106
_ii _i_ i i¸:' ::,i'! _ i NASA Technical Paper 1905 Description and Calibration of the Langley Unitary Plan Wind Tunnel Charlie M. Jackson, Jr., William A. Corlett, and William J. Monta Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Scientific and Technical Information Branch 1981 REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE" SPRINGFIELD, VA 22161 https://ntrs.nasa.gov/search.jsp?R=19820004162 2018-07-16T15:27:06+00:00Z

Description and Calibration of the Langley Unitary - NASA · _ii _i_ ii¸:'::,i'!_ • i NASA Technical Paper 1905 Description and Calibration of the Langley Unitary Plan Wind Tunnel

Embed Size (px)

Citation preview

_ii _i_

i i :'::,i'!_

• i

NASA Technical Paper 1905

Description and Calibration of the

Langley Unitary Plan Wind Tunnel

Charlie M. Jackson, Jr., William A. Corlett,

and William J. Monta

Langley Research Center

Hampton, Virginia

National Aeronautics

and Space Administration

Scientific and Technical

Information Branch

1981

REPRODUCED BY

U.S. DEPARTMENT OF COMMERCENATIONAL TECHNICAL

INFORMATION SERVICE"SPRINGFIELD, VA 22161

https://ntrs.nasa.gov/search.jsp?R=19820004162 2018-07-16T15:27:06+00:00Z

,_ ,i_. i_ i_ _ ' i_ ,r

• L ¸¸

CONTENTS

SUMMARY ....................................

INTRODUCTION ..................................

SYMBOLS ..................................

WIND TUNNEL AND EQUIPMENT ...........................

Wind Tunnel .................................

Arrangement ................................

Settling chambers .............................

Nozzles, test sections, and second minimums ................

Diffuser ..................................

Drive section and compressors .......................

Heat exchangers ..............................

Operating modes ..............................

Test Sections ................................

General description ............................

Nozzles and second minimums ........................

Model support struts ............................

Windows and access doors ..........................

Instrumentation ...............................

Wind-tunnel stagnation temperature and pressure measurement ...... . . .

Schlieren system ..............................

Vapor-screen system ............................

Data acquisition ..............................

Air Systems .................................

General description ............................

Makeup air equipment ............................

Seal air system ..............................

Vacuum system ..............................

CALIBRATION AND TUNNEL OPERATING CHARACTERISTICS ................

Calibration .................................

Procedure ................................

Presentation of data ............................

Test-section boundary layer ........................

Tunnel moisture effects ..........................

Tunnel turbulence level ..........................

Tunnel blockage ..............................

Tunnel temperature calibration .......................

Tunnel Operating Characteristics .......................

Operating parameters ............... " .............

Power characteristics ...........................

CONCLUDING REMARKS ...............................

REFERENCES ...................................

TABLES ....................................

FIGURES ..................................

1

3

3

3

3

4

4

4

5

6

6

6

6

7

8

8

8

8

8

8

9

9

9

9

9

9

9

9

l0

ii

ii

ii

ii

12

12

12

12

13

14

15

28

iii

{,-::_.,E_,_[_G PAGE BLANK NOT FILMED

• ._i _i_ !i _I!i •_i _ iI ¸ •

i ¸

SUMMARY

The two test sections of the Langley Unitary Plan Wind Tunnel have been cali-

brated over the operating Mach number range from 1.47 to 4.63, and the results are

presented along with a description of the facility and its operational capability.

The calibrations include Mach number and flow-angularity distributions in both test

sections at selected Mach numbers and tunnel stagnation pressures, as well as measure-

ments of turbulence, test-section boundary-layer characteristics, moisture effects,

blockage, and stagnation-temperature distributions.

The test-section calibrations indicated that the Mach number variation throughout

the test region associated with smaller models is f0.01; whereas at the higher Mach

numbers and for longer models at angle of attack, the variation can reach ±0.04. Both

test sections have a positive or upflow angle generally within 0.5 ° except at the

higher Mach numbers of test section 1 where the upflow angle can reach 1.5 ° .

The facility is described in detail including dimensions and capacities where

appropriate, and examples of special test capabiiities are presented. The operating

parameters are fully defined and the power-consumption characteristics are discussed.

INTRODUCTION

Immediately following World War II the need was recognized for wind-tunnel equip-

ment to develop advanced airplanes and missiles. The military and the National

Advisory Committee for Aeronautics (NACA) developed a plan for a series of facilities

which was approved by the U.S. Congress in the Unitary Wind Tunnel Plan Act of 1949.

This plan included five wind-tunnel facilities, three at NACA laboratories and two

along with an engine test facility at the Arnold Engineering Development Center

(AEDC). These facilities were built to provide experimental aerodynamic support to

the industry, the military services, and other government agencies.

The facility of interest in the present report is the Unitary Plan Wind Tunnel

which is located at the Langley Research Center. It is a closed-circuit pressure

tunnel with two 4- by 4- by 7-ft (1.22- by 1.22- by 2.13-m) test sections which cover

a Mach number range from 1.47 to 4.63 and a nominal Reynolds number range from

0.5 x 106 per ft (1.64 x 106 per m) to 8.0 x 106 per ft (26.23 x 106 per m). Con-

struction of this facility was completed in 1955 and it has been in continuous opera-

tion since that time except for periodic maintenance. In the operational history of

the Langley Unitary Plan Wind Tunnel are developmental tests of virtually every super-

sonic military airplane, missile, and spacecraft to have become operational in the

United States inventory. Most of the many aircraft configurations proposed in the

National Supersonic Transpor t (SST) Program as well as many of their progenitors were

extensively tested in this facility. Considerable experimental investigations in sup-

port of the Space Shuttle Program were conducted; and continuing throughout the opera-

tional life of the facility has been the basic experimental fluid-mechanics research

which has given rise to the development of methods for predicting supersonic aerodg-

namic performance.

Brief descriptions of the Langley Unitary Plan Wind Tunnel are presented in the

facility compilations of references i, 2, and 3. The present paper offers a descrip-

tion of the wind tunnel with revised specifications.

/

i _

The purpose of this report is to present a description of the Langley Unitary

Plan Wind Tunnel (UPWT) and its auxiliary equipment and operational capability. Also

included is a description of the calibration procedures and a summary of the flow-

calibration data obtained over the life of the facility.

SYMBOLS

The units for the physical quantities in this paper are given both in U.S.

Customary Units and in the International System of Units (SI). Measurements and cal-

culations were made in U.S. Customary Units. Factors relating the two systems are

given in reference 4. The authors did not adhere to the NASA policy of expressing

dimensional quantities with the International System of Units (SI) as the primary

system. This requirement has been waived, and U.S. Customary Units are given first

with equivalent SI units in parentheses.

b tunnel nozzle block position

M test-section stream Mach number

weighted average test-section Mach number (taken between

0 _ x ! 48 in. (1.22 m) and -i0 in. (-0.254 m) ! z _ i0 in. (0.254 m))

profile exponent for a turbulent boundary layer

Pp

Pst

Pt

q

probe pitot pressure, psf (Pa)

probe static pressure, psf (Pa)

tunnel total pressure, psf (Pa)

test-section dynamic pressure, psf (Pa)

R unit Reynolds number per ft (per m)

Rx,tr

Tdp,a_n

T t

Tt,CL

t

transition Reynolds number based on boundary-layer laminar run

dew-point temperatures corrected to standard atmospheric pressure, OF (°C)

tunnel stagnation temperature, OF (°C)

tunnel center-line stagnation temperature, OF (°C)

time from initiation of heat pulse, sec

root-mean-square turbulent fluctuation velocity in the x-direction,

ft/sec (m/see)

u/u ratio of local boundary-layer velocity to free-stream velocity

V mean velocity along X-axis, ft/sec (m/see)

X,Y,Z tunnel coordinate system (fig. 12)

2

x,y,z

Xl,Z 1

X2,Z2

0

OH

_V

dimensions in tunnel coordinate system, in. (m)

nozzle contour coordinates for test section i, in. (m)

nozzle contour coordinates for test section 2, in. (m)

angle of attack (fig. 15), deg

angle of sideslip (fig. 15), deg

boundary-layer thickness, in. (cm)

boundary-layer displacement thickness, in. (cm)

boundary-layer momentum thickness, in. (cm)

flow angle measured in the horizontal plane (positive for flow toward the

left facing upstream), deg

flow angle measured in the vertical plane (positive up), deg

WIND TUNNEL AND EQUIPMENT

Wind Tunnel

Arrangement.- The Langley Unitary Plan Wind Tunnel is a closed-circuit pressure

tunnel with two 4- by 4- by 7-ft (1.22- by 1.22- by 2.13-m) test sections. An exte_

rior view of the facility is shown in figure i, a schematic drawing of the arrange-

ment of the major elements is shown in figure 2, and a detailed planform of the tunnel

circuit arrangement is shown in figure 3. The major elements of the facility are the

i00 000-hp (74.6-MW) drive system, a dry air supply and evacuating system, a cooling

system, and the interconnecting ducting to produce the proper airflow through either

of the two test sections. The tunnel overall volume is 163 922 ft 3 (4642 m3), and the

tunnel duct circuit can be circumscribed by a rectangle 263 ft (80.2 m) by 210 ft

(64.0 m). The tunnel circuit is designed to operate at pressures from near-vacuum to

i0 atm (i atm = 101.3 kPa). The axial locations and dimensions of the components of

the high and low Mach number circuits and compressor circuits (as defined in fig. 3)

of the wind tunnel are presented in tables I and II, respectively. The duct juncture

and turning vanes just downstream of configuration valve I are shown in figure 4 to

illustrate typical internal duct configurations. Figure 5 shows a typical tunnel-

duct-configuration valve (number IV, downstream of cooler i) in the open position.

These valves are used to configure the tunnel ducts for different compressor stagingmodes.

Settling chambers.- The settling chambers provide a large volume which results in

low-velocity flow and smooth transition from the circular tunnel duct work to the

rectangular nozzles a_d test section. The settling chamber for the low Mach number-

test section is a cylindrical duct 15 ft (4.B7 m) in diameter and 25 ft (7.62 m) long

followed by a 7-ft-long (2.13-m) transition section from circular to 4- by ll.51-ft

(1.22- by 3.51-m) rectangular. The settling chamber for the high Mach number test

section is a cylindrical duct 12 ft (3.66 m) in diameter and 24.5 ft (7.47 m) long

followed by a 3.5-ft-long (l.07-m) transition section from circular to 4- by 8.75-ft

(1.22- by 2.67-m) rectangular. A photograph of the settling chamber and transition

section of the low Mach number test section is shown in figure 6.

3

Nozzles, test sections, and second minimums.- The low and high Mach number noz-

zles are of the asymmetric sliding-block type such that the nozzle throat-to-test-

section area ratio can be varied to provide continuous variation of Mach number. A

schematic drawing of the low Mach number nozzle is shown in figure 7 which illustrates

the asymmetric nozzle contours and sliding block and drive mechanism. The low and

high Mach number test sections (referred to as test sections 1 and 2, respectively)

are formed by the downstream contours of the nozzle and are nominally 4 by 4 ft

(1.22 by 1.22 m) in cross section by 7 ft (2.13 m) in length. The variable-area

second-minimum sections of the facility are formed downstream of test sections 1

and 2. The second-minimum area is controlled by moving the hinged sidewalls to pro-

vide the proper constriction to stabilize the normal shock downstream of the test sec-

tion at the various operating Mach numbers. These components are described in detail

in a subsequent section of this report.

Diffuser.- The overall diffuser sections for test sections 1 and 2 are circular

in cross section and extend downstream 85.5 ft (26.06 m). Transition sections from

the rectangular second minimums form the entrance into the diffusers. The overall

diffuser cross sections vary from 5.665 ft (1.73 m) in diameter at the entrance to

12 ft (3.66 m) in diameter at the exit. The initial• included conical angle of the

diffusers for both tunnel circuits is 2.93 ° and remains constant for 45.8 ft (13.96 m)

when it changes to 4.77 ° for the low Mach number circuit and to 6.4 ° for the high Mach

number circuit.

Drive section and compressors.- The configuration of the starting and main-drive

motors and compressors is shown in figure 2. The schematic drawing of the tunnel

shows the location of the drive section and compressors within the facility, and the

arrangement of the starting motor, main-drive motor, and six compressors is illustrat6

in the insert of figure 2. The main-drive motor is located in line with three com-

pressors on each end forming a continuous driveline 120 ft (36.58 m) long. The start-

ing motor is located offset from this driveline and transmits power to the driveline

through a speed-increase gear. Figure 8 is a photograph showing the main-drive motor

and six compressors.

The main-drive motor is of the synchronous type and is rated for continuous

operation at 63 333 hp (47.2 MW) at a rotational speed of 3600 rpm with a 76 000-hp

(56.7-MW) overload rating for 1/2 hour. The starting motor is a wound-rotor, liquid

rheostat-controlled machine and is used to bring the driveline up to synchronous

speed. At a synchronous speed of 720 rpm, this machine delivers continuous power to

the driveline at a rating of 20 000 hp (14.9 MW) with a 24 000-hp (17.9-MW) overload

rating for 1/2 hour. A combined overload rating of the drive motors gives a maximum

power rating for the facility of i00 000 hp (74.6 MW). The starting motor is mechani-

cally connected to the compressor driveline through a speed-increase gear of 685:3600

ratio such that the compressor speed is constant at 3600 rpm for all tunnel operating

conditions.

The compression ratio and airflow required to establish stable flow conditions iz

either of the test sections is supplied by six centrifugal compressors. These com-

pressors are designated by the letters C, D, E, F, G, and I and are located.as shown

in figure 2. Compressors C, D, E, F, and I are single-stage machines manufactured by

the Roots-Connerville Blower Company with each having a design compression ratio of

1.95. Compressors C, D, and E have a design inlet volume flow of 298 000 ft3/min

(8438.41 m3/min), and compressors F and I have a design inlet volume flow of

149 000 ft3/min (4219.2 m3/min). Compressor G is a three-stage machine manufactured

by the Clark Compressor Company and has a design inlet volume flow of 60 000 ft3/min

(1699 m3/min) and a design compression ratio of 2.25. These machines are used in fiv

i

i__ '

different combinations or modes as shown in the following table to provide the

required compression ratio and airflow to operate either test section over the indi-

cated Mach number range.

Test

section

i

1

2

2

2

Mode

I-IA

l-II

2-II

2-III

2-IV

Mach number

range

(a)

1.469 to 2.160

2.354 to 2.869

2.287 to 2.973

2.973 to 3.750

3.835 to 4.640

Stage of compression

of compressor -

I C D E F G

1 i i

1 1 1 2

i 1 i 2

1 i 1 2 3

i 1 2 3

aMach number corresponds to R = 3 x l06 per ft

(9.84 x 106 per m).

The tunnel duct configurations for operation, staging, and bypass for each of these

modes as well as start-up and mode-changing procedures will be described in a subse-

quent section.

A detailed presentation and analysis of the measured compressor operating char-

acteristics is presented in reference 5. Reference 5 also includes a study of the

overall operating performance, power characteristics, and efficiency of the tunnel

drive system at each of the operating modes.

Heat exchangers.- The facility is equipped with six crossflow heat exchangers

located within the tunnel duct circuits as shown in figure 3. A photograph of heat

exchangers downstream of compressors I, C, D, and E (coolers 6, i, and 2) is shown

in figure 9. The energy expended by the main-drive system is removed by the water

flowing through these coolers and transmitted to the atmosphere through a cooling

tower located outside the facility. The heat exchangers (coolers 1 to 6) within the

tunnel circuit have the overall design operating characteristics presented in the

following table:

Condition

Design inlet-air

temperature, OF (°C) ....

Design outlet-air

temperature, oF (°C) ....

Design inlet-water

temperature, OF (°C) ....

Airflow, ib/sec (kg/sec) . . .

Coolant pump capacity,

gal/min (m3/min) ......

285

(141)

130

(54)

85

(29)

1895

(86O)

17 000

(64.35)

Cooler

273

(134)

120

(49)

85

(29)

945

(429)

8320

(31.49)

273

(134)

120

(49)

85

(29)

63O

(286)

55OO

(20.82)

242

(117)

120

(49)

85

(29)

470

(213)

3400

(12.87)

400

(204)

220

(104)

85

(29)

1630

(739)

12 200

(46.18)

286

(141)

120

(49)

85

(29)

38O

(172)

3400

(12.87)

Cooler 5 acts as a precooler to compressors C, D, and I and, consequently, has higher

design inlet and design outlet temperatures. These coolers are generally capable of

maintaining the tunnel stagnation temperature at 100°F (37.7°C). However, as a

result of the unique cooler design, the airflow can be rapidly bypassed around the

cooling elements resulting in an airstream stagnation temperature of up to 400°F

(204°C) for heat-transfer tests.

The coolingtower is located outside of the facility as shown in the schematic

drawing of figure 2. The tower is composed of eight cells with each having a 17-ft-

diameter (5.18-m) fan. The capacity of the tower is 20 000 gal/min (75.71 m3/min)

with design inlet-water temperature of l15°F (46.1°C) and design discharge-water

temperature of 85°F (29.44°C). A photograph of the cooling tower is shown in

figure i0.

Operating modes.- In order to cover the entire Mach number range for each test

section, not only must the nozzle blocks be moved to provide the proper expansion

ratio but the tunnel duct configurations must also be altered to provide the proper

compression retio. As previously mentioned, the six compressors are used in five

tunnel configurations or modes to provide the required overall compression ratio.

Figure ii shows the tunnel duct configurations and airflow path for each of the five

modes. It should be noted that the compressors not in use in these modes are not

uncoupled from the driveline and, therefore, operate in a bypass condition. In order

to reduce the power consumption for this condition, the pressure in the bypass ducts

is reduced as much as possible.

Since the tunnel operating modes are available for only one test section at a

time, maximum utilization of the facility is obtained by isolating the unused test

section for installation and model changes. To reduce model transient loads during

tunnel start-up or shutdown, the pressure in the tunnel circuit is reduced below

2 psia (13.79 kPa) until supersonic flow is established in the test section. Once

supersonic flow is established, the tunnel pressure required for the tests is con-

trolled by inbleeding or outbleeding dry air. A description of the makeup air equip-

ment including capacities is provided in a subsequent section of this report.

