11
APS/DPP 2008 GO3.00008 Politzer 01 Demonstration of ITER Operational Scenarios on DIII-D P. A. Politzer 1 for E.J. Doyle 2 , R.V. Budny 3 , J.C. DeBoo 1 , J.R. Ferron 1 , G.L. Jackson 1 , T.C. Luce 1 , M. Murakami 4 , T.H.Osborne 1 , J.-M. Park 4 , H. Reimerdes 5 , T.A. Casper 6 , C.D. Challis 7 , R.J. Groebner 1 , C.T. Holcomb 6 , A.W. Hyatt 1 , R.J. La Haye 1 , J. Kinsey 1 , G.R. McKee 8 , T.W. Petrie 1 , C.C. Petty 1 , T.L. Rhodes 2 , M.W. Schafer 8 , P.B. Snyder 1 , E.J. Strait 1 , M.R. Wade 1 , G. Wang 2 , W.P.West 1 , and L. Zeng 2 1 General Atomics, 2 UCLA, 3 PPPL, 4 ORNL, 5 Columbia Univ., 6 LLNL, 7 Euratom/UKAEA, Culham, 8 U. Wisconsin, Madison 50th Annual Meeting of the APS/DPP Dallas, Texas November 17-21, 2008

Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

Embed Size (px)

Citation preview

Page 1: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 01

Demonstration of ITER Operational Scenarios on DIII-D

P. A. Politzer1

for

E.J. Doyle2, R.V. Budny3, J.C. DeBoo1, J.R. Ferron1, G.L. Jackson1,T.C. Luce1, M. Murakami4, T.H.Osborne1, J.-M. Park4, H. Reimerdes5,T.A. Casper6, C.D. Challis7, R.J. Groebner1, C.T. Holcomb6, A.W. Hyatt1,R.J. La Haye1, J. Kinsey1, G.R. McKee8, T.W. Petrie1, C.C. Petty1, T.L. Rhodes2, M.W. Schafer8, P.B. Snyder1, E.J. Strait1, M.R. Wade1, G. Wang2, W.P.West1, and L. Zeng2

1 General Atomics, 2 UCLA, 3 PPPL, 4 ORNL, 5 Columbia Univ., 6 LLNL, 7 Euratom/UKAEA, Culham, 8 U. Wisconsin, Madison

50th Annual Meeting of the APS/DPPDallas, TexasNovember 17-21, 2008

Page 2: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 02

ITER demonstration discharges support further development of operating scenarios

•Develop sample discharges for further experiments in support of ITER

•Provide a better basis for projection to ITER performance

• Identify issues requiring further study

➤ This talk will – describe the discharges we’ve developed, – discuss some of the ITER physics issues raised by these experiments, and– present projections to ITER performance

Page 3: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 03

DIII-D demonstration discharges meet ITER normalized performance targets

Four ITER scenarios are addressed on DIII-D:

Baseline: conventional ELMy H-mode, with Q=10 at I=15 MA.

Steady-state: fully noninductive operation, with Q~5 at I~9 MA.

Hybrid: high neutron fluence, long pulse at reduced current, with Q~5-10 at I~11 MA.

Advanced inductive: high performance, Q=20+, Pfus~700 MW, I=15+ MA. G = βNH89/q952 is a useful control

room measure of expected fusion performance.

0.8

0.6

0.4

0.2

0.00 1 2 3 4 5

t (sec)

G

G = βNH89/q952

advancedinductive

baselinehybrid

steady-state

Q=10

Q=5

131499131208131265133137

q95=3.3

q95=3.1

q95=4.7

q95=4.1

ITER

Page 4: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 04

DIII-D has the unique capability to evaluate ITER scenarioswhile matching the design shape and aspect ratio

• Reduce all ITER plasma dimensions by a factor of 3.7

• The DIII-D plasmas match the ITER design values for – plasma shape– aspect ratio– value of I/aB (normalized current)

• Target values for βN and H98y2 were matched or exceeded– evaluate performance in the current flat-top phase– co-NBI used throughout

1.0 1.5 2.0-1.5

-1.0

-0.5

0.0

0.5

1.0

m

ScaledITER (÷3.7)

DIII-D

ITER startup study: JP6.082 G. Jackson, PO3.014 T. Casper

Page 5: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 05

ITER baseline scenario parameters matched on DIII-D

➔ I/aB equivalent to 15 MA in ITER, q95 = 3.1

➔ 3 second H-mode is ~ 3τR, approximately the same as in ITER

➔ Absolute density ~ same as in ITER, n/nGW ~ 0.65 (vs. 0.85 in ITER)

➔ Operation limited to βN ≤ 2,– occasional disruptions when 2/1 tearing modes appear

5

5

6

6

1.6

0.8

0.02

1

0

0.4

0.2

0.012

6

06

4

2

00 1 2 3 4 5

Ip (MA)

131498

βN

H98y2

G

density (1019 m–3)

Dα (arb)

PNB (MW)

t (sec)

ITER target (1.8)

ITER target (1.0)

ITER target (Q=10)

Page 6: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 06

Concerns identified for the baseline scenario include ELMs and internal inductance

