g j( Ak )g j( Ai) (12)

0 d  j( Ai, Ak ) 1⇔ p j g j( Ak )g j( Ai) v j   (13)

d  j( Ai, Ak ) 0⇔g j( Ak )g j( Ai)  p j   (14)

d  j( Ai , Ak ) shows the degree of discordance with the judgmental statement that   Ai

outranks  Ak . It increases linearly from the bottom level as soon as  g j( Ak ) has passed

the preference threshold, and it arrives at the top level as soon as  g j( Ak ) has reached

the veto threshold  [12].

3.7. Flexibility in the outranking relation

Flexibility allows verification if the outranking relation between two alternatives

is indisputable, not very convincing, or included between the previous conditions.

It is expressed as an index d ik , termed ‘credibility degree of outranking’. As regards

to   Ai  and   Ak , it is defined as:

d ik  C ik  jF 

1d  j( Ai,   Ak )

1 C ik when  d  j C ik    (15)

where   F   is defined as   F   =  { j /  jF,d  j( Ai,   Ak )     C ik } and   FF.The introduction of  d ik   is necessary, because   C ik  is a reliable index of credibility

of the outranking until discordance indices  d  j assume low values. Furthermore, given

the degree of credibility of outranking   d em   of the two actions   Ae   and   Am, the fact

that   d ik    d em   does not imply that the outranking of   Ai   on   Ak   is stronger than the

outranking of   Ae  on   Am.

A function, the so-called discrimination threshold s( l), is defined in order to verify

if an outranking relation is more credible than another. If   ∀ l[0, 1]   d ik   =   l   and

d em   = λh, with  h s( l), then it verified that the outranking of  Ai  on  Ak  is strictly

more credible than the outranking of   Ae  on   Am.

3.8. Final ranking of alternatives

The  final rank derives from the so-called   ‘distillation’, a process which provides

two orders of outcome:

–   the  first one results from a descendant distillation, where the rank order is perfor-

med starting from the strongest preferred actions;

–  the last one results from an ascendant distillation, where the rank order starts from

the weakest preferences.

The intersection between the previous orders, which are defined complete, is a

partial order, which is obtained applying the following rules:

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 8/25

2070   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

  if  Ai is preferred to Ak  in both two orders, then it is also preferred in the  final order;

  if   Ai   and   Ak   are indifferent in one of the two orders, while   Ai   is preferred to   Ak 

in the other one, then   Ai   is preferred to   Ak   in the  final order, too;

  if  Ai   is preferred to  Ak  in one of the two orders, while  Ak   is preferred to  Ai  in theother one, then   Ai  and   Ak  are incomparable in the  final order.

The rank order of the alternatives is presented in a diagram, where scores on the

two reference axis represent the position of alternatives, derived from both distillation

phases. The best alternatives are situated on the upper right side, while the worst

alternatives are positioned on the bottom left of the diagram. The more an alternative

is far from the bisecting line, the more it will be incomparable with the others.

The diagram area, with regard to the best actions, contains the following actions

(Fig. 1):

–  excellent actions in the two orders

Fig. 1. Examples of possible best actions areas.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 9/25

2071 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

–  good actions in the two orders and not totally incomparable

–   excellent actions in at least one of the two orders

–   good actions in the two orders and at least excellent in one of the two orders.

4. Case study

4.1. Application of the Electre method to energy planning in Sardinia

This paper presents an application of the MDMM for the selection   of the most

suitable technologies in a RET2 diffusion plan for the Sardinia region  [13].

A set of technologies of energy conversion and saving, has been selected in order

to assess energy, environmental and economic effects, which are associated with

their diffusion in Sardinia. Such a set has been further restricted o nly to those techno-logies oriented to energy saving and renewable resources use.   Table 2   shows the

Table 2

List of the selected actions to be diffused

Number Energy source Technology/Action Size

1 Solar energy Domestic solar water heaters Small

2 Solar water heating for large Medium–large

demands at low levels of 

temperature3 PV roofs: grid connected system Medium–large

generating electric energy

(without storage)

4 Wind energy Wind turbines (grid connected) Medium–large (one turbine:

200 kW-1 MW)

5 Hydraulic energy hydro plants in derivation Medium–small (100 kW-2

schemes MW)

6 hydro plants in existing water Medium–small (1 MW)

distribution networks

7 Biomass high ef  ficiency wood boilers Small (40 kWt)

8 CHP plants fed by agricultural Medium (10 MWe)

wastes or energy crops

9 Animal manure CHP plants fed by biogas Small (  100 kWe)

10 Energy saving in Building insulation In all new building and in a

residential and large parte of existing ones

industry sectors

11 High ef  ficiency lighting Wide

12 High ef  ficiency electric Wide

householders appliances

13 High ef  ficiency boilers Small–medium

14 CHP Plants coupled with refrigerating Medium–large (100 kW-500

adsorption machines MWe)

2 Renewable energy technologies.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 10/25

2072   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

selected actions. The order number in the   first column will be used to synthesize

the position of each action in the diagram.