Test Sections

General description.- The two test sections of the Unitary Plan Wind Tunnel pro-

vide test capability over a Mach number range from 1.46 to 4.63. The low Mach number

test section (test section i) covers the Mach number range from 1.46 to 2.86 and the

high Mach number test section (test section 2) is capable of providing supersonic flow

from a Mach number of 2.30 to 4.63. The test sections are formed by the downstream

portion of the nozzles, nominally 4 by 4 ft (1.22 by 1.22 m) in cross section by 7 ft

(2.13 m) in length. Figure 12 shows the details of the transition sections, nozzles,

and test sections for both tunnel circuits. The superstructure is shown for both

test sections as well as the drive mechanism for the movable lower nozzle blocks. A

typical research model is shown in test section 1 in figure 13.

Nozzles and second minimums.- The nozzle contours for both tunnel circuits are

asymmetric, and the lower walls of both nozzles move longitudinally to provide the

necessary variation in area ratio of throat to test section. Figure 12 shows the

lower walls of the nozzles in the minimum Mach number position (contraction ratio of

12.96 for test section 1 and of 15.41 for test section 2) with the maximum Mach num-

ber position indicated by the dashed line (contraction ratio of 43.07 for test sec-

tion 1 and of 143.59 for test section 2). The movable nozzle blocks are powered by

150-hp (lll.9-kW) motors which produce a drive rate of 2 ft/min (0.6 m/min). Thenozzle sidewalls are parallel and 4 ft (1.22 m) apart. The coordinates of the con-toured upper and lower nozzle walls are presented in table III for test section 1 andin table IV for test section 2. These coordinates are referenced to the coordinatesystems defined in figure 12 for each test section. Contour coordinates are givenfor the lower nozzle block in the most upstream test position. Table V gives thelower nozzle:block position as a function of test-section Machnumberfor test sec-tion 1 and as a function of Machnumberand Reynolds numberfor test section 2.

For determination of the nozzle coordinates in inches at any given Machnumberand Reynolds numberfor the lower block only, x coordinates are defined for testsection 1 by the equation

x = Xl + (i15.5 - i_ ) (1)

and for test section 2 by the equation

( b)x = x 2 + 219.5 100 (2)

The high and low Mach number tunnel circuits have variable cross-sectional area

second-minimum sections downstream of the test section. Elevation and plan-view

drawings of these sections are shown in figure 14. Figure 14 also shows the details

of the superstructure, movable sidewalls, and downstream transition section from rec-

tangular to circular cross section. The second-minimum contraction ratio can be

varied to a maximum of 2.66 for the low Mach number tunnel circuit and to 4 for the

high Mach number tunnel circuit.

Operating second-minimum contraction ratios have been established to provide

maximum supersonic-flow stability over a wide range of test-section blockage condi-

tions. For the low Mach number tunnel circuit, the second minimum operates at a con-

traction ratio of 1.01 over all test conditions. The high Mach number tunnel circuit

requires the variation of the second-minimum contraction ratio with nozzle-block

position as presented in table VI.

Model support struts.- Many methods have been used to support models and probes

depending on the objective of the test. The mounting mechanismmost commonly used in

both test sections to provide force and moment data on airplane and missile models is

shown in figure 15. The basic mechanism is the horizontal wall-mounted strut which

is capable of forward and aft travel of 36.25 in. (0.921 m) in the x-direction. To

this strut is attached a sting support which has traverse (y) and sideslip (_) motion

of ±20 in. (±0.508 m) and ±14 ° , respectively. Forward of the sting support is the

angle-of-attack (_) mechanism which provides pitch motion from -12 ° to 22 ° . Just

upstream of the pitch mechanism is the roll mechanism which provides continuous roll

motion through 310 ° . The model is mounted on the roll mechanism by means of a sting.

A wide assortment of sting sizes and lengths are available to provide specific model

position and load requirements. In addition to several alternate pitch mechanisms,

one of which can provide up to 90 ° angle of attack, there are assorted angular cou-

plings and "dog-leg" and offset stings.

Windows and access doors.- Access to each test section is provided by two doors

which form the sidewalls of the test sections from station 0.625 in. (0.0159 m) to

station 69.375 in. (1.762 m). Each of the test-section doors has nine 5.5-in.

(0.140-m) by 48-in. (1.22-m) windows, separated by 1.25-in. (3.18-cm) webs, which

form a field of view 59.5 in. (1.51 m) long by 48 in. (1.22 m) high through the test

section. The windows are 1.5-in.-thick (0.038-m) glass of optical quality to provide

minimum distortion for schlieren and flow visualization. Details of the test-section

access doors and windows are shown in figure 12. An alternate set of solid-steel

doors is available for sidewall model mounts and heat-transfer tests. In addition,

each test section is provided with an access hatch in the region of the diffuser.

/ , _•i__•

i• _j

Instrumentation

Wind-tunnel stagnation temperature and pressuremeasurement.- The test-section

Mach number is determined by the position of the movable lower nozzle block. The rela-

tion of the physical position of the block to the calibration Mach number is presented

in table V. The tunnel stagnation pressure is measured in the settling chambers by

using a system of sonar manometers up to 5000 psf (239.4 kPa) and pressure trans-

ducers in the higher range up to the maximum duct pressure of i0 atm. The accuracy

of this measurement is 20.5 pS f (223.94 Pa) in the lower range and 221.6 psf

(21.034 kPa) in the higher range. Tunnel stagnation temperature is measured by an

array of thermocouples mounted on the turning vanes upstream of the settling chambers.

Schlieren system.- Each test section is equipped with a schlieren system having

a 49-in.-diameter (1.24-m) field of view. The complete system shown in schematic

form in figure 16 is supported from a beam as a unit and can be positioned along the

longitudinal axis of the test section. The system uses a silvered knife edge at the

focal point to provide simultaneous viewing and recording of the image. The schlie-

ten photographs are taken with an automatic 9- by 9-in. (0.229- by 0.229-m) aerial

camera. A typical schlieren photograph is shown in figure 17.

Vapor-screen system.- A flow-visualization system can be set up in either test

section to provide photographs of vapor-screen images of flow phenomena. Figure 18

shows a schematic drawing of the setup of lights and cameras both inside and outside

of the test section. The appropriate vapor density is established by increasing the

tunnel operating dew point to a value ranging from 20°F (-6.7°C) to 30°F (-l.l°C),

depending upon Mach number. Figure 19 shows typical vapor-screen results obtained

with the cameras located both inside and outside the tunnel.

Data acquisition.- The heart of the on-line data-acquisition system is a 48K

word memory computer which is coupled to a data-acquisition system with i00 analog and

40 digital recording channels. This system provides on-line data reduction and dis-

plays in real time as well as calibration capability for the two test sections.

Force and moment data are measured by strain-gage balances which are temperature

compensated and calibrated to account for first- and second-order interactions such

that the system is generally accurate to within 21/2 percent of the design balance

load. Each point of force data is computed on line from an average of 60 samples

recorded at 30 samples per second. From 1 to 12 plots can be displayed on a'cathode-

ray tube at a time. Pressure data are taken with pressure transducers of appropriate

sizes used with scanning valves. The data-acquisition system can accommodate up to

six 48-port scanning valves. These are automatically calibrated at each data point to

provide accuracy generally within 21.0 psf (247.88 Pa).

8

i:iI i:

}

..!

i

Air Systems

General description.- The equipment required to maintain the tunnel air supply

is located in the general area of the compressor drive section as shown in the sche-

matic drawing of figure 2. The air system consists of the following: a makeup air

compressor, storage spheres, air dryers, a seal air compressor, and evacuation pumps.

Air from the central 5000 psi (34 477 kPa) pumping station is used at reduced pres-

sure as a backup for the facility air systems.

Makeup air equipment.- Air for the tunnel is supplied by three 31-ft (9.4-m)

storage spheres charged with 150 psi (1034 kPa) dry air. A 12 500 ft3/min

(353.9 m3/min) two-stage compressor powered with a 3500-hp (2610-kW) drive motor

supplies air to the spheres. This air is dried with an activated-alumina air dryer

having a capacity of 1140 ib/min (517.10 kg/min) at 150 psi (1034 kPa) with air-

outlet dew point of -90°F (-67.8°C).

Seal air system.- The seal air system consists of a 140 ft3/min (3.96 m3/min)

compressor used to supply 300 psi (2068.42 kPa) air to pressurize the tunnel valve

seals. Air for the labyrinth seals of the main-drive compressors is supplied from

the storage spheres.

Vacuum system.- The tunnel is evacuated for start-up and purge by means of four

vacuum p--_s w-_ a total capacity of 9100 ft3/min (257.68 m3/min). These vacuum

pumps are also used to maintain stagnation pressure below atmospheric conditions.

The vacuum system also has a i000 ft3/min (28.32 m3/min) vacuum pump for maintaining

low pressures in the main-drive bypass circuit and a i000 ft3/min (28.32 m3/min)

vacuum pump to evacuate the volume below the test-section sliding blocks.

CALIBRATION AND TUNNEL OPERATING CHARACTERISTICS

Calibration

Before the construction of the Langley Unitary Plan Wind Tunnel was initiated,

the concept of asymmetric movable nozzle blocks was explored and evaluated for the

Mach number range of the low Mach number circuit and was presented in reference 6.

The results of reference 6 indicated that low values of flow angularity and Mach num-

ber variation through the test section could be obtained with the sliding asymmetric

nozzle concept. The actual flow angularities measured in the full-scale facility

were found to be somewhat higher than expected. An investigation into the source of

the flow angularity was made on a 1/16-scale tunnel model in reference 7. It was

found that the angularity was generally the same in both facilities and was due to

nozzle contour. The limited flow-angle data for the full-scale tunnel which were

presented in reference 7 were part of an extensive flow-angle calibration. This sec-

tion presents the flow-angle calibration obtained in 1957 and a Mach number calibra-

tion obtained in 1966-67 for both test sections for the range of facility operating

parameters of general interest. Periodic check calibrations made since these initial

calibrations indicate no significant change in Mach number or flow angle.

Procedure.- The calibration tests of both test sections of the Unitary Plan Wind

Tunnel have been obtained by presetting the lower nozzle block, stabilizing stagnation

pressure and temperature, and using static or pitot-probe measurements to survey Mach

number. Flow angularity was determined by six two-dimensional balance wedge probes

mounted either vertically or horizontally. The details of the survey rake and the

probes are presented in figure 20. Six static and/or six pitot probes were mounted

.... , ! .....:; [ :7::

. . <, _/

f

on the survey rake as shown and the rake was mounted vertically in the test section.

Mach number calibration data were taken with both probes in test section 1 and with

only the pitot probes in test section 2 at a series of longitudinal and lateral sta-

tions. However, to obtain the best accuracy and most repeatable data, the Mach num-

bers below M = 2 were computed from the static pressures and tunnel stagnation

pressure according to the equation

For Mach numbers greater than 2 the pitot pressure and tunnel stagnation pressure

were used to define Mach number according to the equation

Pt \M 2 + 5] \7M 2 - 1

(4)

The calibration Mach number M was determined for each test condition from

results at the five longitudinal center-line survey stations between x : 0 in.

(0 cm) and 48 in. (122 cm). At each survey station an average Mach number was deter-

mlned from the four vertical probe positions closest to the center line (omitting the

top and bottom) by weighing the two probes closest to the center line in full and the

other two probes (z - ±10.8 in. (±27.4 cm)) by one-half. For test section 2, the

calibration Mach number M weighed all five longitudinal stations equally; whereas,

for test section 1 one-half weight was given to longitudinal stations 0 in. and 48 in.

(0 cm and 122 cm) and full weight was applied to the intermediate stations. The flow-

angle probe configuration consisted of a double-wedge segment mounted on a one-

component strain-gage balance as shown in figure 20. The balance output measured

normal load on the wedge surfaces and was calibrated to measure flow angle.

Presentation of data.- Calibration data on the distribution of Mach number are

presented in figures 21 and 22 for test sections 1 and 2, respectively. Calibration

data on the distribution of flow angularity are presented in figures 23 and 24 for

test sections 1 and 2, respectively. Since the geometry of the test sections and

nozzles of the Unitary Plan Wind Tunnel is asymmetric, the large variations of flow

parameters might be expected to exist in the xz-plane. For this reason the Mach num-

ber calibration data are presented primarily as contour plots in the xz-plane with

additional information to indicate lateral, longitudinal, and Reynolds number sensi-

tivity. The longitudinal variation of Mach number can be used to correct test

results for buoyancy effects. The variation of nominal test-section Mach number with

Reynolds number is accounted for in test section 2 by adjusting the nozzle block

position according to table V(b). The calibration data of figures 21 and 22 indicate

generally a variation in Mach number of ±0.01 in the region of the test sections most

used when testing smaller models (i0 in. < x < 30 in. (0.254 m < x < 0.762 m) with

z = ±i0 in. (±0.254 m)). At the higher Mach numbers and for longer models at angles

of attack, the variation of test-section Mach number from the nominal can be as

much as ±0.04 over the test section. The flow-angle calibrations are presented pri-

marily as contour plots of vertical angles in the xz-plane. Vertical and horizontal

flow-angle variations are also presented for center line and lateral positions.

Figures 23 and 24 indicate that the flow in both test sections has an up±low angle

generally Within 0.5 ° • At the higher Mach numbers in test section 1 the up±low angle

can be as large as 1.5 ° within the test region occupied by typical models. The

i0

accuracy of the calibration data is estimated to be within ±0.01 for Machnumber intest section i, ±0.004 for Machnumber in test section 2, and flow angularity towithin ±0.i °. These estimates are based on individual accuracies of static, pitot,and total-pressure measurementsas well as on wedgeprobe-balance and opticalangular-measurementaccuracies.

Test-section boundary layer.- Boundary-layer profiles have been measured on the

tunnel test-section sidewalls over the range of test conditions. The measurements

were obtained by using a rake with 22 tubes (0.050-in. (0.00127-m) outside diameter)

spanning a distance of 6.5 in. (0.1651 m) perpendicular to the sidewall. The loca-

tion of the tubes is indicated in figure 25 which shows typical velocity profiles for

each test section at common conditions. The different lengths and pressure gradients

of the nozzles are reflected in the shape of the sidewall profiles. In figure 26 a

summary of the boundary-layer profile characteristics, including profile exponent

for a turbulent boundary layer N, thickness 6, displacement thickness 6*, and

momentum thickness 0, is presented for several Reynolds numbers and Mach numbers.

The velocities were calculated by assuming the static pressure across the boundary

layer to be constant and equal to free-stream static pressure. The boundary-layer

thickness corresponds to the value of u/u_ of 0.996; and 6*, @, and N were

calculated from equations (6) and (21) of reference 8.

Tunnel moisture effects.- Although the Unitary Plan Wind Tunnel is a closed-

clrcuit pressure tunnel with sufficient makeup air capacity to provide dry air as the

test medium, efficient utilization of the facility requires that the effects of mois-

ture on test conditions be evaluated. A measurement of the static pressure was made

at x : 48.12 in. (122.22 cm) in test section 1 and at x - 44.12 in. (112.06 cm)

in test section 2, with y : 0 in. (0 cm) and z = -i.ii in. (-2.82 cm), for several

Mach numbers and Reynolds numbers over a range of tunnel dew-point values. These

results are presented in figure 27 in terms of the ratio of static pressure to total

pressure or Mach number as computed by equation (3). These results indicate that, in

general, tunnel moisture effects become significant above values of tunnel dew point

(corrected to standard atmospheric pressure) ranging from -20°F (-28.9°C) at the

lower Mach numbers to 20°F (-6.7°C) at the higher Mach numbers.

'H _ j

i}_

Tunnel turbulence level.- Measurements have been made to indicate the turbulence

level of the Unitary Plan Wind Tunnel by using a hot-wire anemometer to determine the

velocity fluctuation in the settling chambers and by measuring the transition

Reynolds number on a smooth i0 ° cone in both test sections. The level of settling-

chamber velocities and fluctuation velocities is shown in figure 28 for different

values of unit Reynolds number and Mach number. These measurements were obtained at

tunnel station 561.33 ft (171.09 m) for test section 1 and at tunnel station

774.65 ft (236.11 m) for test section 2 on the tunnel center line. These turbulence

measurements shown in figure 28 provide some insight into the high-frequency turbu-

lence which would be carried downstream into the test sections. Another indication

of test-section turbulence is obtained by examining the transition Reynolds number

measured on a smooth i0 ° cone. The cone and measurement system used is that of ref-

erence 9 and a photograph of the system is shown in figure 29. The measured transi-

tion Reynolds numbers are presented for both test sections in figure 30 and are co_-

pared with other facilities in figure 31.

Tunnel blockage.- Since the operation of a supersonic duct is dependent on the

overall area ratio, the cross section of the model is critical for a fixed-size test-

section cross-sectional area. Figure 32 gives the theoretical maximum model cross-

sectional area determined from a one-dimensional flow analysis as a function of Mach

number for the Unitary Plan Wind Tunnel. In reality, the theoretical maximum model

ii

- f -:,

i

_ " i¸

, (

" _ . / i/

cross-sectional area indicates successful tunnel operation at a much larger model

size than is possible. The size of some of the larger models tested at the UPWT is

shown as experimental maximum model cross-sectional area over the Mach number range.

The large width of the band of experimental maximum model sizes indicates the uncer-

tainty of model shape, mounting, and attitude effects on blockage.

Tunnel temperature calibration.- The facility can be operated in such a way as

to provide a heat pulse for heat-transfer tests. This mode of operation is described

in detail in a subsequent section. A calibration of the total temperature variation

across test section 2 at station x : 30 in. (0.762 m) is presented in figure 33 as

a function of time from initiation of the heat pulse for several Mach nttmbers. The

total-temperature measurements were obtained by using double-shielded probes contain-

ing a 30-gage iron-constantan thermocouple. The probes were 2 in. (0.0508 m) in

length, and the diameter of the outside shield was 0.4 in. (0.0102 m). The calcu-

lated response time of the probes for a step increase in stagnation temperature at

nominal test conditions is less than 1 sec. The results of figure 33 indicate that

the time required for temperature stabilization after the heat pulse increases with

Mach number to a maximum of approximately 15 sec at a Mach number of 4.44.

Tunnel Operating Characteristics

Operating parameters.- The operating range of test Mach number and Reynolds num-

ber for each of the test sections is presented in figure 34. For any specific Mach

number the upper limit of Reynolds number is established by drive power and

stagnation-pressure limits. The operating range is separated into five areas which

correspond to the five compressor configurations or modes described earlier in this

report. The upper limit of operational Reynolds numbers is established by the over-

load capability of the main-drive system, and the lower limit is an indication of the

supersonic-flow stability characteristics at reduced pressure over the Mach number

range. It should be noted that between compressor modes I-IA and l-II (M _ 2.16

to 2.36) and between modes 2-II and 2-IV (M z 3.75 to 3.83) the compressor configura-

tions are not capable of producing the required tunnel pressure ratio to assure

stable supersonic test conditions in the test section. The tunnel operating regions

shown in figure 34 represent constant temperature operations at 150°F (65.5 °c) in all

compressor modes except mode 2-IV which is for 175°F (79.44°C).

