16
Department of Inorganic Chemistry I, Dresden University of Technology Design of Carbon Materials with Hierarchical Pore Architecture for Electrochemical Energy Storage Dr. Martin Oschatz, Prof. Dr. Stefan Kaskel 1 st German-Chinese-Symposium, Germany „Development and Technology of Carbon Materials“ 13.11.2016–16.11.2016, Harnack House, Berlin

Department of Inorganic Chemistry I, Dresden … · Evolution of Porosity in Carbide-Derived Carbon Aerogels Introduction Carbide-derived Carbons Department of Inorganic Chemistry

  • Upload
    vanliem

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Department of Inorganic Chemistry I, Dresden University of Technology

Design of Carbon Materials with Hierarchical Pore Architecture for

Electrochemical Energy Storage Dr. Martin Oschatz, Prof. Dr. Stefan Kaskel

1st German-Chinese-Symposium, Germany „Development and Technology of Carbon Materials“ 13.11.2016–16.11.2016, Harnack House, Berlin

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Motivation and Outline

2

Well-defined carbon nanomaterials with hierarchical pore architecture.

Catalysis Gas Storage/ Gas Purification

Li-S Batteries

Electrical Double-Layer Capacitors

Surface Area

Pore Structure

Materials Transport

CDCs by Nanocasting

CDC Aerogels

CDCs from Emulsions

CDC Nanoparticles

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Introduction Carbide-derived Carbons

Department of Inorganic Chemistry I, Dresden University of Technology

3

Microporous Activated Carbons

SiC(s) + 2 Cl2(g) SiCl4(g) + C(s)

Carbide-Derived Carbons (CDCs)

V. Presser, M. Heon , Y. Gogotsi, Adv. Funct. Mater. 2011, 21, 810

Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley and M. W. Barsoum, Nat. Mater. 2003, 2, 591.

© Starfire Systems

“Nanocarbons”

Graphene Fullerenes Carbon

Nanotubes

xCKCOKKOHCx 226)2( 32

xCCOHOHCx gg )()(22)1(

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

4

Synthesis of CDC-Mesofoams by Nanocasting

CDC Mesofoams Synthesis and Structure

M. Oschatz, L. Borchardt, K. Pinkert, S. Thieme, M. R. Lohe, C. Hoffmann, M. Benusch, F. M. Wisser, C. Ziegler, L. Giebeler, M. H. Rümmeli, J. Eckert, A. Eychmüller, S. Kaskel, Adv. Energy Mater. 2014, 4, 1300645/1.

Transmission Electron Microscopy

SiC Foam

SiO2 Foam CDC Foam

CDC Foam p/p0

N2 Physisorption, -196°C

0

N2 a

dso

rbed

(cm

3/g

)

0.2 0.4 0.6 0.8 1.0

0

200

1000

1200

1400

1600

1800

400

600

800

CDC-Mesofoam SSABET: 2900 m2/g

VPore: 2.6 cm3/g

Mesoporous SiC Foam SSABET: 650 m2/g VPore: 0.7 cm3/g

Chlorine Treatment

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

5

CDC Mesofoams Electrochemical Energy Storage Material

Electrode Material in EDLCs

~ 250 F/g in 1 M H2SO4 Electrolyte

Electrode Material in Li-S Batteries

~ 1150 mAh/gSulfur ~ 700 mAh/gCathode

F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 2014, 26, 2219.

M. Oschatz, L. Borchardt, K. Pinkert, S. Thieme, M. R. Lohe, C. Hoffmann, M. Benusch, F. M. Wisser, C. Ziegler, L. Giebeler, M. H. Rümmeli, J. Eckert, A. Eychmüller, S. Kaskel, Adv. Energy Mater. 2014, 4, 1300645/1.

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

6

CDC PolyHIPEs Synthesis

Pulko and P. Krajnc, Macromol. Rapid Commun., 2012, 33, 1731. R. Frind, M. Oschatz, S. Kaskel, J. Mater. Chem. 2011, 21, 11936.

High Internal Phase Emulsions

Synthesis of PolyHIPE-CDCs

M. Oschatz, L. Borchardt, M. Thommes, K. A. Cychosz, I.Senkovska, N. Klein, R. Frind, M. Leistner, V. Presser, Y. Gogotsi, S. Kaskel, Angew. Chem. Int. Ed. 2012, 51, 7577.

M. Oschatz, L. Borchardt, I. Senkovska, N. Klein, M. Leistner, S. Kaskel, Carbon 2013, 56, 139.

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

7

CDC PolyHIPEs Structure

M. Oschatz, L. Borchardt, M. Thommes, K. A. Cychosz, I.Senkovska, N. Klein, R. Frind, M. Leistner, V. Presser, Y. Gogotsi, S. Kaskel, Angew. Chem. Int. Ed. 2012, 51, 7577.