4.2. De finition of evaluation criteria

A process of diffusion of an innovative technology needs the following require-

ments:

 compatibility with political, legislative and administrative situation;

  consistence with the local technical and economic condition, which depends on the

local capacity of managing the innovation both at technical and  financial levels;

 consistence with energy demand predictions, which will have to confirm or reject

the expectations of lasting development for the considered innovation;

 compatibility with the existing environmental and ecological constraints.

According to the above considerations, 12 criteria are identified and collected in

Table 3.

5. Description of criteria and evaluation of actions according to each

criterion

5.1. Target of primary energy saving at regional scale (criterion a)

It provides an estimation of the amount of primary energy that a given action

allows to save. Such a saving can be estimated by means of: (1) technologies of 

conversion which use renewable sources; or (2) reduction of  final energy consump-

tions, under the same operating conditions. This criteria is assessed as the annual

saved energy, which derives from fossil fuels, as TJ/year.

Table 3

Groups of criteria

Technological criteria Energy and environmental criteria Social and economic criteria

Targets of primary energy saving in Sustainability according to labour impact

regional scale greenhouse pollutant emissions

Technical maturity, reliability Sustainability according to other Market maturity

pollutant emissions

Consistence of installation and Land requirement Compatibility with political,

maintenance requirements with local legislative and

technical know-how administrative situation

Continuity and predictability of Sustainability according to otherperformances environmental impacts

Cost of saved primary energy

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 11/25

2073 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

5.2. Technical maturity, reliability (criterion b)

It is essentially based on the state of art of the applied technology. The judgment

is expressed by means of a score encompassed within the range  [1,4]. A rank orderis applied, with increasing preference from 1 to 4, as follows:

1. technologies that are only tested in laboratory;

2. technologies that are only performed in pilot plants, where the demonstrative goal

is linked to the experimental one, referring to the operating and technical con-ditions;

3. technologies that could be still improved;

4. consolidated technologies, which are close to reaching the theoretical limits of 

ef ficiency.

5.3. Consistence of installation and maintenance requirements with local

technical know-how (criterion c)

Evaluation is oriented to a qualitative comparison between the complexity of the

considered technology, and the capacity of local actors of ensuring an appropriate

operating support.

Then the following qualitative scale of ranking is used:

1. insuf ficient technical background for installation/maintenance;2. middle technical background for installation/maintenance;

3. great technical background for installation/maintenance.

5.4. Continuity and predictability of performance (criterion d)

It is important to know if conditions of not continuous operational patterns canexist. This condition is often a characteristic of a given technology and does not

indicate a factor of unreliability.

However, when not continuous operational condition conveys toward condition

of unpredictability, it could be a sign of weakness.Therefore, judgment will be articulated according to the following scale:

1. unpredictable and not continuous operation;

2. predictable but not continuous operation;

3. predictable and continuous operation.

5.5. Cost of saved primary energy (criterion e)

The economic assessment of the different actions is made through the cost associa-

ted with the saving of a unit of primary energy (MJ).For a RET, the cost associated with the saving of primary energy is used.

In the same way, in thermal energy plants, which use renewable sources, energy

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 12/25

2074   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

saving depends on the ef ficiency of the substituted combustion system, strictly

referred to as the considered application.

As regard to the interventions of electricity and thermal energy saving, the saved

primary energy is calculated, referring to ef ficiency values of conventional pro-duction system, which are the Enel system for electricity and   a ref erence thermal

generator of given ef ficiency for the thermal energy production   [14].

The actualized cost  C  of a unit of produced, or saved energy, depends on the costs

of investment, of operation, and of the fuel used. It is also in fluenced by the typical

characteristics of the technology, such as ef ficiency, annual production, service life,by the nature of the energy source utilized, and by the money cost. It is calculated

in this way:

starting cost annualization factor annual costs

produced or saved energy   (18)

It must be highlighted that earnings from the sale of energy are not considered in

this parameter. In this way the effects of tariff policies are avoided.

5.6. Sustainability according to greenhouse pollutant emissions (criterion f)

This criterion is introduced to measure the equivalent emission of CO2, which is

avoided by the examined action. Therefore it is a reference index, expressed in

grCO2 /MJ of saved primary energy. Also in this case, reference volumes of emissionof substituted conventional technologies have been considered.