Although most of the tests made in the Langley Unitary Plan Wind Tunnel require

constant temperature operation, the facility has a unique heat-transfer capability.

Because of the tunnel duct configurations and the bypass feature of the heat

exchangers, the facility can be operated in such a way as to provide a heat pulse or

total temperature rise during a finite time interval. The magnitude of the available

total temperature rise and time to stabilize is shown in figure 35 as a function of

Mach number for test section 2. This capability is essentially independent of tunnel

total pressure.

Power characteristics.- Total operating power requirements are presented in fig-

ure 36 for nominal operating temperatures and test Reynolds numbers of 2 x IU 6 per ft

(6.56 x 106 per m) and 4 x 106 per ft (13.12 x 106 per m). The power values of fig-

ure 36 are average measurements for the conditions shown and include the main drive

and auxiliary equipment. In general, the power range required for the auxiliary

equipment ranges from 3 to 5 MW throughout the test range available. Because of the

flexibility of the operational procedures of the facility, the power requirements can

vary from these average numbers. For example, a total temperature reduction of 25°F

(13.89°C) over the nominal test conditions at R = 2 x 106 per ft (6.56 x 106 per m)

12

?,

<

results in a 6-percent reduction in power required. Further power-reduction operating

techniques are discussed in detail in reference 5 along with an analysis of power

requirements of individual compressors at various operating conditions.

CONCLUDING REMARKS

The Langley Unitary Plan Wind Tunnel is a closed-circuit pressure tunnel with

two 4- by 4- by 7-ft (1.22- by 1.22- by 2.13-m) test sections which cover a Mach num-

ber range M from 1.47 to 4.63 and a nominal Reynolds number range from

0.5 x 106 per ft (1.64 x 106 per m) to 8.0 x 106 per ft (26.25 x 106 per m). The

facility has the flexibility to provide continuous variation of Mach number and

tunnel stagnation pressure and temperatures. The Mach number variation is controlled

by asymmetric sliding nozzle blocks and a combination of compressor staging modes.

There exists two regions in the total Mach number range (2.16 < M < 2.36 and

3.75 < M < 3.83) for which stable test conditions cannot be assured. The tunnel

stagnation temperature and pressure are controlled by heat exchangers and auxiliary

pumps and air dryers. The heat-exchanger capability to bypass tunnel air can provide

a stagnation-temperature pulse at constant Mach number and stagnation pressure which

results in a unique heat-transfer test capability for the facility.

The calibration of the test-section flow parameters over the operating range of

the facility indicated that a variation in Mach number of ±0.01 occurred in the area

of the test sections most used when testing smaller models. At the higher Mach num-

bers and for longer models at angle of attack, the variation of test-section Mach

number from the nominal can be as much as ±0.04 over the test region. Both test

sections have a positive or up±low angle generally within ±0.5 °. At the higher Mach

numbers for test section 1 the up±low angle can be as large as 1.5 ° within the test

region occupied by typical models. Tunnel moisture effects become significant above

values of tunnel dew point (corrected to standard atmospheric pressure) ranging from

-20°F (-28.9°C) at the lower test Mach numbers to 20°F (-6.7°C) at the higher Mach

numbers.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

August 17, 1981

13

i ¸

REFERENCES

i. Schaefer, William T., Jr.: Characteristics of Major Active Wind Tunnels at the

Langley Research Center. NASA TM X-f130, 1965.

2. National Wind-Tunnel Summary. NASA and Dept. Defense, July 1961.

from Clearinghouse, U.S. Dept. Com.)

(Available

3. Manual for Users of the Unitary Plan Wind Tunnel Facilities of the National

Advisory Committee for Aeronautics. NACA, 1956.

4. Mechtly, E. A.: The International System of Units - Physical Constants and Con-

version Factors. NASA SP-7012, 1964.

5. Hasel, Lowell E.; and Stallings, Robert L., Jr.: Analysis of the Performance of

the Drive System and Diffuser of the Langley Unitary Plan Wind Tunnel. NASA

TM-83168, 1981.

6. Burbank, Paige B.; and Byrne, Robert W.: The Aerodynamic Design and Calibration

of an Asymmetric Variable Mach Number Nozzle With a Sliding Block for the Mach

Number Range 1.27 to 2.75. NACA TN 2921, 1953. (Supersedes NACA RM L50LI5.)

7. Matthews, George B.; and Shirley, John A.: A Comparison of Flow Inclination in

the U. Va. Supersonic Wind Tunnel and the NASA Unitary Plan Wind Tunnel, Test

Section No. i. Rep. No. AST-4026-101-65U (Contract No. NASI-4326), Res. Lab.

Eng. Sci., Univ. of Virginia, June 1965.

8. Allen, Jerry M.: A Simple Method of Calculating Power-Law Velocity Profile

Exponents From Experimental Data. NASA TM X-72000, 1974.

9. Dougherty, N. S., Jr.: Prepared Comment on the Cone Transition Reynolds Number

Data Correlation Study. Flight/Ground Testing Facilities Correlation,

AGARD-CP-187, 1976, pp. 3A-I - 3A-7.

14

TABLEI.- MAJORDIMENSIONSOFTHELANGLEYUNITARYPLANWINDTUNNEL

(a) High Machnumbercircuit

: ]

ii

_i ? _ C

Component

Test section begins ...........

Test section ends and model support

section begins ...........

Model support section ends and

second minimum begins ........

Second minimum ends and transition

section begins ...........

Transition section ends and

diffuser begins ...........

Isolation valve II ..........

Diffuser ends .............

Turning vanes .............

Turning vanes .............

Cooler 5 transition inlet .......

Cooler 5 transition exit .......

Compressors C and D ..........

Compressor F .............

Cooler 3 transition inlet .......

Cooler 3 transition exit .......

Compressor G ducting .........

Isolation valve IX ..........

Turning vanes .............

Isolation valve V ...........

Ducting turn 7.7 ° ...........

Turning vanes .............

Settling chamber begins ........

Settling chamber ends and

transition cone begins .......

Transition cone ends and nozzle

contour begins ...........

Nozzle contour ends and test

section begins ...........

Axial station

Feet Meters

0 0

7.00 2.13

15.44 4.71

50.69 15.45

60.22 18.36

108.03 32.93

145.72 44.42

169.72 51.73

311.72 95.01

321.22 97.91

356.22 108.58

415.22 126.56

415.22 126.56

474.72 144.69

504.72 153.84

509.30 155.23

515.55 157.14

546.80 166.66

678.80 206.90

694.55 211.70

762.15 232.30

762.15 232.30

786.65 239.77

790.15 240.84

836.00 254.81

Equivalent

circular

diameter

Feet

4.51

4.51

4.51

5.27

5.66

8.00

12.00

12.00

14.00

14.00

12.00

6.00

6.00

6.00

8.00

8.00

8.03

12.00

12.00

12.00

6.67

4.51

Meters

1.37

1.37

1.37

1.61

1.73

2.44

3.66

3.66

4.27

4.27

3.66

1.83

1.83

1.83

2.44

2.44

2.45

3.66

3.66

3.66

2.03

1.37

Shape

Square

Square

Square

Rectangular

Circular

Circular

Circular

Elliptical

Elliptical

Circular

Circular

Circular

Circular

Circular

Elliptical

Circular

Elliptical

Elliptical

Elliptical

Circular

Rectangular

Square

15

TABLEI.- Continued

(b) Compressor I circuit

ii/

Component

Cooler 5 .............

Isolation valve XX ..........

Turning vanes .............

Compressor I ............

Cooler 6 inlet ...........

Cooler 6 exit ...........

Isolation valve VII ..........

Turning vanes ...........

Low Mach number circuit ........

Axial station

Feet Meters

0 0

18.73 5.71

35.73 10.89

84.04 25.62

107.96 32.91

139.91 42.64

192.04 58.53

200.09 60.99

225.35 68.69

Equivalent

circular

diameter

Feet

6.00

7.14

6.00

7.00

7.00

7.00

Meters

1.83

2.18

1.83

2.13

2.13

2.13

Shape

Circular

Elliptical

Circular

circular

Circular

Elliptical

(c) Compressor E exit air to compressor F

Component

Compressor E duct ...........

Turning corner, 15 ° ..........

Isolation valve XII ..........

Compressor F ..............

Axial station

Feet Meters

0 0

4.38 1.34

7.21 2.20

72.30 22.04

Equivalent

circular

diameter

Feet

6.03

6.00

Meters

1.84

1.83

Shape

Elliptical

Circular

16

i/

•; i % %:/.

TABLE I.- Concluded

(d) Compressor E circuit

Component

Low Mach number circuit .........

Turning corner, 32.9 ° .........

Isolation valve XIII .........

Compressor E .............

Turning corner center line, 9.8 °

Cooler 2 inlet ............

Cooler 2 exit .............

Turning corner, 9.8 ° .........

Isolation valve XIV ..........

High Mach number exit duct and

isolation valve VIII ........

Turning vanes .............

Low Mach number circuit ........

Axial station

Feet Meters

0 0

17.75 5.41

57.02 17.38

99.02 30.18

124.57 37.97

126.45 38.54

162.57 49.55

162.90 49.65

191.15 58.26

205.32 62.58

215.57 65.71

253.24 77.19

Equivalent

circular

diameter

Feet Meters

7.64 2.33

7.00 2.13

6.82 2.08

7.00 2.13

7.00 2.13

7.05 2.15

7.00 2.13

7.00 2.13

7.00 2.13

Shape

Elliptical

Circular

Elliptical

Circular

Circular

Elliptical

Circular

Circular

Elliptical

(e) Compressor G circuit

Component

Compressor G exit duct ........

Cooler 4 inlet ............

Cooler 4 exit .............

Isolation valve X ...........

Turning corner, 46 ° ..........

High Mach number circuit .......i

Axial station

Feet Meters

0 0

28.25 8.61

58.25 17.75

75.00 22.86

105.63 32.20

127.97 39.01

Equivalent

circular

diameter

Feet

5.00

4.00

4.00

4.17

Meters

1.52

1.22

1.22

1.27

Shape

Circular

Circular

Circular

Elliptical

(f) Compressor F exit air to compressor G

Component

Compressor F duct ...........

Isolation valve XI ..........

Turning corner, 30 ° ..........

Compressor G .............

Axial station

Feet Meters

0 0

14.75 4.50

70.96 21.63

98.43 30.00

Equivalent

circular

diameter

Feet Meters

4.00 1.22

4.07 1.24

Shape

Circular

Elliptical

17

ii/ i_

>

<

i < i¸•<¸

TABLE II.- MAJOR DIMENSIONS OF THE LOW MACH NUMBER CIRCUIT OF THE

LANGLEY UNITARY PLAN WIND TUNNEL

Component

Test section begins ...........

Test section ends and model

support section begins .......

Model support section ends and

second minimum begins ........

Second minimum ends and

transition section begins ......

Transition section ends and

diffuser begins ...........

Diffuser ends .............

Isolation valve I ...........

Turning vanes .............

Main tunnel intersection .......

Turning vanes .............

Cooler 5 transition inlet .......

Cooler 5 transition exit .......

Compressors C and D ..........

Cooler 1 transition inlet .......

Cooler 1 transition exit .......

Compressor E inlet ducting ......

Isolation valve IV ..........

Compressor E outlet ducting ......

Turning vanes .............

Turning vanes .............

Axial station

0

Feet

7.00

15.45

50.70

59.45

144.95

147.33

155.95

174.33

236.33

245.83

280.83

339.83

346.65

408.08

425.83

434.21

455.83

473.33

548.33

.33

573.33

580.33

616.38

Settling chamber begins ......... 548

Settling chamber ends and

transition cone begins .......

Transition cone ends and

nozzle contour begins ........

Nozzle contour ends and

test section begins .........

Meters

2.13

4.71

15.45

18.12

44.18

44.91

47.53

53.14

72.03

74.93

85.60

103.58

105.66

124.38

129.79

132.35

138.94

144.27

167.13

167.13

174.75

176.88

187.87

Equivalent

circular

diameter

Feet Meters

4.51 1.37

4.51 1.37

4.70 1.43

5.27 1.61

5.66 1.73

12.00 3'.66

12.00 3.66

12.00 3.66

12.00 3.66

14.00 4.27

14.00 4.27

12.00 3.66

4.00 1.22

i0.00 3.05

i0.00 3.05

I0.00 3.05

11.67 3.56

12.50 3.81

15.00 4.57

15.00 4.57

15.00 4.57

4.51 1.37

4.51 1.37

Shape

Rectangular

Rectangular

Rectangular

Rectangular

Circular

Circular

Circular

Elliptical

Elliptical

Circular

Circular

Circular

Circular

Circular

Circular

Circular

Circular

Elliptical

Elliptical

Elliptical

Circular

Rectangular

Rectangular

• 18

L

<

....•<i <ii<i•• ••ii!i • if••</iiii!il•¸>•• _ • _ • _ i •<

_D

TABLE III.- CONTOURED-NOZZLE

x I, in. z I, in. x I, cm z I, cm

-375.415 -142,500 -953,554 -361,950

-317.580 -78,789 -806.653 -200,12%

-316.915 -78.081 -804.964 -198.326

-312.915 -74.321 -794.804 -188.775

-308.915 -71.148 -784°644 -180.716

-304.915 -68.356 -774.484 -173.624

-300.915 -65.852 -764.324 -167.264

-296.915 -63.568 -754.164 -161.463

-292.915 -61.476 -744.004 -156.149

-288.915 -59.556 -733.844 -151.272

-284.915 -57°796 -723.684 -146.802

-280.915 -56.177 -713.524 -142.690

-276.q15 -54.673 -703.364 -138.869

-272,915 -93,262 -693,204 -135,285

-268.915 -51.915 -683.044 -131.864

-264.915 -50.583 -672.884 -128.481

-260.915 -49.268 -662.724 -125.141

-256.915 -47.944 -692.564 -121.778

-256.186 -47.705 -650.712 -121.171

-241.160 -42.770 -612.546 -108.636

-240.160 -42.442 -610.006 -I07.803

-239.160 -42.115 -607.466 -i06.972

-238.160 -41.789 -604.926 -i06.144

-237.]60 -41.464 -602.386 -105.319

-231.447 -39.608 -587.875 -100.604

-229.8gi -39.1C5 -583.923 -99.327

-227.891 -38.463 -578.843 -97.696

-225.891 -37.834 -573.763 -96.098

-223.891 -37.216 -568.683 -94.529

-221.8gi -36.612 -563.603 -92.994

-219.891 -36.024 -558.523 -91.501

-217,891 -35,454 -553,443 -90,053

-215.891 -34.906 -548.363 -88.661

-213,891 -3_,379 -543,283 -87,323

-211.891 -33.877 -538.203 -86.048

-209.891 -33.401 -533.123 -84.839

-207.891 -32.949 -528.043 -83.690

-205.891 -32.520 -522.963 -82.601

-203.891 -32.112 -517.883 -81.564

-201.891 -31.724 -512.803 -80.579

-199.891 -31.350 -507.723 -79.629

-197.891 -30.991 -502.643 -78.717

-195.891 -30.64_ -497.563 -77.836

-193.891' -30°307 -%92.483 -76.980

-191.891 -29.982 -487.403 -76.15%

WALL COORDINATES

(a) Lower block

FOR TEST SECTION i

x I, in. z I, in. Xl, cm Zl, cm

-189,891 -29,667 -%82.323 -75.354

-187.891 -29,363 -477.243 -74°582

-185.891 -29.070 -472.163 -73.838

-183.891 -28.787 -467.083 -73.119

-181.891 -28.514 -462.003 -72.426

-179.891 -28.251 -456.923 -71.758

-177.891 -27°996 -451,843 -71.110

-175.891 -27.750 -446.763 -70.485

-173.891 -27.514 -441.683 -69.886

-171.891 -27.288 -436.603 -69.312

-169.891 -27.071 -%31.523 -68.760

-167.891 -26.863 -426.443 -68.232

-165.891 -26.665 -421.363 -67.729

-163.891 -26.474 -416.283 -67.24%

-161.891 -26.292 -411.203 -66.782

-159.891 -26,118 -406.123 -66.340

-157.891 -25.952 -401.0%3 -65.918

-155.891 -25,794 -395,963 -65,517

-153.891 -25.643 -390.883 -65.133

-151.891 -25.500 -385.803 -64.770

-149.891 -25.364 -380.723 -64.425

-147.891 -25.235 -375.6%3 -64.097

-145.891 -25.113 -370.563 -63.787

-143.891 -25.000 -365.483 -63.500

-1%1.891 -24.894 -360.403 -63.231

-139.891 -24.795 -355.323 -62,979

-137.891 -24.702 -350.243 -62.743

-135.891 -24.614 -345.163 -62.520

-133,891 -24,533 -3%0,083 -62,314

-131,891 -24,456 -335,003 -62,118

-129.891 -24.387 -329.923 -61.943

-127.891 -24.325 -324.843 -61.785

-125.891 -24.271 -319.763 -61.648

-123.891 -24,223 -314.683 -61,526

-121.891 -24.180 -309.603 -61.417

-119.891 -24.142 -304,523 -61.321

-117.891 -24.109 -299.443 -61.237

-i15.891 -24.079 -294.363 -61.161

-113.891 -24.054 -289.283 -61.097

-111.891 -24,034 -284.203 -61,046

-i09.891 -24.019 -279.123 -61.008

-107.891 -24.009 -274.043 -60.983

-105.891 -24.003 -268.963 -60.968

-103.891 -24.000 -263.883 -60,960

229.085 -24.000 581.876 -60.960

Li_

• L

0

TABLE III.- Continued

(b) Upper block

Xl, in.

-432,625

-334,375

-331,625-327,625

-323.625

-319,625-315,625

-311,625-3C7.625

-303,625

-299,625

-295.625-291,625-289,625

-287,625-285,625--283,625

-281,625

-279,625

-277,625-275,625

-273,625

-271.625

-269.625-267,625

-265,625-263,625-261,625-259,625-257.625-255,625-253.625-251.625-249,625-249,125,

Zl, in. Xl, cm Zl, cm Xl, in.