M. Oschatz, L. Borchardt, I. Senkovska, N. Klein, M. Leistner, S. Kaskel, Carbon 2013, 56, 139.

N2 Physisorption, -196°C Mercury Intrusion Porosimetry

PolyHIPE-CDC SSABET: 2900 m2/g

VPore,Micro+Meso: 1.1 cm3/g VPore,Macro: 7.5 cm3/g

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

8

CDC Nanospheres Synthesis and Structure

Water

Surfactant (SDS)

Oil Phase (SMP-10 +

p-DVB + Hexadecane)

Miniemulsion

Ultrasound

Cross-

Linking+

Solvent

Evaporation

Pyrolysis

(Polycarbosilane

Decompositon)

Cross-Linked

Polycarbosilane

Nanospheres

Silicon Carbide

Nanospheres

High-Temperature

Chlorine Treatment

(Silicon Removal)

CDC Nanospheres

Synthesis of CDC Nanospheres by the Miniemulsion Technique

M. Oschatz, M. Zeiger, N. Jäckel, P. Strubel, L. Borchardt, R. Reinhold, W. Nickel, J. Eckert, V. Presser, S. Kaskel, J. Mater. Chem. A 2015, 3, 17983.

Electron Microscopy

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Vo

lum

e a

t S

TP

(c

m3/g

)

P/P0

SiC-NS-50-50

SiC-NS-70-30

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000

1200

Vo

lum

e a

t S

TP

(c

m3/g

)

P/P0

CDC-NS-50-50

CDC-NS-70-30

N2 Physisorption, -196°C

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

9

CDC Nanospheres Electrochemical Properties

Synthesis of CDC Nanospheres by the Miniemulsion Technique

M. Oschatz, M. Zeiger, N. Jäckel, P. Strubel, L. Borchardt, R. Reinhold, W. Nickel, J. Eckert, V. Presser, S. Kaskel, J. Mater. Chem. A 2015, 3, 17983.

Water

Surfactant (SDS)

Oil Phase (SMP-10 +

p-DVB + Hexadecane)

Miniemulsion

Ultrasound

Cross-

Linking+

Solvent

Evaporation

Pyrolysis

(Polycarbosilane

Decompositon)

Cross-Linked

Polycarbosilane

Nanospheres

Silicon Carbide

Nanospheres

High-Temperature

Chlorine Treatment

(Silicon Removal)

CDC Nanospheres

0.0 0.5 1.0 1.5 2.0 2.5-200

-150

-100

-50

0

50

100

150

200

Cap

acit

an

ce (

Fg

-1)

Cell voltage (V)

CDC-NS-70-30

CDC-NS-50-50

CVs @ 10 mV/s

0.1 1 100

25

50

75

100

125

Ca

pa

cit

an

ce

(F

g-1)

Current (Ag-1)

0.1 1 100

25

50

75

100

125

Ca

pa

cit

an

ce

(F

g-1)

Current (A/g)

0.1 1 100

25

50

75

100

125

Cap

acit

an

ce (

F/g

)

Current (A/g)

0.1 1 100.6

0.7

0.8

0.9

1.0

C/C

0

Current (A/g)

CDC-NS-50-50

CDC-NS-70-300.1 1 10

0.6

0.7

0.8

0.9

1.0

CDC-NS-50-50

CDC-NS-70-30

C/C

0

Current (A/g)

0.0 0.5 1.0 1.5 2.0 2.5-200

-150

-100

-50

0

50

100

150

200

Cap

acit

an

ce (

F/g

)

Cell voltage (V)

CDC-NS-50-50

CDC-NS-70-30

C D

A B

0.0 0.2 0.4 0.6 0.8-150

-100

-50

0

50

100

150 CDC-NS-50-50

CDC-NS-70-30

Ca

pac

ita

nc

e (

F/g

)

Cell voltage (V)

E F

0 100 200 300 400 5000.0

0.2

0.4

0.6

0.8

Ce

ll v

olt

ag

e (

V)

0.1 A/g1 A/g

Time (s)

CDC-NS-50-50

CDC-NS-70-30

0 500 1000 1500 2000 2500 3000 35000.0

0.5

1.0

1.5

2.0

2.5

Ce

ll v

olt

ag

e (

V)

Time (s)

CDC-NS-50-50

CDC-NS-70-30

0.1 A/g

1 A/g

CDC Nanospheres as Electrode Material in EDLCs

~ 130 F/g in 1 M TEABF4 in ACN Electrolyte

Electron Microscopy

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

10

CDC Aerogels Synthesis and Structure

Synthesis of CDC Aerogels by Cross-Linking of Polycarbosilanes

M. Oschatz, W. Nickel, M. Thommes, K. A. Cychosz, M. Leistner, M. Adam, G. Mondin, P. Strubel, L. Borchardt, S. Kaskel, J. Mater. Chem. A 2014, 2, 18472.

