Deimos Rendezvous

Embed Size (px)

Citation preview

  • 8/12/2019 Deimos Rendezvous

    1/48

    Mitigating Long Duration Biomedical Constraints

    With Innovative Mission Architecture

    James S. Logan, M.D.Group Manager, Human Test Support

    Clinical Services Branch/SD3NASA Johnson Space Center

    [email protected]

    A Design Reference Mission Suite

  • 8/12/2019 Deimos Rendezvous

    2/48

    Mitigating Long Duration Biomedical Constraints

    With Innovative Mission Architecture

    Dan AdamoIndependent Astrodynamics Consultant

    [email protected]

    Special Acknowledgment

  • 8/12/2019 Deimos Rendezvous

    3/48

    > 270 Missions

    > 500 People

    > 100 Person-years

    2011 Will Be Year 50 of human spaceflight!!

    What are the implications of the EVIDENCE?

  • 8/12/2019 Deimos Rendezvous

    4/48

    Potential Lunar Long Duration Showstoppers*

    Lunar Dust Wild Card Wild Card

    RadiationEVA Hab

    Surface

    (EVA)Depth

    Surface

    (EVA)Depth

    Hypogravity Nonstarter Nonstarter

    SynergisticEffects

    Element Sortie Outpost Settlement Frontier

    * Assuming current technology and goal of civilization

  • 8/12/2019 Deimos Rendezvous

    5/48

  • 8/12/2019 Deimos Rendezvous

    6/48

    From Apollo Experience Report Protection Against Radiation

    NASA TN D-7080 (1973)

  • 8/12/2019 Deimos Rendezvous

    7/48

    Risk of Exposure Induced Death

    REID is a statistical approach pegged to a single radiation effect:

    DEATH from cancer directly attributable to the exposure

    In 1989 NASA accepted National Committee on Radiation Protection

    (NCRP) recommendation of career dose limits corresponding to a

    lifetime increase of 3% in cancer mortality

    In 2000, NCRP kept that same 3% recommendation but alsosignificantly reduced the dose expected to reach the 3% lifetime risk.

    45 y.o. male astronauts 10 year 3% career limit went from

    325 rem in 1989 to 150 rem in 2000

    35 y.o. female astronauts 10 year 3% career limit went from

    175 rem in 1989 to 60 rem in 2000

    This is NOT being more conservative, this is a realization that

    radiation is more harmful than predicted

  • 8/12/2019 Deimos Rendezvous

    8/48

    New Radiation Protection Scale

    RP100 Same radiation protection as Earth at sea level(1030 g/cm2 radiation shield equivalent or 100%)

    RP50 Radiation shield equivalent to 18,000 ft altitude

    RP2 Best ISS locations ~ 2% Earth protection

    RP0.005 Radiation protection equivalent of space suit

    (one-half of 1% Earth equivalent)

  • 8/12/2019 Deimos Rendezvous

    9/48

  • 8/12/2019 Deimos Rendezvous

    10/48

    X

  • 8/12/2019 Deimos Rendezvous

    11/48

  • 8/12/2019 Deimos Rendezvous

    12/48

  • 8/12/2019 Deimos Rendezvous

    13/48

    X X

  • 8/12/2019 Deimos Rendezvous

    14/48

  • 8/12/2019 Deimos Rendezvous

    15/48

  • 8/12/2019 Deimos Rendezvous

    16/48

    Implications

    Moon/Mars may never more than sortie destinations*

    Habitats must be shielded or underground Repeat EVAs (same crew) will be severely constrained

    Robotic precursor missions must scout destinations

    and prepare sites for human presence

    Must determine Gravity Prescription for people,

    plants, animals and multiple generations

    *At least not without significant new investments

    in research and enabling technology

  • 8/12/2019 Deimos Rendezvous

    17/48

  • 8/12/2019 Deimos Rendezvous

    18/48

    We need to stop this obsessive

    preoccupation with spherical bodies at

    the bottom of gravity wells with basicallyno atmosphere and no magnetic field.