-4,375 -I098,868 -11,113 -247,625

-39,240 -849,313 -99,670 -180,625

-40,206 -842,328 -102,123 -173,625

-41.530 -832,168 --105,486 --171,625-42,5C4 -822,007 -107.960 -169,625

-43,100 -811,848 -109,474 -167,625-43,398 -801,688 -ii0,231 -165,625

-43,546 -791,528 -ii0,607 -163,625

-43,614 -781,368 -110,780 -161,625-43,622 -771,208 -II0,800 -159,625

-43,568 -761,048 -110,663 -157,625

-43,432 -750,888 -II0.317 -155,625

-43,178 -740,728 -109,672 -153,625-42.980 -735,648 -109,169 -151,625

-42,743 -730,568 -i08,567 -149,625-42.466 -725,488 -i07,864 -147,625-42,149 -720,408 -107,058 -145,625

-41,794 -715,328 -i06,157 -143,625

-41o400 -710,248 -105,156 -141,625

-40,966 -705,168 -104,054 -139,625-40.492 -700,088 -102,850 -137,625

-39,979 -695,008 -101,547 -135,625

-39,428 -689,928 -100,147 -133,625

-38,848 -684,848 -98,674 -131,625

-38.251 -679,768 -97,158 -129,625-37,642 -674,688 -95.611 -127,625-37,024 -669,608 -94,041 -125,625

-36.398 -664.528 -92,451 -123.625-35,766 -659,448 -90,846 -121,625

-35,129 -654,368 -89,228 -119,625

-34,488 -649,288 -87,600 -117.625

-33.844 -644,208 -85,964 -115,625

-33,198 -639,128 -84,323 -113,625-32,550 -634,048 -82,677 -IIi,625

-32.387 -632.778 -82,263 -109,625

Zl, in.

-31,900-10,130

-7,856-7,206-6,556-5,906-5,257-4,608-3,961

-3,315

-2,670

-2.026-1,384

-,745

-,i09,522

1,148

1,766

2,3772,978

3.5684,147

4,7145,272

5,8186.3526,8757,3887.889

8,380

8,8599,328

9,786

10,234

i0,672

Xl, cm

-628,968-458,788

-441,008

-435,928-430,848

-425,768-420,688-415,608

-410,528

-405,448

-400,368-395,288

-390,208

-385,128

-380,048-374,968

-369,888-364,808-359,728

-354,648

-349,568-344,488

-339,408-334,328

-329,248-324.168-319,088-314,008

-308,928

-303,848-298,768

-293,688-288,608-283,528-278,448

Zl, cm

-81,026

-25,730

-19.954-18,303

-16,652

-15,001-13,353

-11.704

-I0,061-8,420-6,782

-5,146-3.515-1.892

-,2771,3262,9164,4866,038

7.5649,063

I0,533

ii,974

13o391

14.778

16,13417,463

18,76620,03821,28522,50223,69324.85625,994

27,107

/

< i >" •• v _: i

bO

TABLE III.- Concluded

x l, in. z l, in. x I, cm z l, cm

-i07,625 11,100 -273,368 28,194

-105,625 11,517 -268,288 29,253

-103,625 11,925 -263,208 30,290

-101,625 12,322 -258,128 31,298

-99,625 12,710 -253,048 32,283

-97,625 13,088 -2%7.968 33,244

-95,625 13,456 -242,888 34,178

-93,625 13,816 -237,808 35,093

-91,625 14,168 -232,728 35,987

-89,625 14,512 -227,6%8 36,860

-87,625 14,848 -222,568 37.714

-85,625 15,175 -217,488 38,545

-83,625 15,496 -212,%08 39,360

-81,625 15,811 -207,328 40,160

-79,625 16,119 -202,248 %0,942

-77,625 16,421 -197,168 41,709

-75,625 16,714 -192,088 42,454

-73,625 17,001 -187,008 43,183

-71,625 17,280 -181,928 43,891

-69,625 17,553 -176,848 %4.585

-67,625 17,819 -171,768 45,260

-65,625 18,078 -166,688 45,918

-63,625 18.331 -161,608 46,561

-61,625 18,577 -156,528 47,186

-59,625 18,817 -151,448 47,795

-57,625 19,051 -146,368 48,390

-55,625 19,278 -141,288 48,966

-53,625 19,500 -136,208 49,530

-51,625 19,716 -131,128 50,079

-49,625 19,926 -126,048 50.612

-47,625 20,130 -120,968 51,130

-45.625 20.328 -115.888 51,633

-%3,625 20,520 -Ii0,808 52.121

-41.625 20.706 -105.728 52.593

-39.625 20,887 -i00,648 53.053

-37,625 21,061 -95,568 53,495

-35,625 21,230 -90,488 53.924

-33,625 21,394 -85,408 5%,341

T

(b) Concluded

Xl, in. Zl, in. Xl, cm Zl, cm

-31.625 21.553 -80,328

-29.625 21.707 -75.248

-27,625 21.855 -70,168

-25,625 21,998 -65,088

-23,625 22,135 -60,008

-21.625 22,267 -54.928

-19.625 22. 394 -49,848

-17.625 22,516 -44,768

-15,625 22,632 -3 9.688

-13,625 22.744 -34.608

-11.625 22.851 -29,528

-9,625 22.953 -24.%48

-7,625 23,049 -19,368

-5,625 23.141 -14,288

-3,625 23,227 -9,208

-1,625 23.310 -4,128

,375 23.388 ,953

2.375 23,461 6.033

4,375 23.530 II,i13

6,375 23,594 16,193

8.375 23,653 21.273

10,375 23,707 26,353

12.375 23.756 31,433

14,375 23,800 36,513

16,375 23,841 41,593

18.375 23,878 46.673

20.375 23,909 51.753

22,375 23,936 56,833

24.375 23,958 61,913

26.375 23.975 66.993

28,375 23.987 72,073

30,375 23,996 77,153

32,375 23,998 82,233

34,375 23.999 87,313

35,375 24.000 89.853

73,375 2%,000 186,373

98,b56 28,000 250,586

185,375 28.000 470,853

54.745

55.136

55.512

55.875

56.223

56,558

56,881

57,191

57,485

57,770

58.042

58.301

58,544

58.778

58,997

59,207

59.k06

59,591

59,766

59.929

60,079

60,216

60.340

60.452

60,556

60,650

60,729

60,797

60,853

60.897

60.927

60.950

60.955

60,957

60.960

60,960

71.120

71.120

Do

TABLE IV.- CONTOURED-NOZZLE WALL COORDINATES FOR TEST SECTION 2

(a) Lower block

x2,in.

-541.545-502,489

-501.545

-499.545-497.545

-495,545

-493.545

-491.545-489.545

-487.545

-485.545-483,545

-481.545

-479,545

-477.265

-460,145-454,917

-449,688

-444,460

-639.232

z2,in.

-102.000-44,914-43,645-41.531-3q.931-38.613-37,505-36.560-35,744

-35.036

-34. 408

-33,854-33,357

-32,901

-32,409

-28,849-27,, 814

-26.951

-26,260-25.721

x2,cm z2,cm x2,in, z2,in.

-1375.524 -259,080 -434.004 -25,298-1276.322 -114.082 -428.775 -24.971

-1273.924 -ii0,858 -423,547 -24,710

-1268.844 -I05.489 -418.319 -24,505

-1263,764 -101,425 -413,091 -24,353-1258,684 -98.077 -407.862 -24.245

-1253,604 -95,263 -402,63% -2%,178

-1248,524 -92,862 -397.406 -24,151-I 243,444 -90. 790 -3 92. 177 -24,1 50

-1238,36% -88,986 -386,949 -2% ,162

-i 233,284 -87. 396 -3 81.72 1 -24. 178

-1228,204 -85.989 -376,%93 -2 4,194-1223,124 -84,727 -371,264 -24,2 II

-1218,044 -83,569 -366.036 -24.229

-1212.253 -82,319 -360,808 -24,248

-I168,768 -73.276 -355.580 -24.268-1155,489 -70,648 -324,210 -24,391

-I142,208 -68,456 -308,525 -24,459

-1128.928 -66,700 95,980 -26,251-1115.649 -65,331

x2,c_

-1102.370

-1089,089

-1075.809-1062.530

-1049.251-1035,9169

-1022.690

-1009,411

-996.130-982,850

-969,571

-956,292

-943,011

-929.731-916,452

-903.173

-823,493-783,654

243.789

z2,cm

-64,257-63.426-62,763-62.243-61.857

-61,582

-61,412-61,344

-61,341

-61,371

-61,412-61.453

-61,496-61,542--61,590--61,661

--61,953

-62,126-66,678

x2,in.

-550,125-502,895-502,125-500,125-498,125-_96,125-494,125-492,125-490,125

-489,413

-488,125-486,125

-484.125

-482,125-480,125-478.125

-476.125-473,865

-462,125

-456,897

-451,668-446,440

-441,212

-435,984

-430,755-425.527

-420.299

-415.071-409,842

z2,in

3,000-28.109

-28.587

-29.587-30,299

-30,799

-31,129-31,325

-31.409-31.417

-31 ,395

-31.298

-31.124

-30,880-30,578

-30,230-29.843

-29,377-26,862-25,742-24,623-23.503-22,383-21,262-20,142-19,020-17,899-16,777-15.654

x2,cm

-1397,318

-1277,353-1275,398

-1270,318

-1265,238

-1260,158-1255,078-1249,998

-1244,918-1243,109

-1239,838

-1234.758-1229,678

-1224,598-1219,518-1214.438

-1209,358-1203,617-1173,798-1160,518-1147,237-1133,958-1120,678-1107,399-1094,118-I080,839

-I067,559

-1054,280-I040.999

TABLE IV.- Concluded

(b) Upper block

z2,cm

7,620-71,397

-72,611

-75,151

-76.959-78,229

-79,068-79.566

-79,779

-79,799

-79,743-79,497

-79,055

-78,435-77,668

-76,784

-75,80 1-74,618

-68,229-65,385-62,542-59,698

-56,853

-54,005

-51,161-48,311

-45,463-42,614-39,761

x2,in

-604,614

-399,386

-394,157-388,929

-383,701

-378,4731373,244-368,016-362,788-357,560-326,190-296,820-279,136

-247,766-232,081

-200,711-169,362

-137,972

-122,287-g0,918

-75,233-63,863-12,494

18,87634,56150,24683.250

185,250

z2,in

-14,531-13,407

-12.283

-11.158

-i0,033-8.908

-7,782

-6.655-5.530

-4.4201,5836,5968,816

12,56714,21317,16619,65621,615

22,39423,69424,22525,06325,62425,90125.96226,01526,12128.000

x2,cm

-i027.720-I014,640

-I001,159

-987,880

-974,601-961,321

-948,040

-934,761-921,482-908. 202-828,523-748,843

-709,005

-629,326-589,486-509,806-430,129-350,449

-310,609

-230,932-191,092-111.412

-31.735

47,945

87,785127,625211,455470,535

z2,cm

-36.909-34,054-31,199-28,341-25,484-22.626-19,766-16,904-14,046

-11,2274,021

16,754

22.39331.92036,101

43,60249,92154,90256,88160.18361,53263,66065,08565,78965,943

66,078

66.34771,120

bo

(.o

TABLE V.- VARIATION OF MACH NUMBER WITH

POSITION OF LOWER NOZZLE BLOCK

(a) Test section 1

Mach

number

1.469

1.50

1.55

1.60

1.65

1.70

1.75

1.769

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.160

2.20

2.

2.

2.

2.

2.

2.

25

30

35

354

40

45

2.50

2.540

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.869

BlOck

position

230

253

292

333

372

414

456

472

498

539

58O

620

660

698

735

771

777

806

840

872

903

907

933

962

990

I011

1016

i041

1064

1087

1108

1128

1148

1155

_!ii<i_

i ¸ _r

M

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

3.50

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

TABLE V.- Continued

(b) Test section 2

Block position for R x 10 -6 per ft (per m) of -

0.5

(1.64)

12 349

12 845

13 324

13 785

14 228

14 654

15 062

15 451

15 817

16 168

16 503

16 823

17 129

17 420

17 697

17 955

18 201

18 435

18 658

18 871

19 073

19 266

19 449

19 623

19 789

19 947

20 096

20 238

20 373

20 502

20 624

20 740

20 851

20 956

21 055

1.0

(3.28)

12 272

12 765

13 241

13 700

14 141

14 564

14 971

15 360

15 729

16 082

16 419

16 741

17 049

17 347

17 622

17 880

18 125

18 358

18 580

18 791

18 995

19 190

19 375

19 551

19 718

19 877

20 029

20 173

20 310

20 441

20 565

20 683

20 795

20 902

21 003

2.0

(6.56)

12 172

12 658

13 146

13 607

14 050

14 476

14 885

15 277

15 648

16 002

16 341

16 665

16 975

17 270

17 551

17 813

18 058

18 292

18 514

18 726

18 932

19 129

19 318

19 497

19 668

19 830

19 984

20 129

20 266

20 397

20 521

20 639

20 751

20 858

20 960

3.0

(9.84)

12 130

12 629

13 ll0

13 574

14 020

14 448

14 859

15 253

15 624

15 978

16 317

16 640

16 949

17 244

17 525

17 787

18 031

18 264

18 486

18 698

18 903

19 102

19 291

19 471

19 642

19 805

19 960

20 107

20 245

20 376

20 501

20 620

20 734

20 841

20 944

4.0

(13.12)

12 ll3

12 609

13 089

13 550

13 994

14 421

14 831

15 223

15 596

15 952

16 293

16 618

16 929

17 225

17 508

5.0

(16.41)

12 082

12 580

13 060

13 523

13 968

14 396

14 807

15 200

15 574

15 931

16 273

16 599

16 911

17 208

17 491

17 772

18 017

18 251

18 473

18 685"

18 890

19 089

19 279

19 459

19 630

19 793

19 948

20 095

20 233

20 364

20 489

20 607

20 720

20 828

20 930

17 756

18 000

18 233

18 455

18 666

18 870

19 069

19 259

19 440

19 612

19 775

19 931

20 078

20 217

20 349

20 474

20 593

20 707

20 815

20 918

6.0

(19.69)

12 063

12 561

13 040

13 503

13 947

14 374

14 784

15 177

15 552

15 910

16 253

16 580

16 892

17 190

17 475

17 741

17 987

18 221

18 445

18 657

18 861

19 059

19 248

19 427

19 598

19 760

19 914

20 061

20 201

20 334

20 460

20 581

20 695

20 804

20 908

25

• i

TABLE V.- Concluded

(b) Concluded

_ i•Block position for R x 10 -6 per ft (per m) of -

M0.5 1.0 2.0 3.0 4.0 5.0 6.0

(1.64) (3.28) (6.56) (9.84) (13.12) (16.41) (19.69)

4.00

4.05

4.10

4.15

4.20

4.25

4.30

4.35

4.40

4.45

4.50

4.55

4.60

21 149

21 239

21 325

21 403

21 474

21 542

21 606

21 668

21 099

21 190

21 277

21 360

21 437

21 511

21 581

21 648

21 057

21 150

21 238

21 323

21 402

21 478

21 550

21 618

21 041

21 134

21 223

21 307

21 387

21 463

21 535

21 605

21 027

21 120

21 208

21 293

21 373

21 450

21 524

21 594

21 016

21 109

21 197

21 281

21 362

21 439

21513

21 584

21 731

21 796

21 858

21 917

21 973

21 712

21 775

21 834

21 891

21 945

21 683

21 747

21 807

21 865

21 921

21 670

21 734

21 794

21 852

21 907

21 661

21 725

21 785

21 842

21 897

21 651

21 714

21 774

21 832

21 886

21 006

21 099

21 188

21 273

21 354

21 431

21 505

21 575

21 642

21 706

21 766

21 824

21 879

_ i_

i •

26

k Hk' A

7 %

TABLE VI .- VARIATION OF SECOND-MINIMUM CONTRACTION RATIO

WITH NOZZLE BLOCK POSITION FOR TEST SECTION 2

: (

• <iiiiii<iiiiiilliiii__

Nozzle block position

12 60o14 350

16 500

17 I00

17 650

18 i00

18 6O0

18 95O

19 300

19 700

2O O5O

20 400

20 500

20 750

20 950

21 370

21 700

21 950

Contraction ratio

1.186

1.214

1.248

1.255

1.261

1.292

1.306

1.311

1.321

1.325

1.332

1.339

1.346

1.423

1.431

1.439

1.449

1.582

• L/f

b

27

_O00

©©

Figure i.- Photograph of the Langley Unitary Plan Wind Tunnel.

L-72-607

Cooling tower

Dry-air storage spheres

3tarting motor-

Makeup air

equipment

F Compressor

lineup

m Main-drive motorHigh Mach number test section

-- Low Mach number test section

50

<O

Figure 2.- Schematic drawing of the Langley Unitary Plan Wind Tunnel.

L,,J

0

Valve

Vo Ive

Valve

valve I2"

Cooler 4

G

F

E

D Compressor E circuit (Table I(d))I_ Compressor G circuit (Table [(e))I_ Compressor F to G circuit (Table I(f))

D

Cooler 5

Cooler IC

I

Valve ZZ:

Airflow

Test section 2 Valve TT

1Sta. 0

(a) High Mach number circuit. See table I(a).

Figure 3.- Arrangement of the Langley Unitary Plan Wind Tunnel.

Ii

I

i

volve _-

[] Compressor I circuit (Table I(b))

Volve

Valve @llZ'vm valve _ Cooler2

vo Ive

Cooler 6

/alve

Test seclion !

ISto. 0

Airflow

(b) Low Mach number circuit. See table II.

Figure 3.- Concluded.

5o

OO

O

L-78-3565

Figure 4.- Photograph of tunnel duct juncture and turning vanes downstream of valve I.

iiiiii

! !

eQ

:_ : i! • '

L•_,

tm

Figure 6.- Photograph of settling chamber and transition to nozzle

looking downstream in test section i.

