32
Design and Performance of the 6 GS/s Waveform Digitizing Chip DRS4 Stefan Ritt Paul Scherrer Institute, Switzerland at 40 mW per channel

Design and Performance of the 6 GS/s Waveform Digitizing Chip DRS4

  • Upload
    elden

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

Design and Performance of the 6 GS/s Waveform Digitizing Chip DRS4. at 40 mW per channel. Stefan Ritt Paul Scherrer Institute, Switzerland. Switched Capacitor Array. Cons No continuous acquisition No precise timing External (commercial) ADC needed Pros - PowerPoint PPT Presentation

Citation preview

Design and Performance of the 6 GS/s Waveform Digitizing Chip

DRS4

Stefan RittPaul Scherrer Institute, Switzerland

at 40 mW per channel

Oct. 21st, 2008 IEEE/NSS Dresden 2

Switched Capacitor Array

•Cons

• No continuous acquisition

• No precise timing

• External (commercial) ADC needed

•Pros

• High speed (6 GHz) high resolution (11.5 bit resol.)

• High channel density (9 channels on 5x5 mm2)

• Low power (10-40 mW / channel)

• Low cost (~ 10$ / channel)

t t t t t

Oct. 21st, 2008 IEEE/NSS Dresden 3

DRS4

• Fabricated in 0.25 m 1P5M MMC process(UMC), 5 x 5 mm2, radiation hard

• 8+1 ch. each 1024 cells

• Differential inputs,differential outputs

• Sampling speed 500 MHz … 6 GHz,PLL stabilized

• Readout speed 30 MHz, multiplexedor in parallel

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

STOP SHIFT REGISTER

READ SHIFT REGISTER

WSROUT

CONFIG REGISTER

RSRLOAD

DENABLE

WSRIN

DWRITE

DSPEED PLLOUT

DOMINO WAVE CIRCUIT

PLL

AGND

DGND

AVDD

DVDD

DTAPREFCLKPLLLCK A0 A1 A2 A3

EN

AB

LE

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8/MUXOUT

BIASO-OFS

ROFSSROUT

RESETSRCLK

SRIN

F U N C T IO N A L B L O C K D IA G R A M

MUX

WR

ITE

SH

IFT

RE

GIS

TE

R

WR

ITE

CO

NF

IG R

EG

IST

ER

CHANNEL 0

CHANNEL 1

CHANNEL 2

CHANNEL 3

CHANNEL 4

CHANNEL 5

CHANNEL 6

CHANNEL 7

CHANNEL 8

MUX

LVDS

Oct. 21st, 2008 IEEE/NSS Dresden 4

ROI readout mode

readout shift register

Triggerstop

normal trigger stop after latency

Delay

delayed trigger stop

Patent pending!

33 MHz

e.g. 100 samples @ 33 MHz 3 us dead time

(2.5 ns / sample @ 12 channels)

e.g. 100 samples @ 33 MHz 3 us dead time

(2.5 ns / sample @ 12 channels)

Oct. 21st, 2008 IEEE/NSS Dresden 5

Daisy-chaining of channels

Channel 0 – 1024 cells

Channel 1 – 1024 cells

Channel 2 – 1024 cells

Channel 3 – 1024 cells

Channel 4 – 1024 cells

Channel 5 – 1024 cells

Channel 6 – 1024 cells

Channel 7 – 1024 cells

Domino Wave Generation

Deeper Sampling Depth can be reached by multiplexing channels

Deeper Sampling Depth can be reached by multiplexing channels

Oct. 21st, 2008 IEEE/NSS Dresden 6

Daisy-chaining of channels

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Domino Wave

1

clock

0

1

0

1

0

1

0

enableinput

enableinput

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Domino Wave

1

clock

0

1

0

1

0

1

0

enableinput

enableinput

Oct. 21st, 2008 IEEE/NSS Dresden 7

Single Channel

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Domino Wave

0

clock

0

0

0

0

0

0

0

1 Channel 0

Channel 11

Channel 21

Channel 31

Channel 41

Channel 51

Channel 61

Channel 71

DRS4

Connect channels externally to keep high bandwidth limited by bond wires (PCB or analog switches)