5.7. Sustainability according to other pollutant emissions (criterion g)

Pollutants are divided into the following categories:

–   air emissions mainly due to combustion process;

–   liquid wastes, which are associated mainly with secondary products by fumestreatment or with process water;

–  solid wastes, which are generated during the life cycle of actions.

Type and quantity of emissions, and costs associated with wastes treatments are

assessed. In order to have a synthetic index, the score is expressed through the fol-

lowing qualitative scale of values:

1. very high emissions, when each category is relevant;

2. high emissions, when at least two of the categories are relevant;3. middle emissions, when at least one category is relevant;

4. low emissions, when all the emissions category are insignificant or do not exist.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 13/25

2075 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

5.8. Land requirement (criterion h)

It represents one of the most critical factors for the intervention site, especially

where the human activities are relevant factors of environmental pressure.

A strong demand for land can also determine economic losses, which are pro-

portional to the specific value of site and the possible attendant alternative needs.

In this paper, because of the large scale of the proposed actions, it is dif ficult to

perform specific evaluations and a mean index of land requirement is assessed and

expressed as m2 /kW of installed power. Obviously, local scale evaluations could

describe better drawbacks or possible benefits, which can derive from the con-sidered actions.

5.9. Sustainability according to other environmental impacts (criterion i)

Landscape impact, acoustic emissions, electro-magnetic interferences, bad smells,

and microclimatic changes are evaluated. The synthetic judgment is expressed

through the following scale:

1. very high intensity impacts;

2. high intensity impacts;

3. middle intensity impacts;

4. low intensity impacts;

5. not existing impacts.

5.10. Labor impact (criterion l)

We estimated labor potentials, due to employment of RET, with regard to literature

data [15].   Additional direct and indirect employment, and the possible indirect cre-

ation of new professional   figures are also assessed. The index of labor impact is

expressed as the number of engaged persons per MJ of energy saved in 1 year.

5.11. Market maturity (criterion m)

This criterion estimates the market availability and the status in the penetration

process of a given technology, materials and services associated with the con-

sidered action.

Judgment scale is the following:

1. not present on the market at least in a experimental stage;

2. pilot plants;

3. start of market availability;4. market availability of the technology for less than 10 years;

5. market availability of the technology for more than 10 years.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 14/25

2076   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

5.12. Compatibility with political, legislative and administrative framework 

(criterion n)

Italian normative promotes several innovative strategies of energy saving and con-version.

The different strength of these national incentives represents a judgmental element

among different alternative interventions. However, other limits or legislative facili-

ties can exist, especially in regional contexts which are provided with legislativeautonomy.

The examined criterion assesses the qualitative relevance of the above consider-

ations, with regard to government support, the tendency of institutional actors, and

the policy of public information.

The overall value judgment is expressed in the following way:

1. lacking;

2. middle;

3. high.

All the scores, resulting from the scores  application of the criteria to each action,

are collected in the matrix of evaluation (Table 4).

6. Weighting of criteria and definition of three decisional scenarios

Weighting of criteria is carried out, according to three different scenarios. Each

scenario emphasizes different hierarchy of preferences of DMs, being at the same

time consistent with different technical, economical and political constraints. In this

case three scenarios have been supposed in order to represent:

  a preference toward actions generating the lowest environmental impacts

(‘environmental-oriented’   scenario);

  a preference toward actions involving the highest economical and social benefits

(‘economy-oriented’   scenario);

  a preference toward actions addressed to energy saving and a rationalization of global energy system (‘energy saving and rationalization’   scenario).

In this way it is possible to point out three different options, each one representing

a coherent set of actions, on the basis of which to develop strategies of diffusion  [16].

Table 5   shows the three priority orders for the three assumed scenarios, which

will be described in the following paragraphs.

7. ‘Environmental–oriented’ scenario

In this scenario the criteria of the environmental group have the highest relevance

and the preferences of the DM are oriented towards the most environmental friendly

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 15/25

2077 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

    T   a    b    l   e    4

    M   a   t   r    i   x   o

    f   e   v   a    l   u   a   t    i   o   n   o    f   a    l   t   e   r   n   a   t    i   v   e   s ,   a   c   c   o   r    d    i   n   g   t   o   t    h   e       fi   x   e    d   c   r    i   t   e   r    i   a

    A    l   t   e   r   n   a   t    i   v   e   s

    T   a   r   g   e   t   s   o    f

    T   e   c    h   n    i   c   a    l

    C   o   n   s    i   s   t   e   n   c   e    C   o   n   t    i   n   u    i   t   y