L-78-3562

-oxn%ana_sxodnspue 'sZaoIq oIZZOU 'I uoT_aos %so_ 9o Mo_n. poPoidxz -'L oxn6_£, m

0_

+:+:+:+x+ _+_Lx+ _L_L_L_+:+_L:+:+X+:+X':+_L_L_L:_:+:+:+_+XLX+ _L_L_L_L_+X+X+ __L_L_L_L:L_+_L_L_L_L_L__L_L_ZL__L_L_L_L_L_L_L_+_L_L_L_L__L_L_+_+_L_L_ZL__L__L____ZZ__L_L_L_L_L___LZ_ZZZZL__L__L_L__L_L_L_L_•_ZL_______•___L__L_L__ZLZ__LZL_L_ZL_•ZZ___L_L___L:L_L_L_L_L_L_L_L_L_L_L_LZZ_L_L_L_L_L_L____L_L_L___Z_L_Z_Z__•__•_•_•_•_•__•_•_•_•_•_•_•_•_•_•_•_•_•_•__•_•_•__•Z•_______•__•_•_•__<<<<<<<<< _<<<<<<<<<<< __<_ _ ___ _ ____<_<<<<<

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiii__iiiii!ii__i_i_i_i_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iii_iiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iii!iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiii iiiiii iii iiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiii iii i iiiiiiiiiiiiiiiiiiiiiiiiii_iii_!!!_i_i_!i_!_ii_iiiii_iii_i_iiiiii_iiii_i_i_i_iiiiiiiii_iiii!i_iiii_iiiii_iiiiiiiiiiiiii_ii_i_i_i_ii_iii_iiiiiiiiiiiiiii_iiiiiii!!!_iiiiiiiiiiiiii!_!!_!i!_i_!i!iiiiiiiiiiiii_!_iiiiiiiiii_i_iiiiiiiiiiiii_i_!!i!!!!_!i_iiiiiiiiiiiiiiiiiii_iii_i_iii_iiiiiiiiii_iiii_iiiiiiiiiiiiiiiiiiiiiii_iiiiiiiii_ii_iiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiii!i_i_iiiiiiiii_iii_iiiiiiiiiiiiiiiiiii_i_!i!i!_!i_i_i_ii_iiii!iii_i_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i ! !! !i!i!i iiiiiii iiiiiiiiiiii ii iiii i! i!iiiii!!i i i i ! ii iiiiiiiii!iii i iiiiiiiiiii iiiiii!!i!i i!i!i!i!!!i!!ii!! !!! !ii !i! i!ii i ii i i iii! i!i! ii iiiii ii! iiiiiiiiiiii!i iii i i !ii iiii iiiiiii!i iiiiii ii i ii!i iii iiiiiiiiiiiiii!iiiiiii i ii ii i iii iiiiiii!!iiii !i!i! ! ! ! ! ii!i! ! i ! !!!! iiiiii!! iiii ii iii iiiiiii iiiiiiii ! iiiiiiiiiiiiiiiiiiii i i i iiiiiiiiiiiiiii iiiii ! iiii! ii!iiiii!i!iiiii ii i!i!i iiiii i i i i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiii!iiiiii!ii!i

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________iii_iii_i_ii__ _ •_ • • _

!i_iiiiiiii_i_iiiiiiii_i_iiiii!_ii!i!_ii_iiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiii_iiiiiiiiiiiiiiii!iii_iii_i_iii!iii!iiiiii_iiiiiiiiiii_!iiiiiiiiiii_i_i_iii_iiii_i.i_i.i_ii_ii_iiiii.ii.iii_iii_iii_!_i_i_i_i_i_i_i_i_i_i........................._i_i_i_i_!_,_i_ ..............__._ _.................................................................L-73-9050

' Figure 8.- Photograph of main-drive motor and six compressors.

%?i_i_,__i___ii_i__<i_ " • • "' •k

O©,

m

7-

LAL 90630

Figure 9.- Photograph of heat exchangers and tunnel ducts downstream of compressors.

................................... •................................. •................ •.................. ,,,,,,,,,,,,,,, ........... ,,,, ,, ,, ,,,,,.,,, ,.. ,....,.,,,. ,. ,.,, ,,,, ....,,, ,,,, .,,..,...,. ,,,,,,.,. ,...,,.,,,..,,....,, .., ,.,,.......,.,....., ...., ...., ..,., ..,..., .., ... • ...., • • ................................................ •............. •.............................. ,,,,,, ............................ ,, ,,,,,,,,,,,,,, ............ ,,.,,,, ........ , ,,,,,,,,, ,,, ,,,.,,,.,,,,,,, ,...,,,,, ..,, ,,..,,, ,,,,,,,.,..,.,.,,....,............,,....,, ..,......................, ,..............,.,.............., ..........• • • : :, : :, ::, :,, : :< : :,, : : : : : : : : :<< : :, : : : :, : :,,,, : : • :, :, :, ,,: :,, : : :< :< :, : : : : :< : • :, ,, : :, : : : :, : :, :, :: : : :,, : :, :, :: : : : :<+: : :<< :< : : : :, : : : :< :<+:< : : : : :<<+: :+: :+:< :<+: :<<<+:< :<+:+: ::<+:<<<<+:< :<+: :<<<+:<+:+:<<+:<+:< :+: :<< :< <<+:+:.:+:+:+:< +:+:+:< +:+:+:< +:< <+:+:+:+:< +:+:+:+:.:.:.:.:.:.:.:.:.:.:.:.:+:.:+:.:.:.:<

:k:,: : :: :::,:,: : :,:<:::: :,:': : :':,:::::::::': :9:,: :,: :%::: : :%: :': :,:%::: : : : _ _ >:': _ : : _ :':<': : :':,::: :::::':,:+:'::::: :::':,:,:::::': :':::::::::::': :::::_:_:::::::::::::::::::::::::::::_:::::::::::::_:::::::::::::::::::::::::::::::_:::::::_:::::_::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

CO

L_LQ

Valve _-

1I

E!

I

Valve z Cooler 4

-@----- %

I ! LValve _: Valve_"rr v- .2_ _ _ Cooler 5

vo, e c ,Airflow Valve I _........ _i_i_i_i!i_i!ii:i:i:i:_i:i:_:i:_:_??!?!.??:::__i!?i-!._.::::!_'_._-i:?:_:_!i'_!_.?!.i._::__'_!:........... ?!i.?!:i._:::,__ ............................._.......::::::::::::::::::::::::::::::::::::=======================================: -: :ii::_:i......................._-:i.!.::. ,,.._i!_.: :.!:i_iii:.:.:.:.:::.:.!:_:!i!_!i.i:.::_::.!=_!i__i!_!:i: :::i:_i_.!:!:i::!__i i. ...... _!i_!"_-""'

Test section !

Test section 2Valve ]I

1

(a) Mode 1-IA. 1.46 < M < 2.16.

Figure ii.- Tunnel-operating circuit configurations.

<• • _i::' _:• • __i_ _!.....• ••i

4_0

valve _z-

N _

[_tva,ve_ va,ve= __ coole_sI_i_ Valve _ _ ................... D /__

:i:!:!:!: ::::::::::::::::::::::::::::::"' .::::: =====================================:::::::::::::::::::::::: ........ .i, ' , -- _i!JJ_ii__i!::!ii::i::i::ili_-:'x':":'-":'>''''_'_'_:::::::::::::: , ..:_::::_:_::_:_::

::i_i::::i:: _ ......................

i!_::_i_i__:_:_:_:;iiill -1 _;_i_::_::_::_i_::?:_::?:_!i:i:_:_:iI ............................................................_ C ...._::_::!i_._. ".............. ::::::::::::::::::::::::::Iiiiii!iiiii_ii_ilil_ - _::::::::_<ii::iii::i!::::iiii!ili_iii_::i::i_:-_:_.............._:___ .......iiiiiiiillIi::::i:: valve _ _ I ...........i:i:i:i:i:bi:]:{;i

iiiiiiiii_:::i!i::iill

_i_!_i_ii::ii!i!i A i r f 10w Valve I _.

ilii]i ::_!::::_::::i_:.::_::_::_::_::_::_i_::_i_::_i_::_::_i_::_:_?S_]_]_:_:._:._:._:._:._:.?._:._:::_:._:._:._:.i_:._..............::::::::::::::::::::::::::::::::::::::::::::::::...................................._:_i_::_i_::_::_::_::_i_::_i_i_i::::_::_i_/............._ Sfa. 0 I

Test section !

'...//

Test section 2Valve rr

i I

tI

(b) Mode l-II. 2.36 < M < 2.87.

Figure ii.- Continued.

valve IZ

Valve Z Cooler 4

Valve - _ -

[Cooler 3

ve EZEValve 3Z_ Valve _nt

Valve 1_

G

F

E

cooler 5

Cooler IC

cooler 6

_/alve

Valve I

Test section I

(c) Mode 2-II.

Airflow

Test section 2

I

i

Sta.0

2.30 < M < 2.98.

valveE

Figure ii.- Continued.

L

[XO

valve

Valve x cooler 4

)Valve

Valve _ valve

valve I_ZValve

cooler 5

II

Valve _I

Cooler 1

Cooler 6

C

Test section !

Airflow

Test section 2valve ]I

(d) Mode 2-III. 2.98 < M < 3.75.

Figure ll.- Continued.

:.:.:::,

?-_

:-'4<'::...<.,.

_:_

".:(<.:

.:.:-_:::_:..':s

>::.:.:

:.--_::

::.<-.:-:

• i:-_/_'_:i;:i_•!!_,_•_ : i•: ...... •

L,J

Valve X Cooler 4

I

ValveValve 2_ Valve 'x'rr

Valve ]3ZValve

G

F

E

cooler 5

Valve

Cooler I

Cooler 6

C

!

valve _,

Test section I

Airflow

Test section 2_valve _T

(e) Mode 2-IV.

SIJo. 0

3.84 < M < 4.63.

Figure ll.- Concluded.

i!i_ill

-UOT_TUTFOp _o_sXs-o_UTp_OOO oZzzou pu_ SZT_O p UOT_OOs-_so_ -'ZZ o_n6T_

"Z UOT_ oas _sa_ _o_ _TnO_TO _qtunu _o_W Moff (_)

/ II II II _l II II I: II :I :: II _I I: II :l :,, ,, .y

_ J I L UI!:=, L= kl l q ",7 // I| / I; _--;; ' ', ,,,J zt_N.xo_l

'_ H u iI rl I tl I I i II I i I i - ] i L [I _l'll I'll

Il II LL II II iI r, !1 II II [r p.i i[ ii ii iI )1 ii rl tl il | [--_- (- H-,_--7.7 _IIAI *UIIAI_ I.............................. _ T" ---_\\ ./ _,Y _'-_"_,lfl --:lfll i

I I l II I I.L.=--- _ "::, t,:_ t, ','/,:',_;_ / .....

....... ...._il_lH/,ll,, ¢-7" "' i_ i'.--'._._'b_I /

[= ffr-n-_ -n-_ _]7 _F-l-r -_ -_P _r = _I_ =l-r---_l = =]_ -qT_q-r --_r --_ -Td _-_ _T-=_,... ,.h ,I I IUJ eg';_ I (L,U 66"01)

UO!¢OOS Jot OOZ JnoJ, uoo elZZON ,t_ OOZ;Joddns lapolAI uo!)oas lSel uo!HsuoJJ.

(uJ £I'_)

,4_ uoozuo!,_oas_sa±

X

A / (LUO Z"Ul

UO! ¢30S -¢Sal

T

_ !i:!_(ill _ • _L_ • i < iI i :;i!_ _ !:/<< <:__<;i<>7:71<i<<i!!/!_:_

Z

fTest-section _---i/"

/_ 0.625 in.1.588 cm) y

_--'1"[_-..... /. _//_Test-section door

'? i

Test section @7.00 ft

(2.15 m)

Testsection

Transition ! 70Oft j Model supportI i(2.I5 m) l section I

8.50 ft ] |8 44 ft I(2.59 m) Nozzle contour _-- -._., -4

t I

I II ; _ _ _l i I '11 Ii N _ I

I , II I tl II }! I I I 1 _ . III [I II II _ II I LL II _ II _L.- -- -- If_ - - _II..___ '

Lk_-._ii_,..... :- _ 1 # -+'__ Irflltlllltllll ! - !I', ,, ,_._-__ iliHIttltllllll I -- t

I _ !! _'_ iuuuuuuuuu ' _ i _,I __',,C,; ";I _ .......... _ ............... I_T ...... ii

# • I I _ II I h Ii _ i

#_-(M(:lx. M ) ____,___± k__ l__"- ..... jl___ 7 lI / Z_-_ t__'"t'_'_ "" "" , .1i ,i

_ I I I I ' ' __J

U'I

(b) High Mach number circuit for test section 2.

Figure 12.- Concluded.

Oh

0

Figure 13.- Photograph of airplane model mounted in test section i.

L-76-818

I il II I[ I n I' II I I II II s_li II '1 /'_ II II II [I II II I1 II H # II H II

II ____ _ __II ..O_ __U._ __LL___LL _ II __ ___L[ U .LL_ _ LI._ _ .LL -- -- _ .U.....

" '' / L_ ......I II II / t il II II II II II II II / L-,.L / I! ,, II II II II 1

_i LL 21 ' / _'1"" _(_,_7 I_ it , Pr ii

___ji ...._i....IL_______ __....... -_'...................'--........._ -_ .--------.--'--

__----_____________mmaxi____mumcontraction

__ -----------------_____________® ------ir-------iT----qT--_____FF _ _ ..... ----_____ •

, "-:]F- ...... IT ....... F" - ---":":_'_--- ..........._--_-----_-----_'_"r_---L----__ I , -1 T, _r --_-J' I I I In f, ,, ,, il,i\ _\ ,, ,, ,, ,, ,,//I]!

li ,,---,--'-,---,---,---,--,---,--, T_ F,---_---_---_---c ....!, l,,......_J , _, _i ,, ,l il II ,r Ir II II /

_'_Jl pi_ _"

Plan vlew

H_HIk_

Second minimum35.25 ft (10.74 m)

i_ Ii i;I i, I I II I{

II li II Ii _i I I i) I_

,___ ____LL ....... ' _ ------- J--- -- JJ

I I li ;i ;I li II II Iil it i_ I[ it II_____] _____ r _L .t_ I_ ]..___L__ II__

Transition8.75 ft (2.67m)

__L_JL_LJ-JJ--

F.- -- -- _]- _ rr -- -- --q-

tl II I 'I _'

] _ m TT_i Ll

_I II " il

Side view....,,-F -F F----T----- I

II II Ii_ il II

II II II . I1 ;I !1 i

(a) Low Mach number circuit.

14.- Second-minimum details.Figure

"popnIoUOD-'NI o]nbT£

_-=_--L.L.L.L_ jk ,_i__i _ __/]

MSIA apls i, _ ,i _,ii I_ P d II

Ii I_ ii iI ii

'J I' 11 H _[ [I il I] I1 It ii iI lii

II II II II H H II II II I I II .... IL IILL __ -J I__ __ Ii -- __ _ __I -- -- ___ -.U -- -- _ -- JJ- -- -- _ .... II ...... -u__ __

-- [i-- [i --[i --ii ii II

I (LU06"Z) Ie-_ _ £g'6 ,i _

iT __III II li el

H

-- m-- -TF--_- -TT- -r--- 7- -7-- -iT..... TI----F-- -T--T ...... _---iI

iI II I_ Ii ii li II iI 11 ii IIII II II IL iI IL ii II II iI LI i II

_ 1./(w _Z'Ol)

_ g_'g£LUnWlUlW puooas' uo!;!suoJ.L

__]_L_J__

MelA UDI(:I t

. , ,, i, ,, , ,, , ,, ', ,, , , , ,,_"_ ,_.,,.____,' ii , ,I , ,i ,i ii , ,i ,, ,I II _' ,' !! i' ',!\

............ _- ....................... L .... JJ.... 1___:::_1 _ I/ II 1.... I _----=_-_! _ IFI

I / I II l II 'II [_ H _ ii i _II_" ] ,I II II II I i I _}-_L. _ II I _I

-#ILl I" !I " I If II I! _ I

..... LL ...... IL ..... JJ-=--= - J.J--- _ /I ..... II,- _ I

===-=-:- :=:-=:_ :_.e..=._;_---.--._.._..__._

uo_mo_uoo_umu,xow _o;_ i

I

,'T, -- - Ti

I II II

II II

uo!Msod I IDM_--_

]r -iT ....... 7] -7-_ [T rl

I i ,</I II r I

h iI !1II II .

.... .....I} II II I L.,=I II II /

ii ,i il tl II _u a.l,/

II II--rr ........... ]I ....... m........

II I II II II

II fl II II rl II II

O0

i- ., ." k

L

........ /,,, _-!i__, _ :: ........ :, _: _ . _- [

LO

0.625 in._(t.588 cm)

Z

8.0OO i n.-'[J(20.32® cm)

Figure 15.- Test section and model support system.

Test section + Model support system

7.0O ft (2. t3 m) / 8.50 ft (2.59 m)

I tDoor "q I |

t" .*'l // // // // /z /.," z.*" /z z/ // // // zZ:_:: _:1

II II 11 II li It I1 ,41 II I'-%',_ .--',',(' _ . 36.25 in. \

Z j fZ ;e. ,n (.o crn,'-s,,n0su o.

Test sections 1 and 2 are similar.

• - < •

Ln

0

Comer(

65.0 ft(I 9.2 m)

--q

mage screen

Airflow

,.._1v I

!= 22.5 ft1 (6.8 m)

ilver,knife edge

splits image

Spherical mirror49.00-in. diam.

(I 24.46-cm)

\J

Light sourceSpherical mirror49.00-i n. diam.

(I 24.46-cm)

Figure 16.- Schematic drawing of schlieren system and test section.

.....iiiiiiiii!ii

9<x::::::::::9:::9:

L-81-229

Figure 17.- Typical schlieren photograph of airplane model at M = 1.6r

51

/ f

F

!., i

oJawoo ap!su i J

OJaLUDO

_Pj'o:'j,n_O_\/

\

7 _eoJnos _qO!7

\\

\ \\. _ .....

\euold _qS!l

__ ueeJOS-JodOA

1,I-,.-- _7---/-7_

MOI_J!V

_ f f

I

,o

I

I

K

/ /

. . _ B N I

.- -. sMopu!M j

. . uo!_oes-_sal lauunlj

; L

I

V

. . _

Cxl

_ ,<r •'•< _•'__•iti_ii_iiii•_!•7 ¸• ,

L,n

L_J

Oufside cemere Inside comero

L-81-230

Figure 19.- Vapor-screen photographs of missile model in

test section 2 at M = 2.36.

-4--

/: _:?_:_:!!t¸I::7_i: :: • :: _ • !!< <i !< •

U'I

0.250 diam(0.635)

1t-

0.125 diaml(0.318)

9;00(22.86)

Pitot probe

I

4!5o(II.43)

+_,_b_-_-_ 2.25 (5:72)

_ti ."21_ - _

12.00

0.25o diam10.4 ° (0.635)

14.00

0.16)

/[,_,4-0.030 orifices (0.076)

spaced 90 ° _ 7.20

1.00(2.54) 12.69. ""(.32.23) 7 Probe mount

Static probe face

19.00

3.60 (9.14)J.__

T3.00

(7.62

J _____r

20 ° I0 ° _ --_---._-_--

__2.81___ ;_ 1(7.14) ( 9.66

(24.54)

Flow'ongle probe .Calibration survey rake

Figure 20.- Details of calibration survey rake and probes. All dimensions

are in inches (centimeters) except as noted.