    These places just arent good for us - - at

    least not as settlement, frontier orcivilization destinations.

    James S. Logan, MD

  • 8/12/2019 Deimos Rendezvous

    19/48

    The Perfect Place

    Low Delta-V

    Lots of RESOURCES!

    Little or No GRAVITY WELL

    At or Near Earth Normal GRAVITY for

    People, Plants and Animals

    Natural RADIATION Protection

    Permit Large Redundant Ecosystem(s)

    Staging Area for Exploration and Expansion

  • 8/12/2019 Deimos Rendezvous

    20/48

  • 8/12/2019 Deimos Rendezvous

    21/48

    Round-Trip v To SomeNearby Destinations

    Daniel R. Adamo 23 May 2010 21

  • 8/12/2019 Deimos Rendezvous

    22/48

    Accessible NEOs On 1 March 2010

    Daniel R. Adamo 23 May 2010 22

  • 8/12/2019 Deimos Rendezvous

    23/48

    33 by 13 Km; 2,900 Cubic Kilometers

    3% metals (gold, aluminum, platinum,zinc., iridium, etc.)

    $20,000,000,000,000

  • 8/12/2019 Deimos Rendezvous

    24/48

  • 8/12/2019 Deimos Rendezvous

    25/48

  • 8/12/2019 Deimos Rendezvous

    26/48

  • 8/12/2019 Deimos Rendezvous

    27/48

    Virtues of DEIMOSThird Largest NEO (12.6 km mean diameter)

    Less Delta-V than Moon, Phobos, Eros

    (escape velocity of 12.5 mph (5.6 m/s; 20 km/h)!!

    Only 20,000 km from Martian surface

    Just above aerosynchronous orbit

    Launch window every 2.14 years

    Visualize all of Mars except extreme polar regions

  • 8/12/2019 Deimos Rendezvous

    28/48

    Virtues of DEIMOSRound trip light time of 0.13 seconds

    Locked orbit around Mars

    Couldbe captured carbonaceous chondrite

    Low average density (1.471 g/cm2)

    Could achieve all Mars surface explorationobjectives via short range human telepresence(ref.NASA Mars Design Reference Architecture [DRA] 5.0,

    Section 3: Goals and Objectives)

  • 8/12/2019 Deimos Rendezvous

    29/48

  • 8/12/2019 Deimos Rendezvous

    30/48

    Duration of DEIMOS Mission

    Outbound Leg : 240 Days (24%)

    DEIMOS Stay Time: 469 Days (46.9%)

    Return Leg: 249 Days (24%)

    Total 949 Days

    5.1% Pad (consumables) 1000 Days (100%)

    ~1000 Days is unacceptable re: RADIATION!

    Therefore you must implement an RP100 environment at Deimos.

    This will reduce your exposed days by half

  • 8/12/2019 Deimos Rendezvous

    31/48

    Mission Architecture Elements Series of Robotic Precursor Missions (RPMs) for

    reconnaissance and habitat site preparation

    Pre-emplacement of stay time, return consumables

    as well as return entry vehicle at destination

    (i.e. must rendezvous with Deimos)

    Earth Parking Orbit (EPO) functions as fuel depot

    Incremental build up of Mars Transit Vehicle

    Abort To Destination (ATD) only option after TMI No aerobraking for Mars capture KISS principle

    Direct entry upon Earth return

  • 8/12/2019 Deimos Rendezvous

    32/48

    Consumables Mass Estimate Calculations

    Method Two (modified Logan method)