    C   o   s   t   o    f

    S   u

   s   t   a    i   n  -

    S   u   s   t   a    i   n  -

    L   a   n    d

    S

   u   s   t   a    i   n  -

    l   a    b   o   u   r

    M   a   r    k   e   t

    C   o   m   p   a   t    i    b    i    l    i   t   y

   p   r    i   m   a   r   y

   m   a   t   u   r    i   t   y ,

   o    f

   a   n    d   p   r   e    d    i   c   t  -   s   a   v   e    d

   a    b    i    l    i   t   y

   a    b    i    l    i   t   y

   r   e   q   u    i   r   e  -

   a    b    i    l    i   t   y

    i   m   p   a   c   t    [   n .

   m   a   t   u   r    i   t   y

   w    i   t    h

   e   n   e   r   g   y

   r   e    l    i   a    b    i    l    i   t   y

    i   n   s   t   a    l    l   a   t    i   o   n

   a    b    i    l    i   t   y   o    f

   p   r    i   m   a   r   y

   a   c   c   o   r    d    i   n   g

   a   c   c   o   r    d    i   n   g

   m   e   n   t

   a   c   c   o   r    d    i   n   g   t   o   e   n   g   a   g   e    d

    (    1  -    5    )

   p   o    l    i   t    i   c   a    l ,

   s   a   v    i   n   g    i   n

    (    1  -    5    )

   a   n    d

   p   e   r    f   o   r   m  -

   e   n   e   r   g   y

   t   o

   t   o   o   t    h   e   r

    [   m     2    /    K    W    ]

   o

   t    h   e   r

   p   e   r   s   o   n   s    /    M    J

    l   e   g    i   s    l   a   t    i   v   e

   r   e   g    i   o   n   a    l

   m   a    i   n   t   e   n   a   n   c   e   a   n   c   e   s    (    1  -    3    )    (    /    M    J    )

   g   r   e   e   n    h   o   u   s   e

   p   o    l    l   u   t   a   n   t

   e   n   v    i   r   o   n  -

   y   e   a   r    ]

   a   n    d

   s   c   a    l   e

   r   e   q   u    i   r   e   m   e   n   t   s

   p   o    l    l   u   t   a   n   t

   e   m    i   s   s    i   o   n   s

   m

   e   n   t   a    l

   a    d   m    i   n    i   s   t   r   a   t    i   v   e

    [    T    J    /   y   e   a   r    ]

   w    i   t    h    l   o   c   a    l

   e   m

    i   s   s    i   o   n   s

    (    1  -    4    )

    i   m   p   a   c   t   s    (    1  -

   s    i   t   u   a   t    i   o   n    (    1  -

   t   e   c    h   n    i   c   a    l

    (   g     C     O     2    /    M    J    )

    5

    )

    3    )

    k   n   o

   w  -    h   o   w

    (    1  -    5    )

    1

    D   o   m   e   s   t    i   c

    1    2    5    5

    4

    3

    1

    0 .    0    1    7

    4    9

    4

    0 .    0

    5

    1    6    0

    5

    1

   s   o    l   a   r

   w   a   t   e   r

    h   e   a   t   e

   r   s

    2

    S   o    l   a   r

   w   a   t   e   r

    6    4    9

    3

    3

    1

    0 .    0    2    2

    6    3 .    6

    4

    0 .    0

    4

    1    6    0

    5

    1

    h   e   a   t    i   n   g    f   o   r

    l   a   r   g   e    d   e   m   a

   n    d   s   a   t

    l   o   w   t   e   m   p   e   r   a   t   u   r   e   s

    3

    P    V   r   o   o    f   s   :

    1    8    4    2

    2

    1

    1

    0 .    0    7    7

    4    8

    4

    0 .    0

    4

    2    6    8

    2

    2

   g   r    i    d   c   o   n   n   e   c   t   e    d

   s   y   s   t   e   m

   g   e   n   e   r   a   t    i   n   g

   e    l   e   c   t   r    i   c

   e   n   e   r   g

   y

    4

    W    i   n    d

    2    7    9    0

    4

    1

    1

    0 .    0    1    3

    4    8

    4

       1    0 .    0

    3

    3    0

    4

    1

   t   u   r    b    i   n   e   s

    (   g   r    i    d   c   o   n   n   e   c   t   e    d    )

    (   c   o   n   t    i   n   u   e    d   o

   n   n   e   x   t   p   a   g   e    )

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 16/25

2078   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

    T   a    b    l   e    4

    (   c   o   n   t    i   n   u   e    d    )

    A    l   t   e   r   n   a   t    i   v   e   s

    T   a   r   g   e   t   s   o    f

    T   e   c    h   n    i   c   a    l

    C   o   n   s    i   s   t   e   n   c   e    C   o   n   t    i   n   u    i   t   y