+H2Si SiH

19

CH2

SiC

H

H2Si

HH

SiC

H2Si

CH2 H

H

H

Pt

Hydrosilylation Reaction

Pt Catalyst

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

11

CDC Aerogels Synthesis and Structure

Scanning Electron Microscopy

Synthesis of CDC Aerogels by Cross-Linking of Polycarbosilanes

M. Oschatz, W. Nickel, M. Thommes, K. A. Cychosz, M. Leistner, M. Adam, G. Mondin, P. Strubel, L. Borchardt, S. Kaskel, J. Mater. Chem. A 2014, 2, 18472.

N2 Physisorption (-196°C)

N2 a

dso

rbed

(cm

3/g

)

0

1000

2000

3000

4000

5000

6000

p/p0

0 0.2 0.4 0.6 0.8 1.0

SSA

BE

T (

m2/g

)

1000

CDC-Aero-1000°C CDC-Aero-700°C

CDC-Aero-Act (CO2 Activated)

1500

2000

2500

0.4

0.5

0.6

0.7

VM

icro

po

re(c

m3/g

)

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Department of Inorganic Chemistry I, Dresden University of Technology

12

CDC Aerogels Electrochemistry

Synthesis of CDC Aerogels by Cross-Linking of Polycarbosilanes

M. Oschatz, W. Nickel, M. Thommes, K. A. Cychosz, M. Leistner, M. Adam, G. Mondin, P. Strubel, L. Borchardt, S. Kaskel, J. Mater. Chem. A 2014, 2, 18472.

M. Oschatz, S. Boukhalfa, W. Nickel, C. Fischer, G. Yushin, S. Kaskel, Carbon 2016, submitted.

Time (s)

0 10 20 15 5

60 A/g 40 A/g

20 A/g 10 A/g

Voltage (V)

0 2.0 0.5 1.0 1.5

Spec

ific

cap

acit

ance

(F

/g)

150

-150

-50

50

CDC-Aero-Act

Spec

ific

cap

acit

ance

(F

/g)

50

70

90

130

110

0 20

Current density (A/g)

40 60

Vo

ltag

e (V

)

0

0.5

1.0

1.5

2.0

2.5

~ 120 F/g in 1 M TEABF4 in ACN Electrolyte

CDC-Aero-700°C

CDC-Aero-Act

CVs at 50 mV/s.

CDC-Aero-1000°C CDC-Aero-700°C

CDC-Aero-Act

CDC Aerogels as Electrode Material in EDLCs with Organic Electrolytes

Evolution of Porosity in Carbide-Derived Carbon Aerogels Polymer-based CDC Structures

Structural Variety

Department of Inorganic Chemistry I, Dresden University of Technology

13

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Polymer-based CDCs Model Substances for Adsorption and Structural Investigations

Department of Inorganic Chemistry I, Dresden University of Technology

14

InfraSORP Technology

M. Oschatz, M. Leistner, W. Nickel, S. Kaskel, Langmuir 2015, 31, 4040.

L. Borchardt, M. Oschatz, S. Paasch, S. Kaskel, E. Brunner, Phys. Chem. Chem. Phys. 2013, 15, 15177.

MAS NMR (Ion Adsorption)

In Situ 129Xe NMR

n-Nonane Preadsorption

M. Oschatz, L. Borchardt, S. Rico-Frances, F. Rodriguez-Reinoso, S. Kaskel, J. Silvestre-Albero, Langmuir 2013, 29, 8133.

M. Oschatz, H. C. Hoffmann, J. Pallmann, J.Schaber, L. Borchardt, W. Nickel, I. Senkovska, S. Rico-Frances, J. Silvestre-Albero, S. Kaskel, E. Brunner, Chem. Mater. 2014, 26, 3280.

M. Oschatz, P. Pre, S. Dörfler, W. Nickel, P. Beaunier, J.-N. Rouzaud, C. Fischer, E. Brunner, S. Kaskel, Carbon 2016, 105, 314.

TEM Study of Carbon Microstructure

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Summary

Department of Inorganic Chemistry I, Dresden University of Technology

15

CDC Mesofoams prepared by Nanocasting as Versatile Electrochemical Energy Storage Materials

CDC Aerogels Synthesized from Cross-Linked PCS Aerogels as Electrode Materials in EDLCs

CDC Nanospheres and CDC PolyHIPEs

Overview over Polymer-Based CDC Materials and Adsorption Studies

Evolution of Porosity in Carbide-Derived Carbon Aerogels

Acknowledgements

Department of Inorganic Chemistry I, Dresden University of Technology

16

Prof. Dr. Stefan Kaskel

Dr. Lars Borchardt (TU Dresden) W. Nickel (TU Dresden)

G. Yushin group (Georgia Tech) E. Brunner group (TU Dresden) M. Thommes (Quantachrome) J. Slivestre-Albero group (Alicante) M. Leistner (IWS Dresden) B. Smarsly group (Giessen) Y. Gogotsi group (Drexel) J. Eckert group (IFW Dresden) M. Biesheuvel (Wetsus) V. Presser (Saarbrücken)