Connect channels externally to keep high bandwidth limited by bond wires (PCB or analog switches)

DRS4 can be partitioned in: 8x1024, 4x2048, 2x4096, 1x8192 cells

DRS4 can be partitioned in: 8x1024, 4x2048, 2x4096, 1x8192 cells

Oct. 21st, 2008 IEEE/NSS Dresden 8

Chip Daisy Chaining

DRS4

SROUT

SRIN

DRS4

SROUT

SRIN

DRS4

SROUT

SRIN

Virtually unlimitedsampling depth

Oct. 21st, 2008 IEEE/NSS Dresden 9

Simultaneous Write/Read

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

0

FPGA

0

0

0

0

0

0

0

1 Channel 0

Channel 11

Channel 0 readout

8-foldanalog multi-event

buffer

Channel 21

Channel 10

Expected crosstalk ~few mVExpected crosstalk ~few mV

Oct. 21st, 2008 IEEE/NSS Dresden 10

Trigger an DAQ on same board

• Using a multiplexer in DRS3, input signals can simultaneously digitized at 65 MHz and sampled in the DRS

• FPGA can make local trigger(or global one) and stop DRSupon a trigger

• DRS readout (6 GHz samples)though same 8-channel FADCs

an

alo

g fro

nt e

nd

DRSFADC12 bit

65 MHzM

UX FPGA

trigger

LVDS

SRAM

DRS4

glo

bal tr

igger

bu

s

“Free” local trigger capability without additional hardware

“Free” local trigger capability without additional hardware

DRS4

Test Results

Oct. 21st, 2008 IEEE/NSS Dresden 12

On-chip PLL

ReferenceClock

fclk = fsamp / 2048

Vspeed

• PLL jitter « 100 ps (Spartan-3 jitter 150 ps)• “Dead Band” free• Does not lock on higher harmonics

• PLL jitter « 100 ps (Spartan-3 jitter 150 ps)• “Dead Band” free• Does not lock on higher harmonics

loop

filt

er

DRS4

Simulation

Measurement

Phase detector

up

down

Oct. 21st, 2008 IEEE/NSS Dresden 13

Bandwidth

Bandwidth is determined by bond wire and internalbus resistance/capacitance:

850 MHz (QFP), 950 MHz (QFN), ??? (flip-chip)

850 MHz (-3dB)

QFP package finalbus width

SimulationMeasurement

Oct. 21st, 2008 IEEE/NSS Dresden 14

Timing jitter

t1 t2 t3 t4 t5

• Inverter chain has transistor variations ti between samples differ “Fixed pattern aperture jitter”

• “Differential temporal nonlinearity” TDi= ti – tnominal

• “Integral temporal nonlinearity”TIi = ti – itnominal

• “Random aperture jitter” = variation of ti between measurements

• Inverter chain has transistor variations ti between samples differ “Fixed pattern aperture jitter”

• “Differential temporal nonlinearity” TDi= ti – tnominal

• “Integral temporal nonlinearity”TIi = ti – itnominal

• “Random aperture jitter” = variation of ti between measurements

TD1 TI5

Oct. 21st, 2008 IEEE/NSS Dresden 15

Fixed jitter calibration

• Fixed jitter is constant over time, can be measured and corrected for

• Several methods are commonly used

• Most use sine wave with random phase and correct for TDi on a statistical basis

• Fixed jitter is constant over time, can be measured and corrected for

• Several methods are commonly used

• Most use sine wave with random phase and correct for TDi on a statistical basis

Oct. 21st, 2008 IEEE/NSS Dresden 16

Fixed Pattern Jitter Results

• TDi typically ~50 ps RMS @ 5 GHz

• TIi goes up to ~600 ps

• Inter-channel variation on same chip is very small since all channels are driven by the same domino wave