    C   o   s   t   o    f

    S   u

   s   t   a    i   n  -

    S   u   s   t   a    i   n  -

    L   a   n    d

    S

   u   s   t   a    i   n  -

    l   a    b   o   u   r

    M   a   r    k   e   t

    C   o   m   p   a   t    i    b    i    l    i   t   y

   p   r    i   m   a   r   y

   m   a   t   u   r    i   t   y ,

   o    f

   a   n    d   p   r   e    d    i   c   t  -   s   a   v   e    d

   a    b    i    l    i   t   y

   a    b    i    l    i   t   y

   r   e   q   u    i   r   e  -

   a    b    i    l    i   t   y

    i   m   p   a   c   t    [   n .

   m   a   t   u   r    i   t   y

   w    i   t    h

   e   n   e   r   g   y

   r   e    l    i   a    b    i    l    i   t   y

    i   n   s   t   a    l    l   a   t    i   o   n

   a    b    i    l    i   t   y   o    f

   p   r    i   m   a   r   y

   a   c   c   o   r    d    i   n   g

   a   c   c   o   r    d    i   n   g

   m   e   n   t

   a   c   c   o   r    d    i   n   g   t   o   e   n   g   a   g   e    d

    (    1  -    5    )

   p   o    l    i   t    i   c   a    l ,

   s   a   v    i   n   g    i   n

    (    1  -    5    )

   a   n    d

   p   e   r    f   o   r   m  -

   e   n   e   r   g   y

   t   o

   t   o   o   t    h   e   r

    [   m     2    /    K    W    ]

   o

   t    h   e   r

   p   e   r   s   o   n   s    /    M    J

    l   e   g    i   s    l   a   t    i   v   e

   r   e   g    i   o   n   a    l

   m   a    i   n   t   e   n   a   n   c   e   a   n   c   e   s    (    1  -    3    )    (    /    M    J    )

   g   r   e   e   n    h   o   u   s   e

   p   o    l    l   u   t   a   n   t

   e   n   v    i   r   o   n  -

   y   e   a   r    ]

   a   n    d

   s   c   a    l   e

   r   e   q   u    i   r   e   m   e   n   t   s

   p   o    l    l   u   t   a   n   t

   e   m    i   s   s    i   o   n   s

   m

   e   n   t   a    l

   a    d   m    i   n    i   s   t   r   a   t    i   v   e

    [    T    J    /   y   e   a   r    ]

   w    i   t    h    l   o   c   a    l

   e   m

    i   s   s    i   o   n   s

    (    1  -    4    )

    i   m   p   a   c   t   s    (    1  -

   s    i   t   u   a   t    i   o   n    (    1  -

   t   e   c    h   n    i   c   a    l

    (   g     C     O     2    /    M    J    )

    5

    )

    3    )

    k   n   o

   w  -    h   o   w

    (    1  -    5    )

    5

    h   y    d   r   o   p    l   a   n   t   s

    5    7    4

    5

    2

    2

    0 .    0    0    4

    4    8

    4

       3 .    5

    2

    1    2    0    0

    5

    3

    i   n    d   e

   r    i   v   a   t    i   o   n

   s   c    h   e   m

   e   s

    6

    h   y    d   r   o   p    l   a   n   t   s

    5    7    4

    5

    3

    3

    0 .    0    0    4

    4    8

    4

       0 .    3

    5

    1    0    0    0

    4

    2

    i   n   e   x

    i   s   t    i   n   g

   w   a   t   e   r

    d    i   s   t   r    i

    b   u   t    i   o   n

   n   e   t   w   o   r    k   s

    7

    h    i   g    h

    9    2    1

    4

    1

    3

    0 .    0    0    3

    6    3 .    6

    3

    0 .    0

    5

    0

    3

    1

   e    f       fi   c    i

   e   n   c   y

   w   o   o    d

    b   o    i    l   e   r   s

    8

    C    H    P

   p    l   a   n   t   s

    1    8    8    4

    4

    1

    3

    0 .    0    1    5

    5    6 .    7

    2

       1    2 .    5

    1

    4    5

    4

    2

    f   e    d    b

   y

   a   g   r    i   c   u    l   t   u   r   a    l

   w   a   s   t   e   s   o   r

   e   n   e   r   g

   y   c   r   o   p   s

    9

    C    H    P

   p    l   a   n   t   s

    1    0    4    7

    4

    2

    3

    0 .    0    2    8

    5    5 .    8

    1

       7    0 .    0

    1

    2    0

    4

    2

    f   e    d    b

   y

    b    i   o   g   a

   s

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 17/25

2079 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

    T   a    b    l   e    4

    (   c   o   n   t    i   n   u   e    d    )