R=3.92x1061ft (12•86x1061m) y=-2.25in.(-5.72cm)in.

20cm

,,, 40 -10

_ 201

i

i:- o-40 -

-2O

,43/ / /

1.44 1.45" / _

/ )

1.48 __Airflow

I I I I I I I

10 20 30 40 50 60 70 80 in.

2i0 i i I I I I i I I40 60 80 100 120 140 160 _80 200 cm

Longitudinal distance, x

1.52

M 1.48

I. 44

1.52

M 1.48

1.44

: i :<,

i:,;_,i_' :!,

_Y ,i ,

1 _2 *':i !!!!!!!_!i!_!• lii_,l_,_,_

l_iilI_ffl!i!,iTii.ql_i

0 iI I

0 4

/=-2.25in. (-5.72cmb

!_!!!!!_t+q!_i!!tH'di_!h'!!!_t !'_'Ht!tf!

2 3 4I I

8 12Unit Reynolds number, R

5

I16

#tlHtl#_ttHll

6xtO6per ft

I 620x10 per m

(a) M = 1.469.

Figure 21.- Mach number calibration for test section i.

55

'/ 7/in. R=3.58x106/ft (11.75x106/m) y=-2.25in. (.5.72cm)

cm 2011 _" L \4o \N 10 [ /1.76 _ _ \

20 r/- ,,' _ \ 1.75r/ "-

_ o-o 1.7 _irflow

_2° I> 10

-40

I I I t I

-2_ 10 20 30 40 50 60 70

I I I I I [ I I I I

0 20 40 60 80 100 120 140 160 180

Longitudinal distance, x

80 in.

i200 cm

1.80 =-2.25in. (-5.72cm)

HH

iii4 z=3.60in.M 1.76 !!i (9.14cm)

i!I1.72 R

lift l/mO 0.72x106 2.36x106

[] 1.19 3.90A 2.39 7.84

11.75

_sV

0 20 40 60 80 in.I40 8; '12o 1;o 2_Ocm

Longitudinal distance,x

1.80

M 1.76

1.72

z=-3.60ini(-9.14cm)

-20 0 20 in:I4o ; 4; cm

Lateral distance,y

/ ,

/

56

1.8o li':ii_ }_ffii_tii!_tii_it!H!ly=-2.25in.(-5.72cm)_]_i

0 1 2 3 4i I I

0 4 8 12

L_liiiihti_t,]Idi!i!_i_!li!i,li!!!l

" l H

6xl06per ft

616 20x10 per m

Unit Reynolds number, R

(b) M = 1.769.

Figure 21.- Continued.

R=3.03xl06/ft (9.94x106/m) y=2.25in.(5.72cm)Jn.

2O

40- 2.

10-N._ 20-

m

'_ 0- C

_ -20 -

-40 -

-2C I I

10 20

I I

20 40

Airflow-----

2.17 218/

I I I I I

30 40 50 60 70

I I I I I I I

60 80 100 120 140 160 180

Longitudinal distance,x

80 in.

i200 cm

2.20

M 2.16

2.12

2.20

M 2.16

y=2.25in. (5.72cm)

R....... lift l/m

O 0.61x106 2.00x106

!;t!_!T_ i !::,=_:_iii::i: i!!:!!!! _t_'Cll_Itl_l !!_:

_t!-,ttH!!_!!Hm

2.12 ...................... : .........0 20 40

!!!_! [] 1.01 3.31z_ 2.02 6.63

:!!! _.0_ 9._4!ii111

Ii_+

60

4_) 8_) t t120 160 2,,0 cmLongitudinal distance, x

::::ii:'.iiiii

:IZ!: !'!i! :!!_:_!!!!!!

t _ z=3.60in.

_ (9. llem)fh_lH_

:::. ,:::

:::: .:::::::;:: ::

_H!++!!!H! _

_t_

_ z=-3.6oin. _i:: ::::!::iii (-9.14cml i_i2,*_H'!HH II_

::::::::::::: ,,

] hi,if,; tr_

£iiiiA:ii*ii iI

80 in. -20

_R=3.03xl06/tt

(g.ilii

tt

×

in. cm

0 0

z_x 48 12272 183

ilillllll!!l!II!illl

0 20 i_n.I

Lateral distance, y

2.20 ..............................

I

|!,'i_H!_fii;i|IH

2.12Iiliiliiliii _: _"i!0 1

I I

0 4

............. t I ÷_ !_i_!_ '_t'

........ .,hl,,I!,!I::I,,l,.=l;Rt;It_ittttlf',;_:_t::;::;t.,I;t::,,t,_t_:A&t,;,Ji_fttttI._]!':i!t i::tll ':iliil!iit_!tilt!tt}_iI_i_"t_

y=2 25 n. 5 72cm) ;,!IIht!!!iittt!"#_

3 4 5 6xlO6per ftI I I I

16 20xlO6per m8 12

Unit Reynolds number, R

(c) M = 2. 160.

Figure 21.- Continued.

57

.... : : : , : :: :': :: ,:::: T::;: : :: :: ::'':

/ii_!<:i!:<<::

:_> _ i _

>:

i

58

in.

2Ccm

,,+40-11 _

20c

0- (]

E -2o'_ -10

-40 -

-2O

2.40

M 2.36

2.32

2.40

M 2.36

2.32

R=2.75x1061ft (9.02xlO61m} y=2.25in. (5.72cm)

2.36

,*_ > _ z.j.,4 / "/

2.34 2.3, \ / 2.3+i I /I I I t I I I

10 20 30 40 50 60 70 80 in.

I I I I l I I I I I

20 40 60 80 100 120 140 160 180 200 cm

Longitudinal distance,x

,=2.25in. (5.72cm)

1.80x!O 6

z=3.60in.(9.14cm)

z=-3.6Oin.(-9.14cm)

(9.02x1061m)

0 20 40 -20 0 20 in:I I I

40 80 -40 0 40 cm120Longitudinal distance,x Lateral distance, y

(d) M = 2. 354.

Figure 21.- Continued.

i•

in. R=2.46xlO6/ft (8.07x106/m) y=2.25]n.(5.72cm)

cm 20[2.52 2.53/ ,,,

E -20 2.5'_ -10

-401i

! -20 I

/ Airflow_

I I I I I I I

10 20 30 40 50 60 70

I I I I I I I I t

20 40 60 80 I00 120 140 160 180

Longitudinal distance,x

80 in.

i200 cm

2.56

M 2.52

2.48

2.56

M 2.52

2.48

!=2.25in.(5.72cm)

z=3.6Oin.(9.14cm)

z=-3.60in.

(-9.14cm)

20 40 60 80 in.

4; 8; '12o 1;o 2;0cmLongitudinal distance, x

R=2.46x106/ft

(8.07xlO6/m)

-20 0 20 in.I / I

-40 0 40 cm

Lateral distance, y

'-;!_]!! _i!iii_iili!C!ii_;_

;_i.;))iif!! )U, ,__J ;'-+' ms " ....

0 1 2I

y=2.25in. (5. 72cm) _!_!i_!!li_

()):i)()!i)il!))lli)))))i))!!i)6)':)))))))H)I)#

3 4 5I I I

8 12 16Unit Reynolds number, R

(e) M = 2. 540.

Figure 21.- Continued.

6xlO6per ft

620x10 per m

<59

" .... ¸./,7;:< H • , :;• . _.7n

r

5 . # '_ '

!!)i....

)

z

<i " •

in.

20cm

40-

" 0 10

_" 20

Em

.._ ,- 0

-20 -® -10

-40 -

-20

R=2.0gx106/ft (6.86x106[m) y=2.25in. (5.72cm)

.,.2.79j2.801- _2.82 _ I -- _ _2.91

)289 / / / / 3.84 _ _

/ / / / _2.84_I I I I I I I

10 20 30 40 50 60 70

I 410 I I I I I I I20 60 80 100 120 140 160 180Longitudinal distance,x

2.92_=2.25in. (5.72cm)

2.88

2.84

z=3.60i(g.

80 in.

200 cm

2.80

2.92

2.88

M

2.84

z=-3.60in.(-g. 14cm)

6O

2.8020 40 60 80 in.

40 80 I n120 160 200 cm

Longitudinal distance,x

-20 0 20 in.

-40 0 41 cm

Lateral distance,y

2.88

2.84

2.80

illlli!ilillIlll!lliiiliIlll_,iil:._lliiiil_iilc;_!llllIIiIIilI II!t I_i I ff i _llllllilIlllllllllilllql i_Iill I IiI111_IIIIiIIIiI l_lll Iii_liIIIIll_IIIIiIIII!!Iiiiiii£!iii11t_tllt I tt htttth.tI!t:_,t.tttttlt,f..lt.l

t ttil y 2 251n (5 72cm)_l_,ll,i,lliI Illil = "1 2 3

I I I

4 8 12

ttttltttlttlt tiIttttttttt ttlltlt_ttl_ttttttflttttt_tttttltttttttttttttttt_iiiiittttftt!t!,_Ittltt11tt_.ttt]ttttIilttttit!tt_ttkttttttt11ittt! tttttt_fttftttilli!!lllllilllllllIlllll

5 6xlO6per ft

I I 6

16 20x10 per m

Unit Reynolds number,R

(f) M = 2.869.

Figure 21.- Concluded.

<

in.

2(cm

40-

N 10

20-o

O- 0

E-2o-_ -1o

-40 --20

-20

I

-40

R=3.0OxlO6/ft (9.84x106/m) y=O. Oin. (0. Ocm)

2.2g_

2 3O-----.--___.

.--_p 31I i-' I I

-10 0 lO 210 310 4JO 50 60 in.

I I I I I I I I I I

-20 O 20 40 60 80 I00 120 140 160 cm

Longitudinal distance, x

2.32

M 2.28

2.24

y=O. Oin. (0. Ocm)

0 20 40 60 in. -20 0 20 in., , , , , , , ,0 40 80 120 160 cm -40 0 40 cm

Longitudinal distance,x Lateral distance,y

2.24_Y=O-Oin.(O. Ocm)_ i ,- :-I _ i,_

0 I 2 3 4 5 6xlO6per ft

I I I I (5u . 8 12 15 20xlO per m

Unit Reynolds number, R

(a) M = 2. 297.

Figure 22.- Mach number calibration for test section 2.

61

C / ;

_:> .

_j

-<

/.

in.

20cm

40-

N 11

20-oc

0- 01

E-2o-10

2.64

M 2.60

R=3.00x1061ft (9.84x1061m) y=0.0in.(0.0cm)

#

---- _2.59C)

2. 59

Airflow_

_2 62

-.--_

I ' I M=2.63_,, _ i I

-I0 0 10 20 30 40 50

[ I I I I I I I I I

-40 -20 0 20 40 60 80 100 120 140

Longitudinal distance,x

y=0. Oin. (0.0cm)

60 in.

J

160 cm

2.56

2.64

M 2.60

,/

/

62

2.510 20 40 60 in. -20 0 20 in.

Is I 0 40 cm

[ I _ I I-40 0 4 80 120 160 cm -40

Longitudinal distance,x Lateral distance, y

2.64

2.60

2.561 2 3 4 5 6xl06per ft

I I I I 68 12 16 20x10 per m

Unit Reynolds number, R

(b) M : 2. 606.

Figure 22.- Continued.

• • :: ,•v< , v¸¸, < _ • <:_•-•_ • !H •H .....

t

CB

40-

in.

2O

,-, 10

& 20-

_ 0- 0

:_ -20 -

-10

-40 -

3.00

M 2.96

2.92

3.00

M 2.96

R=3.0OxlO6/ft (9.84xlO6/m) y=O. Oin.(O. Ocm)

/2.95/ _ 2.96_

2.96

_2.97_

-10 0 10 20 30 40 50 60 in.

I I I I I I I I I I I

-40 -20 0 20 40 60 80 100 120 140 160 cm

Longitudinal distance, x

y=O. Oin. (0. Ocm)

9.84xlO6/m)

2.92

-20 0 20 40 60 in. -20 0 20 in.

, i / , I I I / i

-40 0 40 80 120 160 cm -40 0 40 cm

Longitudinal distance,x Lateral distance,y

/

. i•- ¸

2.921__':_Iy=0.0 n. O. Ocm Ill '_ _::_ii:l:L_I:lll:iil::lii

o I 2 3 4 5 6;(106De r ft

! I I I 6u 4 8 12 16 20x10 per m

Unit Reynolds number, R

(c) M = 2.973.

Figure 22.- Continued.

63

7 iI_ "

• )i

i !:ill :

• /

64

in.

2Ocm

40-

2O

O- 0_!_-2o '-1o

-40 -

-20 _

-20

3.28

3.24

M

3.20

3.16

3.28

R=3.0OxlO6/ft (g.84x!O6Im) y=O. Oin.(O. Ocm)

318 3213.2

I

-llO 0

I I I

-40 -20 0

13"22_ I I

10 20 30 40 50 60in.

I I I I I _ I I20 40 60 80 100 l 0 140 160 cm

Longitudinal distance, x

y=O. Oin. (0. Ocm)

ii{_ l'.ff,, :.1_

:itt! ti: i 'R

lift lira

0 0.50x106 1.64x106

[] i. O0 3.28

A 2, O0 6, 56

3.00 9.84

[3 4. O0 13.12

5. O0 16.40

0 20 40 60 in.

I / I I I

0 40 80 120 160 cm

Longitudinal distance,x

0 o[] 26

z_ 48

-20 0 20 in.

I / 1-40 0 40 cm

Lateral distance,y

3.24

3.20

3.!6

::: IH$

lill

Htii!..... 1

il 1l_ i!!I II _ H Uiili!!!ll!!iliiHl

.... i : : :_::::: : il _ _ :_ "I _Ei:l:i;. : _ , _ _ q ' 1 +:

1 2 3 4 5 6xlO6per ft

I l I I 68 12 16 20x10 per m

Unit Reynolds number, R

(d) M = 3. 225.

Figure 22.- Continued.

in.

2_cm

40-

2O

O- C

u

-2o--lot

-40 -

-20-20

-40

R=3.0OxlOG/ft (9.84xlO6/m) y=O. Oin.(O. Ocm)

Airflow_t I_

_3'62t t t !-ltO 0 10 20 30 40 50 60 in.

I | t I I l l ! l I I

-20 0 20 40 60 80 tO0 120 140 160 cm

Longitudinal distance, x

3.70

M 3.60

3.50

3.70

M 3.60

3.50-20

-4'0

y=O. Oin. (0. Ocm)

in.

0 0 0[] 26 66A 48 122

0 20 40 60 in. -20 0 20 in.

' _ ' , , , _ '0 4 80 120 ]60 cm -40 40 cmLongitudinal distance.x Lateral distance, y

7 ,, : "i

3.50 "_.......... "0 1 2 3 4 5 6xlO6per ft

I I I I 64 8 12 16 20X10 per m

Unit Reynolds number, R

(e) M = 3.580.

Figure 22.- Continued.

65

i:i): i: i<:

' ( i

/

: _ i/¸ ,

in.

20

cm

40 -

N I0

o200

- 0

-20 -® -10

>

-40 -

-20'

-20

I

-40

4. O0

M 3.90

3.80

4.0(

R=3.0OxlO61ft (9.84xlO61m) y=O. Oin.(O. Ocm)

/3.93 J .... 3"8_v _.,,"'-"_'_ 3"893"_

_M=3.98_

-I0 0 tO 20 30 40 50 60 in.

I I I I I I I l I J

-20 0 20 40 60 80 100 120 140 160 cm

Longitudinal distance,x

y=O. Oin. {0. Ocm)

0 20 40 60 in.

I / i i I

0 40 80 120 160 cm

Longitudinal distance, x

_illm_imiill

;+!lRi+t_i+iI;

x iii_

in. cm

0 0 0

[] 26 66

48 122

R--3. OOxlO6/ft_

(9.84xlO6/m)_

_E, E!! :::i i!i. E::

!h i!:! h', !:: !!h ;

,, , liq :u! I'ti :m :

-20 0 20 in.

I / I

-40 0 40 cm

Lateral distance, y

. • +

+

,. • <

5

66

4.00_

f_ 3.90

3.80

it!iitititiilittttt[ttt,t+_i,t{+_ll,i_{._+_.._!.,+t_++_t!tl,fiiili}Itttttttttttttltt_{!!$1i!lii++liiiil!{!ii!iiili_y=o.o n.o.ocm_ill!i_i!iilil@Iiill!l_l_lllliliI

1 2 3 4 5 6xlO6per ft

I I I I 6

8 12 16 20xlO per in

Unit Reynolds number. R

(f) M : 3.953.

Figure 22.- Continued.

. • ..... ..... < •• • - .... +/: ........ .... ;, ...... }::-=•< 7-

• ,_y /

_ ', L i

in.

2Ccm

40-

10

_" 20-

2

._ O- 0

-2oi® 1-10

> -40 --20

-20

I

-40

4"30 i

M 4.20

4.10

4.30

R=3.0OxlO61ft (9.84xlO61m) y=O. Oin.(O. Ocm)

, . 17 / 4.14

"---..,>;7 --

,-10 0 10 20 30 40 50

I I I I I I I I I

-20 0 20 40 60 80 100 120 140

Longitudinal distance, x

y=O. Oin. (0. Ocm)

m; ._ E

iliio,,

_d

_Hi!i!

i!ii

iiii

R_

0 20 40 60 in.

I 1 I I I

0 40 80 120 160

Longitudinal distance, x

.= E

iIIN

cm

×

in. cm

© 0 0

[] 26 66

48 122

R=3. OOxlO6/ft

(9.84xlO6/ml_

i:/.! i:)/. !!:.i =.:/i2.:. Y.i! iY.

i; iii ;:i_ }iiii:i=,l_;iilt,l_l,_;_ll_t;;l,4,*iIH

-20 0 20 in.

I / I

-40 0 40 cm

Lateral distance, y

60 in.

I

160 cm

L

51 • /•i

?i+ :

I.,J,.,.t,,.L.J,,J,,J,_,I_J_._L:..f....t,:_t,:._!ii_!i_iitiiiitii_llii

4.20

_ _y:O. Oin. (0. Ocm)4.10 :,F,,,_,-,F,.,_,,,F.,._,_.i+..._......... 'T'_r

0 1 2 3 4

I I

Unit Reynolds number, R

5 6x106Der ft

I I 616 20x10 per m

(g) M : 4.189.

Figure 22.- Continued.

k _i• _ ,'

67

• ' ? .

/i :_ _i

:i

• !