• Fractional energy loss at ELMs substantially exceeds ITER limits– type I ELMs have large radial extent– energy loss/ELM > 0.1×Wtot➔ strong motivation for more work on ELM control/modification/mitigation

• Internal inductance, li(3), for all scenarios in DIII-D was outside original ITER range for adequate control of plasma shape and position➔ has helped to successfully motivate change in ITER PF control range requirements

baseline

advanced inductivehybrid

steady-state

1.0

0.9

0.8

0.7

0.6

0.50 1 2 3 4 5

l i(3

)

t (sec)

original ITER design range

Ip flat-top

●●

●●

●●●●

●●

●●●

●●

■■

■■

■ ■■ ■■

▲▲▲

▼▼

▼▼

▼▼

▼▼

▼▼

▼◆

★★

★★

✚✚

✚✚

✚✚✚

✚✚✚

✚✚✚

✚✚

■▲▼

ΔW

ELM

/Wp

ed

0.3

0.2

0.1

0.00.01 0.1 1 10

νe*,ped

baselineadvanced inductive

hybrid

steady-state

ITPA multi-tokam

ak

databaseν* (ITER)

ITER maximum

Page 7: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 07

Fully noninductive operation demonstrated in ITER shape

• Fully noninductive operation achieved in 8.5 MA (ITER equivalent) discharge with βN = 3.1– high bootstrap fraction, ~70%

• Note trade-off between fusion performance (G) and noninductive fraction with varying q95

1343721.0

0.5

0.04

2

00.30

0.15

0.000.1

0.0

–0.112

6

00 1 2 3 4 5

Ip (MA)

βNH98y2

G

Vloop (V)

PNB (MW)

PEC (MW)

t (sec)

4 5 6 7

1.2

1.0

0.8

0.6

0.4

0.2

0.0

q95

fNI

fbs

G

ITER targetQ=5

Page 8: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 08

Hybrid plasmas lead to long pulse & high fluence in ITER;advanced inductive discharges provide a path to Q ≥ 20

• AI: I/aB → 14.8 MA in ITER, q95 = 3.3hybrid: I/aB → 11.6 MA, q95 = 4.1

• Both hybrid and advanced inductive scenario plasmas have sustained high performance (βN = 2.8) with excellent confinement (H98y2 = 1.5)

• Some issues to be addressed: – requirements and methods for access to these regimes in ITER,– performance with conditions more relevant to ITER (rotation, collisionality, divertor parameters, …)– ELM mitigation

0 1 2 3 4 5t (sec)

10

5

0

PNB (MW)

0.8

0.4

0.0

G

3.0

1.5

0.0

βN

H98y2

2

1

0

Ip (MA)

133137

ITER targetfor Q=10

hybrid

131265

advanced inductive

Page 9: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 09

A good fit to pedestal parameters in the ITER scenarios is obtained from a new predictive model

• Compare the ITER scenario pedestal heights with the EPED1 predictive model➞ very good fit.

• For ITER parameters, in the baseline scenario EPED1 gives βN,ped = 0.65 at ρ = 0.96.

0 5 10 15 20 25EPED1-Predicted Pedestal Height (kPa)

0

5

10

15

20

25

Exp’ts

to te

st m

odel

Me

asu

red

Pe

de

sta

l He

ight

(kP

a)

■▼

hybrid

advanced inductive

baseline

EPED1 model: NI1.001 P. Snyder

Page 10: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 10

Performance projections indicate ITER will meet its physicsand technology objectives, with a good margin

Base- Hybrid AI Steady- line state

Pfus(ITER) 400 400 700 350

βN 1.8 2.8 2.8 3.1

QITER 10 5 ≥20 589P 10.3 5.8* 13.5 2.7*

98y2 22.4+ 23.3 ∞ 5.8*

DS03 ∞+ ∞+ ∞ 19.8

* Paux(required) > Paux(ITER) = 73 MW + Pconduction < PL-H (Y. Martin)

– all scaled cases yield Pfusion ≥ ITER scenario value

• Project using various confinement scalings:– ITER 89P (Bohm-like)– IPB 98y2 (intermediate)– DS03 (gyroBohm-like)

• Use the same βN, H, and profiles as in DIII-D;reset n/nGW = 0.85;assume Ti = Te

• Solve for required Paux (or H if ignited), Pfus and Q

Page 11: Demonstration of ITER Operational Scenarios on DIII-D · APS/DPP 2008 GO3.00008 Politzer 03 DIII-D demonstration discharges meet ITER normalized performance targets Four ITER scenarios

APS/DPP 2008 GO3.00008 Politzer 11

Summary: DIII-D has demonstrated the performance required to meet ITER goals for four key scenarios

• The DIII-D ITER Demonstration discharge study addresses many of the key ITER physics issues, – ELMs, L-H transition, pedestal scaling, beta limits, …

• DIII-D results have influenced the ITER design,– expanding the operating range of the plasma shape control system

• DIII-D evaluation of ITER scenarios should be extended and improved– vary NBI power and torque to operate with reduced plasma rotation– extend operation with Te = Ti– determine sensitivity of performance to shape– assess impact of ELM suppression– include startup and rampdown constraints in demonstration discharges

➜ For more detail on this topic, visit Edward Doyle’s poster (JP6.061) this afternoon