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

STOP SHIFT REGISTER

READ SHIFT REGISTER

WSROUT

CONFIG REGISTER

RSRLOAD

DENABLE

WSRIN

DWRITE

DSPEED PLLOUT

DOMINO WAVE CIRCUIT

PLL

AGND

DGND

AVDD

DVDD

DTAPREFCLKPLLLCK A0 A1 A2 A3

EN

AB

LE

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8/MUXOUT

BIASO-OFS

ROFSSROUT

RESETSRCLK

SRIN

F U N C T IO N A L B L O C K D IA G R A M

MUX

WR

ITE

SH

IFT

RE

GIS

TE

R

WR

ITE

CO

NF

IG R

EG

IST

ER

CHANNEL 0

CHANNEL 1

CHANNEL 2

CHANNEL 3

CHANNEL 4

CHANNEL 5

CHANNEL 6

CHANNEL 7

CHANNEL 8

MUX

LVDS

Oct. 21st, 2008 IEEE/NSS Dresden 17

Random Jitter Results

• Sine curve frequency fitted for each measurement (PLL jitter compensation)

• Encouraging result for DRS3:2.7 ps RMS (best channel)3.9 ps RMS (worst channel)

• Differential measurement t1 – t2 adds a 2, needs to be verified by measurement

• Measurement of n points on a rising edge of a signal improves by n

• Sine curve frequency fitted for each measurement (PLL jitter compensation)

• Encouraging result for DRS3:2.7 ps RMS (best channel)3.9 ps RMS (worst channel)

• Differential measurement t1 – t2 adds a 2, needs to be verified by measurement

• Measurement of n points on a rising edge of a signal improves by n

Measurements for DRS4 currently going on, expected to be slightly better

Measurements for DRS4 currently going on, expected to be slightly better

Oct. 21st, 2008 IEEE/NSS Dresden 18

Experiments using DRS chip

MAGIC-II 1200 channels DRS2MAGIC-II 1200 channels DRS2MEG 3000 channels DRS2MEG 3000 channels DRS2

BPM for XFEL@PSI1000 channels DRS4 (planned)

MACE (India) 400 channels DRS4 (planned)MACE (India) 400 channels DRS4 (planned)

Oct. 21st, 2008 IEEE/NSS Dresden 19

Availability

• DRS4 will become available in larger quantities in November 2008

• Chip can be obtained from PSI on a “non-profit” basis

• Delivery “as-is”

• Reference design (schematics) from PSI

• Costs ~ 10-15$/channel

• VME boards from industry in 2009

64-channel 65 MHz/12bit digitizer

“boosted” by DRS4 chip to 6 GHz

64-channel 65 MHz/12bit digitizer

“boosted” by DRS4 chip to 6 GHz

Input

USB 2.0

ext. Trigger

DRS4

Oct. 21st, 2008 IEEE/NSS Dresden 20

Conclusions

• Fast waveform digitizing with SCA chips will have a big impact on experiments in the next future

• DRS4 chip solves all known issues of DRS3 and adds more flexibility

• DRS4 has 6 GHz, 1024 sampling cells per channel, 9 channels per chip, 11.5 bit vertical resolution, 3 ps timing resolution

• ~4000 DRS channels already used in several experiments, hope that other experiments can benefit from this technology

http://midas.psi.ch/drs

Oct. 21st, 2008 IEEE/NSS Dresden 22

A bit of history…

DRS2DRS2

DRS3DRS3

DRS1DRS1MEG Experiment searchingfor e down to 10-13

MEG Experiment searchingfor e down to 10-13

DRS4DRS42008

2006

2004

2001

3000 Channels withGHz sampling

3000 Channels withGHz sampling

Oct. 21st, 2008 IEEE/NSS Dresden 23

DRS4 packaging

6 4 -L ea d L Q F P

6 4 -L ea d Q F N

17

64

18

63

19

62

20

61

21

60

22

59

23

58

24

57

25

56

26

55

27

54

28

53

29

52

30

51

31

50

32

49

3316

3415

3514

3613

3712

3811

3910

409

418

427

436

445

454

463

472

481

DRS3TOP VIEW

(N ot to Scale)

PIN 1

DR S3TO P VIEW

(Not to Scale)