    NASA Open Loop Life Support and modified ISS experience for

    1000 days

    Water: 18,000 kg

    Oxygen: 2,170

    Food: 5,700

    Crew Supplies: 2,071Gasses Lost to Space: 2,071

    Systems Maintenance 2,071

    TOTAL 32,084

    Outbound + Pad (Crew Vehicle): 9,336 kg

    Preemplacement at DEIMOS: 22,747 kg

    TOTAL 32,084

  • 8/12/2019 Deimos Rendezvous

    33/48

    Innovative Architecture

    Elements:RADIATION PROTECTION

    Radical redesign of Human Element (HE) vehicle toleverage all infrastructure mass (includingpropellant)

    for radiation protection

    At least RP5 required during transit (~50g/cm2)

    Minimize radiation exposure by reducing Exposed

    Days

    Habitat site at destination mustprovide RP100

    Use of NTM for radiation protection on return leg

  • 8/12/2019 Deimos Rendezvous

    34/48

  • 8/12/2019 Deimos Rendezvous

    35/48

  • 8/12/2019 Deimos Rendezvous

    36/48

  • 8/12/2019 Deimos Rendezvous

    37/48

  • 8/12/2019 Deimos Rendezvous

    38/48

    Destination Deimos Mars Transfer Vehicle (MTV)

    Assumptions Propulsion stages made up of 15.7% structure

    (tankage, plumbing,...)

    A launch package is limited to 187.7 mT IMLEO(think Ares V i.e. real Heavy Lift not wimpy Heavy Lift)

    Pre-emplace all return consumables at Deimos, including a crewEarth-return vehicle required for direct atmospheric entry

    First heavy-lift launch package: Cargo Element #1 (CE1) First half of hypergolic propulsion stage required for Mars orbit

    insertion (MOI) and Deimos rendezvous

    Payload mass = 50.9 mT; IMLEO = 134.0 mT

    Additional payload mass = 21.6 mT available (likely forhypergolic propellant supporting Earth orbit loiter to await laterlaunch packages)

    CE2 is identical to CE1 and completes assembly of MOIstage

  • 8/12/2019 Deimos Rendezvous

    39/48

    Destination Deimos Mars Transfer Vehicle (MTV)

    CE3 is unique Inflatable TransHab module (28.1 mT) plus open-loop crew

    consumables for 8 months + 5.1% margin (9.4 mT) plus

    additional radiation shielding (23.0 mT) to achieve RP5 Payload mass = 60.4 mT; IMLEO = 157.6 mT

    Fourth heavy-lift launch package: Human Element (HE)

    Cryogenic trans-Mars injection (TMI) stage (46.9 mT) plus crewexploration vehicle (CEV, 18.6 mT)

    Payload mass = 65.5 mT; IMLEO = 170.3 mT

    Without nuclear propulsion, there are no Earth return optionspost-TMI. Therefore, the CEV nominally undocks from the

    MTV after the crew enters TransHab and is GO for TMI.Following successful TMI, the CEV is deorbited.

    Total IMLEO = 595.8 mT (current ISS mass = 370.2 mT,

    but this is not the IMLEO associated with ISS assembly)

  • 8/12/2019 Deimos Rendezvous

    40/48

  • 8/12/2019 Deimos Rendezvous

    41/48

  • 8/12/2019 Deimos Rendezvous

    42/48

    Mars Orbit Insertion andDeimos Rendezvous

    Core Size: 0.460 km by 12 km

  • 8/12/2019 Deimos Rendezvous

    43/48

    Core Volume: 1.99 km3

    Mean Density: 1.471 gm/cm

    3

    Core Mass: 2,927,290,000,000 kg

    1% H2O => 29 Billion Liters

    3% H2O => 88 Billion Liters

    5% H2O => 146 Billion Liters

    7% H2O => 205 Billion Liters

  • 8/12/2019 Deimos Rendezvous

    44/48

  • 8/12/2019 Deimos Rendezvous

    45/48

  • 8/12/2019 Deimos Rendezvous

    46/48

    The Art & Science of BIONEERING:

    Turning this

    I t thi

  • 8/12/2019 Deimos Rendezvous

    47/48

    Into this

  • 8/12/2019 Deimos Rendezvous

    48/48

    Questions?