    A    l   t   e   r   n   a   t    i   v   e   s

    T   a   r   g   e   t   s   o    f

    T   e   c    h   n    i   c   a    l

    C   o   n   s    i   s   t   e   n   c   e    C   o   n   t    i   n   u    i   t   y

    C   o   s   t   o    f

    S   u

   s   t   a    i   n  -

    S   u   s   t   a    i   n  -

    L   a   n    d

    S

   u   s   t   a    i   n  -

    l   a    b   o   u   r

    M   a   r    k   e   t

    C   o   m   p   a   t    i    b    i    l    i   t   y

   p   r    i   m   a   r   y

   m   a   t   u   r    i   t   y ,

   o    f

   a   n    d   p   r   e    d    i   c   t  -   s   a   v   e    d

   a    b    i    l    i   t   y

   a    b    i    l    i   t   y

   r   e   q   u    i   r   e  -

   a    b    i    l    i   t   y

    i   m   p   a   c   t    [   n .

   m   a   t   u   r    i   t   y

   w    i   t    h

   e   n   e   r   g   y

   r   e    l    i   a    b    i    l    i   t   y

    i   n   s   t   a    l    l   a   t    i   o   n

   a    b    i    l    i   t   y   o    f

   p   r    i   m   a   r   y

   a   c   c   o   r    d    i   n   g

   a   c   c   o   r    d    i   n   g

   m   e   n   t

   a   c   c   o   r    d    i   n   g   t   o   e   n   g   a   g   e    d

    (    1  -    5    )

   p   o    l    i   t    i   c   a    l ,

   s   a   v    i   n   g    i   n

    (    1  -    5    )

   a   n    d

   p   e   r    f   o   r   m  -

   e   n   e   r   g   y

   t   o

   t   o   o   t    h   e   r

    [   m     2    /    K    W    ]

   o

   t    h   e   r

   p   e   r   s   o   n   s    /    M    J

    l   e   g    i   s    l   a   t    i   v   e

   r   e   g    i   o   n   a    l

   m   a    i   n   t   e   n   a   n   c   e   a   n   c   e   s    (    1  -    3    )    (    /    M    J    )

   g   r   e   e   n    h   o   u   s   e

   p   o    l    l   u   t   a   n   t

   e   n   v    i   r   o   n  -

   y   e   a   r    ]

   a   n    d

   s   c   a    l   e

   r   e   q   u    i   r   e   m   e   n   t   s

   p   o    l    l   u   t   a   n   t

   e   m    i   s   s    i   o   n   s

   m

   e   n   t   a    l

   a    d   m    i   n    i   s   t   r   a   t    i   v   e

    [    T    J    /   y   e   a   r    ]

   w    i   t    h    l   o   c   a    l

   e   m

    i   s   s    i   o   n   s

    (    1  -    4    )

    i   m   p   a   c   t   s    (    1  -

   s    i   t   u   a   t    i   o   n    (    1  -

   t   e   c    h   n    i   c   a    l

    (   g     C     O     2    /    M    J    )

    5

    )

    3    )

    k   n   o

   w  -    h   o   w

    (    1  -    5    )

    1    0    B   u    i    l    d

    i   n   g

    4    1    8    7

    4

    3

    3

    0 .    0    2    1

    6    3 .    6

    4

    0 .    0

    5

    4    4

    5

    1

    i   n   s   u    l   a   t    i   o   n

    1    1    h    i   g    h

    2    7    8    4

    5

    3

    3

    0 .    0    0    2

    4    8

    4

    0 .    0

    5

    0

    4

    2

   e    f       fi   c    i

   e   n   c   y

    l    i   g    h   t    i   n   g

    1    2    h    i   g    h

    2    2    1    5

    4

    3

    3

    0 .    0    0    9

    4    8

    4

    0 .    0

    5

    0

    4

    1

   e    f       fi   c    i

   e   n   c   y

   e    l   e   c   t   r    i   c

    h   o   u   s   e    h   o    l    d   e   r   s

   a   p   p    l    i   a   n   c   e   s

    1    3    h    i   g    h

    1    1    7    2

    4

    3

    3

    0 .    0    1    4

    6    3 .    6

    2

    0 .    0

    5

    0

    5

    2

   e    f       fi   c    i

   e   n   c   y

    b   o    i    l   e   r   s

    1    4    P    l   a   n   t

   s

    7    0    3

    3

    2

    3

    0 .    0    0    5

    5    5 .    8

    2

       0 .    3

    4

    2    9    4

    2

    2

   c   o   u   p    l   e    d   w    i   t    h

   r   e    f   r    i   g

   e   r   a   t    i   n   g

   a    d   s   o   r   p   t    i   o   n

   m   a   c    h

    i   n   e   s

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 18/25

2080   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

Table 5

Levels of priority in the three decisional scenarios

Environmental-oriented scenario Economy-oriented scenario Energy saving andrationalization scenario