/

cm

40

N

o" 20_a

_-2o>

-40

in,

2G

1[

- (

-1(

R=3.0OxlO6/ft (9.84xlO6/m) y=O.Oin.(O. Ocm)

. , •

Airflow_

I I

I ['O 2'O 310 40 50 60 in.-2/20 -1'O 0

• I I I I I I I _ I J

-40 -20 0 20 40 60 80 tO0 I 0 140 160 cm

Longitudinal distance,x

M 4.40

4.30

4.50

4.30-20

-4'o

y=0.0in. (0.0cm)

0 20 40 60 in. -20 0 20 in.

I I I ,J I _ I

0 4'O 80 120 160 cm -40 40 cm

Longitudinal distance,x Lateral distance,y

...... I .... h_,.i I ........ t,,

.h ,, , " , " ";t ..... ,440 i" :, i L :

"_.I t 't+I; ...... i I ......... r ; _] t ¢_ it Sh _t_i ",,t !I:_ilii ,,4 ,ili]lil;;t ;I ;:!t'.:,,ti i/i___, '.;_;l;_ll::iilm : _ _ i : ..... . cm) .......... "

l!Jlil I':iI!iiil!i!_]!i::/!liii[Y=°°'n" (o.o)_,_iIII_',m_.ilt4.30 _'" 1 .... 2 3 4 5 6xtO6per ft

I I I I 64 8 12 16 20xlO per m

Unit Reynolds number, R

(h) M = 4. 423.

Figure 22.- Continued.

68

•.... :• • .-.,• ..... :. ; _• < ..... 9_, • -x -! ;:•:;:•-+;y:;-,:,•<_v _!v/<?i,i+!•i-_

'/

in. R=3.00x106/ft (9.84x106/m) y=O. Oin.(O. Ocm)20

cm 4.69 _40 - _ 4.6_ 4.68_....._ _" 4.65

= lO ,,,_

'£ 0 - 0 NI .64

-40 - irflo

-26 i I i I I I I0 -10 0 10 20 30 40 50 60 in.

I I I I I I I I I I, I

-40 -20 0 20 40 60 80 100 120 140 160 cm

Longitudinal distance,x

)

4.70

4.50

y=O. Oin. (0. Ocm)

0 20 40 60 in.

I I / I I I

-40 0 40 80 120 160 cm

Longitudinal distance,x

4.7 o l!illlllllillli__llilli!lii!lll_i! t!! I?!illi I _ IIIIIIIIIIIIIIIIIIII:UI_ II

IIINIIIIIII,I_IIIII,III,I,,IIIIIII_I II__IIII llillli!lllillllI,_llll

llilllIllIlllllllillllll£11111111_i_IIII II_itlttt!ttttU_titit!!ti!!t!tt'_m':"-t_m!tl_tt IllI)li)l_lil IIII y= 0 0 in.(0.0cm);l!lllII

4•5 0

0 I 2 3 4I i I

Unit Reynolds number, R

(i) M = 4.640.

Figure 22.- Concluded.

_I)IlllII

)Illlllll_

5 6x106per ftI

20xlO6per m

69

cm

40 -

in.2O

1(]N,_ 20"

"-- 0- 0:

_Z-2o-,_ -10

-20

-40 -

y=0.0in. (0.0cm)

_\'-J -o,'2\

°"8-11 0.5 I )

i i i i i I i10 20 30 40 50 60 70 80 in.

i i I I I I i I i2_0 40 60 80 100 120 140 160 t80 200 cm

Longitudinal distance, x

e v, deg 0

z=L 60in. (9.14cm)

ftt_P_!ii_ttt!_i_it!t41tiiiil

-I-20 0 20 in.

| t J-40 0 40 cmLateral distance,y

z=-3.60in. (-9.14cm)

-20 0 20 in.I i I

-40 0 40 cm

Lateral distance, y

OH,deg 0

OH,deg 0

y=0.0in. (0.0cm)

z=3.60in.(9.14cm)

z=-3.60in.(-9.14cm)

xin. cm

0 2.5 6.4

[] 50.0 127.0

A 73.5 186.7

I_I_ ....-20 020 40 60 80 in. 20 i_.

,40 80 i i i120 160 200 cm -40 cm

Longitudinal distance,x Lateral distance, y

(a) M = 1.57; R = 1.62 x 106 per ft (5.31 x l06 per m).

Figure 23.- Flow-angle calibration for test section i.

7O

!i!/<ii_

i'<

_i<

in. y=0.0in. (0.0cm)20

cm

40-

N 101-i"=" 20-- "

E

G 0-I

_-20 -i0 , X

-40 - O_ = i i i i i i-2 10 20 30 40 50 60 70

2_0 i i I i i i i I

0 40 60 80 100 120 140 160 180

Longitudinal distance, x

80 in.

I200 cm

z=3.60in. (9.14cm)

e V. deg 0

-20 0 20 in.I I I

-40 0 40 cm

Lateral distance, y

z=-3! 60in. (-0. ]4cm)

IAa_ NN

-20 0 20 in.I i I

-40 0 40 cm

Lateral distance, y

y=O. Oin. (0. Ocm)

o H, deg 0

I

ell,deg 0

-10 20 40 60 80 in.

I I40 8; 120 160 2u0 cm

Longitudinal distance, x

z=3.6Oin(9.14cm

z=-3_6Oir

(-9.14cm)

Tz;.

X

in.

© 2.5[] 50.0A 73.5

-20L__

-40

Lateral

cm

6.4127.0

186.7

20 i.n.

4}) cm

dJstance, y

(b) M = 1.77; R = 1.51 x 106 per ft (4.95 x 106 per m).

Figure 23.- Continued.

71

• • • • •< 7 • k ;/¸ < i 17 :<

) i¸ i :<

_i:Uii_il__

(

72

in y=0.0in. (0.0cm)20" o., deg

N -0

; _ , O-o

_-2o-]o , - _

I

/-2 10 20 30

I I 4t0 i I I I I t I0 20 60 80 100 120 140 160 180

Longitudinal distance,x

_0 in.

I200 cm

e v. deg

z=3.60in. (9.

::: :::

:u:::::; ;

-1-20 0

I f-40 0

14cm) z=-3.60in. (-9.

20 in. -20 0I I I

40 cm -40 0

Lateral distance, y

14cm)

i_itit

tt!it!!tMt

lliil20 in.

I40 crn

Lateral distance,y

OH,dOg 0

-1

eH,deg 0

-1

y=0.0in. (0.0cm)

IiIIiII _._,_iii

3Tq:F_:FF_;3}__tt t t 4tIt t_H4H,_!(_t!t !t_tt; ,.t!!!ttt!t!t! t

............................. ili

[H:H H'.::[II "._:I .......... l+-lll

_':!!!!!!! ! ! ,i:: iii _ii _ ii!t!!!!_£_!!i_,']! iii iiii_iii:i',iiil;ii_i iiiiiiiii

_!!!i!!!Ii!i!!! iill"llli"!!I!!!I!'_'il=_"llIII,II!I

III! l..l!Iil!! lil! IIii!iiiiii!!;!i:!!A!!i;iiii; !_I!!Ii

20 40 60I I I

180120

Longitudinal distance,x

z=3.60in.(9.14cm)

!I

_t

HI

It

ft

1_ z=-3.60in.

_ (-9.14em)N

;il;

80 in. -20I

200 cm

="I*N_A

!II l*_iii lillII !iiii IIIil

X

in. cm

O 2.5 6.4[] 50.0 127.0

73.5 186.7

T_ rfTf ff,II _rmt_m_tt_ttl_

! ! I !!!]!jt_lt_ _++H .. II:EIIH

illi!iii!iiii_lll_ fHil ttt tItttt!+!t

0 20 in.I-4o ; 41em

Lateral distance, y

(c) M = 1.97; R = 1.63 x 106 per ft (5.35 x 106 per m).

Figure 23.- Continued.

• ,i_i"

7 <

.i

L

y=O. Oin. (0. Ocm)

_,._-0. 5

,_ ,,,',-0.4,,,_, _-u._

-o.o410 510 OlO 7i0 _0 in.

i I I I I I

I00 120 140 160 180 200 cmLongitudinal distance, x

o v. deg

z=3.60in. (g. 14cm)

i i_! 'i_::ii! ill ii!i !'i.. N:

0 20 in.I I I

-40 0 40 cmLateral distance, y

z=-3.60in. (-9.14cm)

,. i]_ ii!i

"i ,'_m ,,,1,t_lli

mi!ii i_i

i_il+i'_ illi iii_ _'.h_-20 0 20 in.

I I I

-40 0 40 cmLateraldistance,y

ell, deg 0

OH, deg

_iil!!i

_ z=3.60in.

:i;H+_

+,_; C;i

!iii_ji z=-3.6oin._ (-9.14cm)

, _!

80 in.

21]0cm

Longitudinal distance, x

!!!_!tI_ filt_l

X

in. cm

0 2._ 6.4[] 50.0 127.0A 73.5 186.7

, r_iN!!ItH t{! im.: _,,]t....

I!'_it+_TilIti4 "....-20 0 20 in.

I

-40 ; 4_) cmLateral distance, y

(d) M = 2.17; R = 1.49 x 106 per ft (4.89 x i06 per m).

Figure 23.- Continued.

73

i i_ ','

74

in. y=O. Qin. (0. Ocm)

20 ( _2 °V'

2o-1

oT4

m

_Oo __--___,/,,',.>._

-40 _-2 0.3I0 20 3

i i I i I I II

0 /0 40 60 80 100 120 140 160 lBO

Longitudinal distance,x

80 in.

200 cm

z=3.60in. (9.14cm) z=-3.60in. (-9.14cm)

_:'_"__I:'___I I_ 'I_T_'_"_"___1_'_:!i:_ ':;:,ri_ ...... ]':T:lIIT,'._l_ i

' I i :' lit!i±

i]i' •)Ili i_lii!i

-"i)l_);_I{_U+I u.Uil_::_+l_UU,Lh_]l)U!l!.i,.,_li-020 O 20 in. -20 0 20 in.

I I I | I ]

-40 0 40 cm -40 0 40 cm

Lateral distance, y Lateral distance, y

o H, deg 0

-I

eH,deg 0

-I0 20

I

Longitudinal distance, x

y=O. Oin. (0. Ocm)

tH

_U

U_40 60

80 _ i120 160

tH!

++,J._

:[!

H-

iii

:HT

HH

Uii80 in.

2(_0 cm

z=3.60in. _

(9.14cm) _I)__I}_I}I

,- q ,')iL _ :H :liliUIU]ll_UT_,l_,IL+lIllX

in. cm

0 2.5 6.4[] 50.0 127.0/k 73.5 186.7

z=-3.60in.(-9.14cm)

-20 0 20 in,I

-40 (_ 4_) cm

Lateral distance, y

(e) M : 2.36; R = 1.46 x 106 per ft (4.79 x 106 per m).

Figure 23.- Continued.

T;?/ <

j • ,

, , <

: i • , ,

L

? •

<:i • ,

/

?

in.

20y=0.0in. (0.0cm)

cm

iiN 10

E

•- 0- 0

-2o -_, -10

>

-40 -

-2%

I

160

'0.6

!

70 80 in.

I I

180 200 cm

o v. deg 1

z=3.60in. (9.14cm)2

i!liii,liiil

_;:ii{

-20 0I I

-40 0

H;]

N:!H!.H

20 in.

40 cm

Lateral distance, y

z=-3.60in, (-9.14cm)

d±7 _ :i i' m?:_;!H

l,,_lhm,m<,L. ,itLit

-20 0 20 in.I I I

-40 0 40 cmLateral distance, y

OH,deg 0

-1

eH,deg 0

-1

iii ill!

_ z:3.60in.

_! !iii (9.14cm)

I:I!

iiii_

!!!iif! z=-3.6oin._,_,, 1-9.14cm)

:+!-!;;!

llil

60 80 in.

1;0 2;0 cm

X

in. cm

0 2._ 6.4[] 50.0 127.0

Z_ 73.5 186.7

!.....

)q ;i_

-20 0 20 in:I

-40 ; 4_) cm

Lateral distance, y

f) M = 2.54; R = 1.66 x 106 per ft (5.45 x 106 per m).

Figure 23.- Continued.

75

i iik_i

• • 5,, _ _/_/

in

cm 201

,-,40 -I0

2°/

"4:_ O- (]

_-20 --I0>

-40I_20

y=O. Oin. (0. Ocm)

"o,

- ,,0 01 _ -

/( °C1'o 2'0 7o _o _'o 6o ,o

I I I I I I I I

210 40 60 80 i00 120 140 160 180

Longitudinal distance, x

-0.6

-0.4

80 in.

I

200 cm

o V' deg

z=3.60in. (9.14cm)

l Iiimi_<I:t_l,,,,:-,.,,i__

oN-1

-20 0 20 in.• I I

-40 0 40 cm

Lateral distance, y

z=-3.60in. (-9.14cm)

-20 0 20 in.I I J

-40 0 40 cmLateral distance, y

i - - .

76

OH, deg

OH,deg 0

y=O. Oin. (0. Ocm)

0 20 40 60 80 in.

4_ 8_ ' ....120 160 200 cm

Longitudinal distance, x

z=3.60in.(9.14cm)

z=-3.6Oin.(-9.14cm)

cm

6.4127.0

186.7

+t i

i ll'

20 in,

(g) M = 2.87; R = 1.82 x 106 per ft (5.97 x i06 per m).

Figure 23.- Concluded.

_ :_ __ i__

< •

< •

in.

20cm

40-

,-, 10& 20-

t_

Lf_•- O- 0

to

-2o-,_ -I0

>

-40 -

I0

y=O. Oin. (0.Ocm)

I I I I I i I

i0 20 30 40 50 60 70

I I i I I I I I I

20 40 60 80 100 120 140 160 180

Longitudinal distance, x

80 in.

J200 cm

lZ=3' 60i n. (g.14cm) z=-3.60in. (-9.14cm)

V' deg 0

-20 0 20 in. -20 0 20 in.I I I I / I

-40 0 40 cm -40 0 40 cm

Lateral distance,y Lateral distance, y

• L

• '47 .

?

OH, deg 0

o H, deg 0

y=0.0in. (0.0cm)

20 40 60

I I I I

40 80 120 160

Longitudinal distance,x

80

2130 cm

z=3.6Ojn._

(9.14cm)

X

in. cm

© 1.5 3.8[] 51.0 129.5

A 73.5 186.7

z:-3.60in.

I'g.14cml

In. -20 0 20 in.I ! I

-40 0 40 cm

Lateral distance, y

(a) M = 2.294; R = 1.51 x l06 per ft (4.95 × 106 per m).

Figure 24.- Flow-angle calibration for test section 2.

77

in y=O. Oin. (0. Ocm)2(3

cm

ii,-, 10:Q)

(:= ,

•-_ O- 0

l.)

-2o -® -10>

-40 -

-20

[0

i

0.3uO. 2_

I I I

i0 20 30

I I I I

20 40 60 80

Airflow----,--

'I I I I

40 50 60 10 80 in.

I I I I L i

I00 120 140 160 180 200 cm

Longitudinal distance, x

z=3.60in. (9.14cm)

il_1_li__i_II

OV, deg O_I_i[

- l _tt_tfN-20 0 20 in.

I I I

-40 0 40 cm

Lateral distance, y

z=-3. OOin.(-9.14cm)

-20 0 20 in.I I I

-40 0 40 cm

Lateral distance, y

78

°H,deg 0

-I

ell,deg 0

y=O. Oin. (0.Ocm)

-I0 20 40 60 80 in.I I I I

6 40 80 120 160 200 cm

Longitudinal distance,x

z=3.60in.(9.14cm)

z=-3.6Oin.

(-g.14cm)

X

in, cm

© 1.5 3.8

[] 51.0 129.5

/X 73.5 186:7

-20 0 20 in.I / I

-40 0 40 cm

Lateral distance,y

(b) M : 2.489; R = 1.54 x 106 per ft (5.05 x 106 per m).

Figure 24.- Continued.

in. y=0.0in.(0.0cm)20

• <

cm

40-

10N

® 20-

•_ 0- 0

_J

:_-20 -i...-I0

-40 -

-20

° v'l__ \ _ \ _o 3Jdeg_ I _\- 0.3 _ {, _0"2 _

,(Airflow----- <L_._ ) t_..-_.

I I I I I I I

l0 20 30 40 50 60 70

I I ! I I I I I I

20 40 60 80 i00 120 140 160 180

Longitudinal distance, x

z=-3.00in. (-9.14cm)i I___l_

e V, deg 0

-1 ___H-20 0 20 in. -20 0 20 in.

I I ] I I I-40 0 40 cm -40 0 40 cm

Lateral distance, y Lateral distance, y

80 in.

i200 cm

ell,deg 0

-I

ell, deg 0

-1

y=O. Oin. (0. Ocm)

0 20 40 60 80 in.I I I I

40 80 120 160 200 cm

Longitudinal distance,x

z=3.60in.(9.14cm)

z=-3. O0in.(-9.14cm)

_!, ,_, ,_

X

in. cm

0 1.5 3.8

[] 51.0 129.5

A 73.5 186.7

-20 0 20 in.I / I

-40 0 40 cm

Lateral distance, y

(c) M = 2.750; R : 1.64 x 106 per ft (5.38 x 106 per m).

Figure 24.- Continued.

79

{i< ¸ <i!¸¸

x ,

+,

8O

cm

40-

10N

20-c

•_- o- 0

:_-20 -L..-10

>

-40 -

i -2_

in.

2Oy=0.0in. (0.0cm) e V'

/ / •

I I I I I I I

10 20 30 40 50 60 : 70 80 in.

I I I I I I I I I I

20 40 60 80 i00 120 140 160 180 200 cm

Longitudinal distance,x

z=3.60in. (9.14cm) z=-3.60in. (-9.14cm)

deg 0 _mtt_rrm_a._,.,,_v'

-20 o 20 in. -20 o 20 in.I I I I i I

-40 0 40 cm -40 0 40 cmLateral distance,y Lateral distance,y

ell, deg 0

-1

ell, deg 0

y=0.0in. (0.0cm)

z=3.60i n.(9.14cm)

z=-3.60in.(-9.14cm)

X

in. cm

0 i.5 3.8[]51.0 129.5A73.5 186.7

-20 0I I

20 40 60 80 in. 20 in_

, , , , _40 80 120 160 2 0 cm -40 40 cm

Longitudinal distance,x Lateral distance,y

(d) M = 3.218; R = 1.96 x 106 per ft (6.43 x 106 per m).

Figure 24.- Continued.

/> _i_ <

-/,J

in

2Gcm

40-

N lOIG 20-

t'o

._ O- 0

m

_-zo -lOl

-40 -

-2o(

y=O. Oin. (0. Ocm)

I I I I I I I

10 20 30 40 50 60 70

I I I I i I I I I

20 40 160 18060 80 100 120 140

Longitudinal distance,x

80 in.

