13
Deflected Propagation of CMEs: One of the Key Issues in Space Weather Forecasting Yuming Wang University of Science and Technology of China, Hefei, China Contributors: Chenglong Shen, Bin Zhuang, and SEPC@NSSC, CAS AOSWA, Jeju, Korea 2016.10

Deflected Propagation of CMEsaoswa4.spaceweather.org/presentationfiles/20161025/G1-8.pdf · 2016. 10. 31. · Deflected Propagation of CMEs: One of the Key Issues in Space Weather

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Deflected Propagation of CMEs:

    One of the Key Issues in Space Weather Forecasting

    Yuming Wang

    University of Science and Technology of China, Hefei, China

    Contributors: Chenglong Shen, Bin Zhuang, and SEPC@NSSC, CAS

    AOSWA, Jeju, Korea 2016.10

  • Major drivers of hazardous space weather

    • 2003.10.30 “Halloween” event

    -383 nT

    Vcme=2460 km/s, V1AU≈1500 km/s

    • 2000.07.16 “Bastille Day” event

    -301 nT

    Vcme=1670 km/s, V1AU>1000 km/s

    • 1989.03.13 “Quebec” event

    -589 nT

    V1AU>1000 km/s

    • 1859.09.01 “Carrington” event

    -1760 nT (Tsurutani et al., 2003)

    V1AU≈2000 km/sProbability: once per 150 years

  • Lucky in solar cycle 24

    • The fastest CME over 28 years NOT facing on the Earth (e.g., Russell et al., 2013) STB STA

    SOHO

    Event Vcme(km/s) V1AU(km/s) B(nT) Dst(nT)

    2012.7 3400 >2000 >100 ?

    2003.10 2460 1500

  • The largest geomagnetic storm in solar cycle 24

    2015.3.17 “St. Patrick’s Day” event (e.g., Kataoka et al. GRL, 2015, Wang Y. et al. JGR, 2016)

    -223 nT

    • March 14, ~12:36 UT

    Preceding CME: slow,

    toward the south

    • March 15, ~01:36 UT

    Main CME: fast,

    toward the west

    • Forecasting by SWPC of NOAA: G1 level,

    minor geomagnetic disturbance

    • The fact: G4 level, a major storm, unexpected

  • Another example: a limb CME hit the Earth (Wang Y. et al. 2014)ST-A SOHO ST-B

    • Initially facing

    to ST-B

    • Actually

    encounter the

    Earth

  • Two long-standing puzzles

    1. Not all of frontside CMEs can encounter the Earth (e.g.,Webb et al., 2001;Wang Y. et al., 2002; Zhao & Webb, 2003; Yermolaev et al., 2005; Shen C. et al., 2014)

    • Only about 60 – 70% of frontside halo CMEs can arrive at the Earth

    • Only about 50% of frontside halo CMEs have geoeffectiveness

    2. Not all of nonrecurrent geomagnetic storms or ICMEs can be tracked

    back to a frontside CME (e.g., Cane et al., 2000; CaneandRichardson, 2003; Yermolaev et al., 2005; Zhang et

    al., 2007)

    • Problem storms: no solar source can be identified (e.g., Webb et al., 2003; Schween et al.,

    2005)

  • What control the likelihood of a CME hitting the Earth?

    Size & Direction

    • Size: roughly radial expanding, angular width is almost constant (e.g., Schween et al., 2005)

    • Direction: may change due to

    • Interaction with ambient solar wind and magnetic field (e.g., Wang Y. et al., 2002, 2004, 2006, 2014;

    Gopalswamy et al., 2003; Cremades et al., 2006; Shen C. et al., 2011; Gui et al., 2011; Isavnin et al. 2013, 2014)

    • Interaction with other magnetized structures (e.g., Wang Y. et al., 2011; Lugaz et al., 2012; Shen C. et al., 2012)

    • Change in both latitude and longitude

    • How to measure or estimate the trajectory of a CME:

    • multiple view angles (SOHO, STEREO)

    • reconstruction/modeling for CME (GCS, triangulation, etc.) and background solar wind

  • The largest geomagnetic storm in solar cycle 24

    • Fitted by

    velocity-

    modified

    Lundquist flux

    rope model

    • Implying a 12°

    deflection

    toward the east

    B0 = 32 nT

    R = 0.09 AU

    Theta = -45 deg

    Phi = 348 deg

    H = +1

    d = -0.82 R

    v_x = -540 km/s in GSE

    v_y = 59 km/s

    v_z = -27 km/s

    v_exp = 51 km/s

    v_pol = 45 km/s

    Sun 1AUIP Space

    ?GCS reconstruction

    Wang Y. et al. JGR, 2016

  • Reconstruct the trajectory of the CME

    • Background solar wind from 3D numerical MHD simulation (Shen F. et al., 2007, 2011)

    • CME speed from drag-based model (DBM, Vrsnak et al., 2013)

    Online tool: http://oh.geof.unizg.hr/DBM/dbm.php

    • CME trajectory from DIPS model (Wang Y. et al., 2004, 2014)

    Online tool: http://space.ustc.edu.cn/dreams/dips

    • Deflected toward the east by about 12° , increasing the geoeffectiveness of the CME

  • The 2008 September limb CME event

    • The slow CME was deflected toward the west by about 30°

    Wang Y. et al., JGR, 2014

  • Deflection is a key issue in space weather forecasting

    Three possible mechanisms

    Deflection in corona due to magnetic energy density gradient (e.g., Gopalswamy et al., 2003; Cremades et al., 2006; Wang et al., 2011; Shen et al. 2011; Gui et al., 2011 )

    Deflection in IP space due to interaction with solar wind (e.g., Wang et al., 2002, 2004, 2006, 2014; Lugaz et al., 2010; Isavnin et al., 2013)

    Deflection due to CME-CME collision/interaction (e.g., Wang et al., 2011; Lugaz et al., 2012; Shen et al., 2012)

    Model for the CME Deflection in IP Space (DIPS, Wang Y. et al., 2004, 2014)

    Available at http://space.ustc.edu.cn/dreams/dips, also available at CCMC

  • Integrated CME Arrival Forecasting (iCAF) System

    • Completely automated (See poster P-07 by B. Zhuang et al. for iCAF)

    Coronagraph images

    Projected 2D parameters:Position angle, speed, width

    CME detection

    Cone model

    DIPS model

    3D parameters:direction, speed, width

    Trajectory: CME arrival prediction

    Solar wind speed

    Tested at Space Environment Prediction Center (SEPC)

    of National Space Science Center (NSSC), Chinese Academy of China (CAS)

  • Performance of iCAF: Preliminary statistics

    Test prediction of CME arrival

    • Sample: 37 full halo CMEs (38% missing the Earth)

    • Prediction: 81% correct, 19% false

    CME scoreboard @ CCMC

    • 2015 August 14

    CME did not hit

    the Earth

    iCAF

    In-situ Obs.Y N

    Y 20 3

    N 4 10

    Predicted Shock Arrival Time

    Confidence (%)

    Method

    08-18T12:00Z (-7.0h, +7.0h)

    10.0 WSA-ENLIL + Cone (GSFC SWRC)

    08-18T05:00Z----

    WSA-ENLIL + Cone (NOAA/SWPC)

    08-19T12:00Z (-12.0h, +12.0h)

    20.0 Other (SIDC)

    08-18T18:00Z (-12.0h, +8.0h)

    40.0 WSA-ENLIL + Cone (Met Office)