High priority High priority High priority

Sustainability according to Compatibility with political, Continuity and predictability

greenhouse pollutant emissions legislative and administrative of performances

situation

Sustainability according to other Market maturity Technical maturity, reliability

pollutant emissions

Land requirement labour impact Cost of saved primary energy

Sustainability according to other Technical maturity, reliability Targets of primary energy

environmental impacts saving in regional scale

Targets of primary energy saving in Cost of saved primary energyregional scale

Middle priority Middle priority Middle priority

Technical maturity, reliability Land requirement Sustainability according to

greenhouse pollutant

emissions

Consistence of installation and Consistence of installation and Sustainability according to

maintenance requirements with local maintenance requirements with other pollutant emissions

technical know-how local technical know-how

Continuity and predictability of Land requirement

performances

Cost of saved primary energy

labour impact

Low priority Low priority Low priority

Compatibility with political, Sustainability according to Market maturity

legislative and administrative greenhouse pollutant emissions

situation

Market maturity Sustainability according to other Labour impact

pollutant emissions

Sustainability according to other Compatibility with political,

environmental impacts legislative and administrative

situation

Continuity and predictability of 

performancesTargets of primary energy saving

in regional scale

actions. It can be supposed that it assigns the highest importance to labor impact

among the social and economical criteria, locating them in the middle priority rank.

The other criteria of the same group are associated with the low priority rank.

All the criteria, which assess technical reliability of actions, are assigned to the

middle priority rank, except for the criterion of energy saving targets. In particular,the reduction of fossil fuel consumption represents not only an economic target, but

also one of the most relevant issue of environmental sustainability.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 19/25

2081 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

8.   ‘Economy-oriented’   scenario

One of the main targets of decision-makers is the promotion of RET, as a meansto increase enterprise capacity and generate new profit. In this sense, the possibilityto create new employments, the economical ef ficiencies of projects and the consist-

ence with the constraints and the legislative facilities represent the most relevant cri-

teria.

Besides, a good judgment on market maturity implies that the selected actions

show a high capability of market penetration.

The technical maturity criterion describes the reliability of a given technology,

which is associated with the safety of investment. The cost of primary energy saved

is a reliable indicator for the energetic and economical ef ficiency of the examined

technology.The two criteria land requirement and consistence with local technical know-how

are assigned in the middle priority rank. The  first one is an environmental indicator,

which also has an economic implication. In fact, the increase of the occupied land

often involves an increase of initial operating costs. The last one measures the pres-

ence of a local technical know-how, suitable to allow the introduction of the giventechnology. The remaining criteria are associated with the low priority rank.

9.   ‘Energy saving and rational use’   scenario

Since the selected technology must not reduce system reliability, the criteria of 

technical maturity and continuity and predictability of performance are considered

with high priority, together with the energy-saving criterion. The cost of saved pri-

mary energy indicates a global measure of the convenience to substitute the conven-

tional primary sources with the resources used by the examined technologies.

Environmental criteria are assigned to the middle priority rank. In fact, the valoriz-ation of renewable energy technologies is connected with a reduction of the environ-

mental releases by the energy production processes.

The lowest priority is assigned to the social and economical criteria. In fact, itcan be supposed to overcome the possible legal and  financial dif ficulties, due to the

selected strategy, by means of appropriate political or administrative interventions

in the considered social context.

10. Aggregation procedure

The thresholds of indifference, the strict preference and the veto thresholds are

defined. As these thresholds mainly depend on the nature and the reliability of avail-able data, and on the importance of each criterion in the evaluation, two terns of 

values for each criterion are considered. The first one is valid when a given criterion

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 20/25

2082   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

does not assume the highest priority in the global evaluation, while the last one takes

value when it reaches the highest priority (Table 6).

11. Results

11.1.   ‘ Environmental-oriented ’  scenario

The outcomes of the distillation procedure are the  final order for each decisional

scenario. In each order a best actions area is defined as the area within which the

best alternatives are placed for both distillations. These alternatives represent the

actions that   fulfill the objectives that the decision-maker has  fixed.

In Fig. 2 the dotted area at the top right is the best alternative area. Actions 1, 4,6, 10, 11 and 12 belong to such an area. As regards to the excluded ones, actions

2 and 7 are the nearest to the best actions area.