I

200 cm

z=3.60in. (g.14cm) z=-3.60in. (-0.14cm)

e V, deg O_

- 1 __-20 0 20 in. -20 0 20 in.

I i I I I I-40 0 40 cm -40 0 40 cm

Lateral distance, y Lateral distance,y

e H, deg 0

y=O. Oin. (0. Ocm)

z=3.60in.(9.14cm)

z=-3.60in.eH, deg 0 (-9.14cm)

-i0 20 40 60 80 in.

I

40

X

in. cm

O 1.5 3.8

[] 51.0 129.5z_ 73.5 186.7

! i

- 20 0 20 in.I I I / I I I

80 120 160 200 cm -40 0 40 cm

Longitudinal distance, x Lateral distance,y

(e) M = 3.703; R = 2.25 x 106 per ft (7.38 x 106 per m).

Figure 24.- Continued.

81

7,,' ' '

. ,_ i'_

Y: •i_

il: i:;_<_

• < •

k/ 82

in.

20

y=0.0in. (0.0cm)

cm

40-

10N

o" 20-ca

•_ O- 0

ca

E -2o-o_ -10

>

-40 -

i -20! I l I l l I I

10 20 30 40 50 60 70 80 in.

I I I I l I I I I I

20 40 60 80 100 120 140 160 180 200 cm

Longitudinal distance,x

o V, deg

2 z=3.60in. (9.14cm) z=-3.60in. (-9.14cm)

-20 0 20 in. -20 0 20 in.I I I I I I

-40 0 40 cm -40 0 40 cm

Lateral distance, y Lateral distance, y

ell, deg 0

OH, deg 0

y=0.0in. (0.0cm)

z=3.60in.(9.14cm)

X

in. cm

© 1.5 3.8

[] 51.0 129.5A 73.5 186.7

z = - 3.60 i n. _,_itN__

(-9.14cm) _

20 40 60 80 in. -20 0 20 in:, • , , , , . ,40 80 120 160 200 cm -40 0 40 cm

Longitudinal distance x Lateral distance,y

(f) M = 4.185; R : 2.61 x 106 per ft (8.56 x 106 per m).

Figure 24.- Continued.

in. y=0.0in. (0.0cm)2O

• ) i

/! _i)_i:_

:/i•i !(.

<

• (<

cm

40-

10N

20-

E

•- O- 0

_Z-2o-,_ -10-

-40 - 1

-20i

I

0.3 0

I I I ! I I _0. 3

i0 20 30 40 50 60 70

I I I I I I I I I

20 40 60 80 i00 120 140 160 180

Longitudinal distance,x

V' deg

2z=3.60in. (g. 14cm) z=-3, 60in, (-9.14cm)

-20 0 20 in. -20 0 20 in.I I I I I I

-40 0 40 cm -40 0 40 cm

Lateral distance,y Lateral distance, y

80 in.

t200 cm

• /,[ ,

' [, •• ;

OH, deg 0

-1

OH, deg 0

-i

y=O. Oin. (0.0cm)

z=3.60in.(9.14cm)

z=-3.60in.

(-9.14cm)

I__

X

in. cm

0 _.5 3.8[] 51.0 129.5

z_ 73.5 186.7

0 20 40 60 80 in. -20 0 20 in.I I I I I I40 8; 120 160 -40 0 40 cm

Longitudinal distance,x Lateral distance,y

(g) M = 4.423; R = 2.86 x 106 per ft

Figure 24.- Continued.

(9.38 × 106 per m).

83

/

, <-< • .

••'c•i, /:¸"5

% _::/

.....if-:<

,i_i_I .!/_•

• _i' )i

• • ,:i:_.._

• / :i •' •

,, _ •i:;

84

n.

20cm

.= O- 0

ca

L=-20 -o_ -10>

-40 -

[-2(]

eH,deg 0

y=O. Oin. (0. Ocm)

I I

I0 20

I D

0 20 40

_. 2'"----

| I I

30 40 50I I I I I

60 80 I00 120 140

Longitudinal distance,x

2 z=3.60in. (9.14cm)

e v, deg 1

-20 0 20 in.I I I

-40 0 40 cmLateral distance, y

OH,deg 0

I I

60 70

I I

160 180

80 in.

200 cm

=-3.60in. (-9.14cm)

-20 0 20 in.I I I

-40 0 40 cmLateral distance,y

y=O. Oin. (0. Ocm)

0 20 40 60l l l I

40 80 120 160

Longitudinal distance,x

(h) M = 4.640; R = 2.99 x 106 per ft (9.81 x 106 per m).

Figure 24.- Concluded.

C i< t

<

<

m

om

EO

L.

Om

cm

14

12-

I0-

8 _

6-

4-

2-

0 e

_

4-

3-

2-

I-

Testo I

[] 2

sectionT

I i -! }

0 .2 .4 .6 .8 1.0

u/uoo

Figure 25.- Typical boundary-layer velocity profiles measured on sidewalls

of tunnel test section. M = 2.86; R : 3 x 106 per ft (9.84 per m).

85

E_" ,,_. '_" oO "¢t . t:::: OO

,,O

e,w.'....._ X

0

o _ <_'O'_'_

I I I

I L I

Z

J

c_

r...4

,,D

n

u q,

• I I

I I I I I F

Lt_

N

J l

O

O

4_

O_

O

rd

rd

O

(1)

_ mc6

I ©_:_._

@

c6

I

C',I

1.4

-,--I

_D

CO

i. i illIIi ii iii!ii:

:; <:: _iii¸

/

L <i _

Pst/Pt

Pst/Pt

Pst/Pt

• 292,

.288

•28_440

•1o8_I

.104 _,_

100f_

09_64_

.038,,,,,,,,,

lliililll

_$iiiii•036_

" _--40I

-40

llft _ llm 060 2.00xl0 _ 6.56xi[] 4.00 13.12

_:, _...........__M=I. 47_

-20 0 20 40 60

i_!_ _ - '

'20 0 20 40 6O

1.46

M

1.47

2.12

2.14M

2.16

.................... _', ' 144+FI"_....... ',',,,._D,',', ',I ', [].[ _L-H-144_H+H4+H H444

-20 0 20 " 40

I I I I

-30 -20 -10 0

_4_r_r_rr_gN 2.80

___t 2.82H+I+t+F__I

2.84

60 OFI I

10 20 °C

M

Tdp, atm

Figure

(a) Test section i.

27.- Effect of dew point on probe static pressure.

87

: : :%: !: ::

7

, / .,

• i!_:/,:', } "

/

ii77<i_L_7!;i

• L , :

88

Pst/Pt

•088

.084

.080

ttt

:i_

_+

• l

ltTt_144

F_T

_+M H

.024 H__-,+÷l¢I:t

tXt

FN

/ Pt __Pst 022 t_÷_ _

I_H:trot!"t 111

020 .....• SHJ-40

•0032 _iT-_T44_

424-4-+:

Pst /Pt" 0028 _

_+_

• 0024 _-40

I-40

t_H

tttt

Htt

1i+q

i_L]

] l-t!

il;t4_

44H

a_-H+

-20

5_ItrLj tj

I111

H!t

F4t

F_<cfi-}4

+_t111#444

lfH

-20;fii

.1444

IIII

Iiii444_

S11-r

-20

O

O

IItI:tt44ttth , tSHfrttftttl!

0

_444441 Ii _#_4q14#4.L_45_H:+t H H_ b_

1 it tfttPVN tl t-t

t;:l#_# _H-I iF

_t_!T!!T!l-

J_+iH_fiii iJL

_14444_ _L44T_#

44_=II i 1144t_

tel t! t!t_tr!l m,

-tltft_,l fluff t t

N#!4 gJ,_4+-i4

0_mt&rrrtm

Ll44_$_44N,qTttt_tN_i ] i ] i i i i _ i i _

_mH_+44444+t-_ +H_ ++_i iJ i4 i$ii _ H

_F_N_m

llllliiii[iiii44

0

R

lift062.00xl 6.56x

4.00 13.12

tl!Ffii!_t4iilt!H!ti#ti! t!iHf _:i :J Utt !i q;_tfl_ml4,:!thldm4cih;

r +.... "Ni

f_NithrP_it_t_it]itil 7t7#!7I

20

7_fi}tI}1_HNiql

20i i4:i_@fl4CTiCJtf_[_

{_,i_lliiiiiiih%If_@FFFFfI+H4

]jjjjlii!j!H!hm! t_1 H

20

I I I I

l/m6

10

!! ;']'',,!!1,t!_:_ i, ili illlli!t .....!lttfttfit rl"t 11

....... iii$ " I l|I:NITHI!!i!_ :m_!!] !rtllltlltl!l ,,! !!!t

-" _'_'iij _H /i Millrl:i:HI,ti Ft tt_}lI_,_ '

l!!!!f!f71i7 l_t]7;t_t_2.28

b,_TtiIJd7 N_H:tttf_I2.3 o

_H4t__=2.3040 60

:tW_14

fffff_f tit IT_T$4 _- ÷_

u_ 3.12F i 4#4;_!ti[[7 u i .... tt-_ 3.14

_i_:3.22 _ 3.207_4 imHm Hi _FFH ;I-14

40 60i_T _47_

_mmmb44.60i i i ii Ht_lfft

_ i_ 4.68

F ]_tt_l'P_t_

I_ ;4444444_49444F#14 ,L,LIVIq

_[_ M=4.65 N

40 60

1__ ll0

o F

-30 -20 -I0 -0 20 °C

Tdp, atm

(b) Test section 2.

Figure 27.- Concluded.

I:LII L_://

</

." !.;

_,: i i_

/ ill •

20x102

M Test Veloc itysection ftlsec mlsec

© I.60 1 64 18.9[] 2.00 1 47 13.9

2.86 1 17 5.0

4, 2.40 2 44 13.0

k, 3.00 2 26 7.7,,, 3.60 2 16 4.7t 4.00 2 11 3.3

iii_i

• ii

0 II 2

I

3

1 I4 8 12

Unit Reynolds number, R

I I lf

4 5 6xlO°p er ft

I .I 1

16 20xlO6per m

Figure 28.- Measurements of settling-chamber velocities

and fluctuation velocities.

89

< •• • <!i!• •_•••....• _ :;il)i:ilia!7!i .•

<oo

_dr _

_W

Figure 29.- Photograph of i0 ° transition cone from reference 9.

L-79-7924

o--

_ I I I I .... I0

X _ X,o0 _ 00

X

1 I

OJ

c-O

.m

!--

OJ

X

X0

--00

E

_L

0

X

- ce't C3:C

_o0 _• _

-_ ._

¢-

e_

e"

_4

,-Q

o

0

O©0

,--4

m 0

_q

-,--I _

E

©

©(1)

qqq_

I

0

U_

• f•

;]

E

c-

oc-

c-O

Om

c-

8 xlO 6Conditions:

Adiabatic wallZero incidenceR=2.0x10 6 to 3.0x10 6 Per ft

(6.56x106 to 9.84x106per m)

F, Tunnel

I i NASA Langley 8TPTGROUP I A NASA Langley 16TDT• NSR DC7x10T

o AEDC 16T[] AEDC 4T

GROUP 2o ONERA, S-2 NIA

o r_ AEDC 16S[] (_ RAE Bedford 8 x 8 SWT

GROUP 3 1 q' NASA Langley 4 SPTNASA Langley UPWT (TS #1)

{_ NASA Langley UPWT (TS #2)GROUP 4 RAE Bedford 3 x 4 HSST

I I I I I1 2 3 4 .5

Free-stream Mach number. NI

Figure 31.- General trends of the variation of cone transition Reynolds number

with Mach number. Data are from reference 9. Wind-tunnel designations not

previously defined: NSR DC (Naval Ship Research and Development Center);

ONERA, S-2 MA (supersonic tunnel no. 2 at National Bureau of Aerospace

Research at Modane-Avrieux, France); RAE Bedford (Royal Aircraft

Establishment at Bedford, England).

92

0"_ 0

lel.uauJ1jadx3

009

"uJ

000[

x_°

3c-

3

o

I

¢D

_0

o

::3

C,7

N

in.

_' cm 20(J

¢-._40I"_ 20_10

_, 0- 0°__ -20 -_ -10 -

> -40 --20_1

-30

t=Osec t=5

i i i P i i i i i®[ = i i I t

0 30 -30 0 30 -30

I I I I I I 1 I I I I I I ,1 I I

-15 0 15 -15 0 15 -15

Tt-Tt, CL

t=15

I QI I

0I

30 -30

t=30

I I I I I

0 15

i ] lq J i I

0 30°R

I I t I I I I

-15 0 15 K

K

380 -

360

Tt, CL

340 -

320 -

t=Osec

°RI

750-

700

650

t=5._ t=15 __

..... .......

@

.)

I I I ! J

6000 I0 20 30 40 50

t, sec

/t=30 I_

(a) M = 2.49.

Figure 33.- Total-temperature variation across test section 2.

R : 3 x 106 per ft (9.84 x 106 per m).

94

L,

¢ .

N in.

_" cm 20,-- 40

.__ 20_

-20- t> -40- -20

-30

K

380 I

360 I

340 I

320L

t=0sec t=5 t=15 t=30

i i 9_ i L0

C)

°8.J

C)

¢t t _t t t i

30 -30 0t I t®l I l I

30 -30 0i i ¢)t I i I

30 -30 0 30°R

I, I I I I I,I

-15 0 15I i I I I j I I I I I I I l

-15 0 15 -15 0 15I I i I i I I

-15 0 15 K

t=0sec

750-

700 -

65O

6000

Tt-Tt, CL

[/ t=15 t=30

G

0

Q

Q

I I I I II0 20 30 40 50

t, sec

(b) M = 3.51.

Figure 33.- Continued.

95

• ..... : •. :r.,<<u/¸

}i/!:: :::

• i_ i_ _

L _

<

cmN

u 40-t-

-,-. 20_

0-

-20 -

,_ -40 -

Tt, CL

96

in ¸ ,

20

10

(0

-10

-20-30

360 -

340

320

t=Osec t=5 t=15 t=30

i iQI _ i0

i 9, i t i i

30 -30 0

I /Q I I t i

30 -30 0 30 -30

I I I I I I I

-15 0 15I I I I I I I

-15 0 15

L I_ i i i i

0 30 OR

i I I I ] I I L ] I

-15 0 15 -15

Tt-Tt, CL

I I I I

0 15 'K

t=Os,ec

750

700

650

60(

J jjt

(D(D

I I I I I

10 20 30 40 50

t, sec

(c) M = 4.44.

Figure 33.- Concluded.

i,_'ii_ii!i_i!i_i!_iii _ "

/i,/i_ __ii/

ii _.

• 7

lift

12x

l/m

36x106

32

28

24

e_

L.

E 20

u,1

o

E

16

¢--

-"'1

12

Conditions of 20 min.operating limitrequiring 30 min. motor shutdownfor cooling

.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6M

(a) Test section i.

Figure 34.- Operating characteristics of the Langley

Unitary Plan Wind Tunnel.

97

/x_ .i I •

L

i_I__"

> : }i >'i/

98

I/ft

12xiO 6

11m

36xi061 _If

i0

32 -

1.6

!it ;_:iJ !!

IL i_!:rt

:u

ii i_i- Ht

!ii

:i! I+

? i):ii

!_!: i!)(_ tH

(I

, 121

!l( '

:l

H

ii; ", =:i!itt

H tliU "+

:i!Iii

!?:, -,

_H

t'i ill

if''t i;'

H, if:

ii} '4:il )!

!_i !it11 :_!

:U

]i ii_ Hn

2.0

ill _iil! _ii_iii!_it_ Ilit Conditions of 20 rain.operating limit

requiring 30 rain. motor shutdown

(b) Test section 2.

Figure 34.- Concluded.

<

'i _ L _ •

• <i _:

/J'

AT t

K

8O

50-

40-i

3oL

oR

160

140

120

I00

8O

6O

4O I I I I I I I I

16-

i: _ ;v

/

' < _= !i _. '

t, sec

12-

8-

4-

02.0

I I I I I I I J

2.4 2.8 5.2 5.6 4.0 4.4 4.8 5.2

M

Figure 35.- Heat-pulse characteristics and time to stabilize for

heat-transfer tests in test section 2 of the Langley Unitary

Plan Wind Tunnel.

99

• , • •• • _ , 7; H •

L ¸ •

(i ! ¸

L

o

i00

8O

7O

6O

5O

4O

3O

2O

I0

Test section

.... - 12

R=

_-4. OOxlO6/ft

"\_ ._/--_ 2. OOx106/ft

T =150 ° F(339K)t Tt=175° F(353 K)

I I I I I I2 3 4

M

Figure 36.- Total operating power requirements for the

Langley Unitary Plan Wind Tunnel.

I

5

> •

'_ i%/

iilx j

1. Report No. J 2. Government Accession No.

INASA TP-1905

4. Title and Subtitle

DESCRIPTION AND CALIBRATION OF THE LANGLEY

UNITARY PLAN WIND TUNNEL

7 Author(s)

Charlie M. Jackson, Jr., William A. Corlett,

and William J. Monta

9.

12

PerformingOrganizationNameand Addre_

NASA Langley Research Center

Hampton, VA 23665

S_nsoring Agency Nameand Address

National Aeronautics and Space Administration

Washington, DC 20546

3. Recipient's Catalog No.

5. Report Date

November 1981

6. Pedorming Or_nization Code

505-42-23-02

8. PerformingOr_n,zation ReportNo.

L-14024

10. Work Unit No.

'11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Paper

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The two test sections of the Langley Unitary Plan Wind Tunnel have been calibrated

over the operating Mach number range from 1.47 to 4.63. The results of the cali-

bration are presented along with a description of the facility and its operational

capability. The calibrations include Mach number and flow-angularity distribu-

tions in both test sections at selected Mach numbers and tunnel stagnation pres-

sures. Calibration data are also presented on turbulence, test-section boundary-

layer characteristics, moisture effects, blockage, and stagnation-temperature

distributions. The faci!ity is described in detail including dimensions and

capacities where appropriate, and examples of special test capabilities are pre-

sented. The operating parameters are fully defined and the power-consumption

characteristics are discussed.

17. Key Words(Sugg_ted by Author(s))

Wind-tunnel description

Wind-tunnel calibration

Supersonic wind tunnel

19. S_urity Clasif.(ofthisreport)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

20. S_urityClassif.(ofthis pege)

Unclassified

Subject Category 02

21. No. of Pages 22. Dice

103 A06

For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1981