Action 13 is the only excluded action that deals with building energy saving. The

other alternatives are excluded because their performances are too low in the most

significant criteria for the considered scenario. However, they also have a consistent

weight in the criteria of middle and high priority. For example, action 3 is excluded

from the best actions area, but it reaches high performances on average for the pri-

ority criteria in the considered scenario.

11.2.   ‘ Economy-oriented ’  scenario

Actions 1, 2, 5, 6, 10, 11, 12 and 13 are the best ones   (Fig. 3). Action 4 is the

best among the excluded ones, mainly depending on the evaluation in the criteria

of land requirement and labor impact. It must be remembered that earnings from

energy sales are not considered.

The low score of actions 11, 12, and 13 in labor impact is balanced by the good

values that these actions reach in the criterion cost of saved primary energy.

Table 6

Thresholds of veto, indifference and preference for the different criteria

a b c d e f g h i l m n

‘Not prioritary’  criteria

Veto 3600 4 3 3 100 120 4 71 5 1000 5 3

Indifference 100 0 0 0 5 20 0 0 0 0 0 0

Preference 500 0.5 0.5 0.5 15 40 0.5 3 0.5 100 0.5 0.5

‘Prioritary’  criteria

Veto 1800 1.9   –   1.9 20 50 1.9 0.1 1.9 1000 1.9 1.9Indifference 50 0   –   0 0 0 0 0 0 0 0 0

Preference 100 0.5   –   0.5 10 5 0.5 0.1 0.5 100 0.5 0.5

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 21/25

2083 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

Fig. 2. Outcomes of distillation procedure in the   ‘environmental-oriented’  scenario.

11.3.   ‘ Energy saving and rational use’  scenario

In this scenario, the actions 6, 7, 10, 11, and 12 are the best ones ( Fig. 4).

Action 6 and 7 are the best alternatives, concerning renewable sources techno-

logies, while actions 1, 5, 13 and 14 are the best excluded ones. In this case the

actions 10, 11 and 12, dealing with energy saving in building, have been selected.

12. Discussion

Table 7  shows a comparison among the results of the aggregation procedure for

the three examined scenarios. It can be noted that the following actions always belongto the best actions zone:

  action 6;

  action 10;   action 11;

  action 12.

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 22/25

2084   M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

Fig. 3. Outcomes of distillation procedure in the   ‘economy-oriented’  scenario.

Action 1 is always included for the environmental-oriented and economy-oriented

scenarios, while it is excluded for the scenario of energy saving and rational use.

Finally, the following actions are present once among the best alternatives and

once among the best excluded ones:

–   action 2;–   action 4;–   action 5;

–   action 7;

–   action 13.

Therefore, the four most recurring actions and the best excluded one are charac-

terized by more relevant robustness than the others. In other words, they are not

much dependent on weights variation or other constraints that characterize the three

scenarios. They are considered consistent with the priority expectations of all the

three decision scenarios, each one representing a hierarchy of different values andtargets.

The last group of actions (actions 2, 4, 5, 7, and 13) contains potential   ‘best

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 23/25

2085 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

Fig. 4. Outcomes of distillation procedure in the   ‘energy saving and rational use’  scenario.

Table 7

Panel of results

Scenario The best actions The best excluded actions

1.   ‘Environmental–oriented’  scenario 1, 4, 6, 10, 11, 12 2, 7

2.   ‘Economy–oriented’  scenario 1, 2, 5, 6, 10, 11, 12, 13 4, 143.   ‘Energy saving and 6, 7, 10, 11, 12 1, 5, 13, 14

rationalization’  scenario

actions’, for which an improvement in one of the priority criteria could bring a

significant variation in the overall evaluation.

13. Conclusions

A MDMM is applied in order to assess groups of actions focused on the implemen-

tation of RET innovative technologies voted to use energy renewable resources. The

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 24/25

8/10/2019 Decision-making in energy planning

http://slidepdf.com/reader/full/decision-making-in-energy-planning 25/25

2087 M. Beccali et al. / Renewable Energy 28 (2003) 2063 – 2087 

[16] Beccali M. Nuove tecnologie energetiche e sviluppo sostenibile, un approccio multicriteria per la

valutazione delle probabilita  di successo di una pianificazione innovativa. PhD thesis, 1994.

[17] Roy B. Classement et choix en presence de point de vue multiple (la methode Electre). Revue

Informatique et Recherche Operationelle 1968;8.[18] Beccali G, Cellura M, Mistretta M. A decision support system software based on multi-criteria

analysis for the selection of urban sustainability scenarios. In: Proceedings of the International Con-

ference   ‘RIO 02 World Climate and Energy Event. 2002. p. 301–8.