PIN 1

P IN C O N F IG U R AT IO N

A 0

A 0

IN8+

IN 8+

A 1

A 1

IN8-

IN 8-A 2

A 2

IN7+

IN 7+A 3A 3

IN7-IN 7-OU T11 OU T 11IN6+IN 6+

OU T10 OU T 1 0IN6- IN 6-

OU T9OU T 9

IN5+IN 5+

OU T8OU T 8

IN5-IN 5-

OU T7

OU T 7

IN4+

IN 4+

OU T6

OU T 6

IN4-

IN 4-

OU T5

OU T 5

IN3+

IN 3+

OU T4

OU T 4

IN3-

IN 3-

OU T3

OU T 3

IN2+

IN 2+

OU T2

OU T 2

IN2-

IN 2-

OU T1

OU T 1

IN1+

IN 1+

IN1-

IN 1-

DG

ND

DV

DD

DTA

P

DS

PE

ED

DW

RIT

E

DE

NA

BL

E

DM

OD

E

RO

FS

IN11

+

IN11

-

IN1

0+

IN1

0-

IN9

+

IN9

-

DV

DD

DG

ND

DG

ND

DV

DD

DTA

PD

SP

EE

DD

WR

ITE

DE

NA

BL

ED

MO

DE

RO

FS

IN11

+IN

11-

IN10

+IN

10-

IN9+

IN9-

DV

DD

DG

ND

M UXOUT/OU T0

MU X O UT/OU T 0

AG

ND

AG

ND

AV

DD

AV

DD

BIA

S

BIA

S

SR

IN

SR

IN

RS

RL

OA

D

RS

RL

OA

D

RS

RC

LK

RS

RC

LK

RS

RO

UT

RS

RO

UT

RS

RR

ST

RS

RR

ST

SS

RL

OA

D

SS

RLO

AD

SS

RO

UT

SS

RO

UT

WS

RC

LK

WS

RC

LK

WS

RO

UT

WS

RO

UT

IN0-

IN0-

IN0+

IN0+

AV

DD

AV

DD

AG

ND

AG

ND

DRS3 DRS4

9 mm

18 mm

4.2 mm

DRS4flip-chip PIN 1

O U T 0 +5 7A G N DO U T 0 -5 6A G N D 2

1

O U T 1 -5 5IN 0+ 3O U T 1 +D G N D

D G N D

D G N D

5 4IN 0- 4

O U T 2 +5 3IN 1+ 5

O U T 2 -5 2IN 1- 6

O U T 3 -5 1IN 2+ 7

IN 2- 8

O U T 4 +4 9IN 3+ 9

O U T 4 -4 8IN 3- 1 0

O U T 5 -4 7IN 4+ 11

O U T 5 +4 6IN 4- 1 2

O U T 6 +

4 5IN 5+ 1 3

O U T 6 -

4 4IN 5- 1 4

O U T 7 -

4 3IN 6+ 1 5IN 6-IN 7+IN 7-D G N D

1 61 71 81 9

AG

ND

AG

ND

AV

DD

A2

A3

BIA

S

DT

AP

RE

FC

LK

+R

EF

CL

K-

PL

LLC

K

PL

LOU

TD

SP

EE

D

DW

RIT

ED

EN

AB

LE

WS

RIN

AV

DD

AV

DD

AG

ND

AG

ND

76

75

63

64

65

66

67

68

69

70

71

72

73

74

62

61

60

59

58

O U T 7 +

4 24 14 03 9

OU

T8

-

35 36 37 38O

UT

8+

34

O-O

FS

33D

VD

DD

VD

DR

ES

ET

32

A1

31A

030

RO

FS

29R

SR

LO

AD

28S

RC

LK27

SR

IN26

SR

OU

T25

DV

DD

DV

DD

23D

GN

D2

2IN

8-

21IN

8+

20

Oct. 21st, 2008 IEEE/NSS Dresden 24

“Residual charge” problem

R

“Ghost pulse”2% @ 2 GHz

“Ghost pulse”2% @ 2 GHz

After sampling a pulse, some residual charge remains in the capacitors on the next turn and can mimic wrong pulses

After sampling a pulse, some residual charge remains in the capacitors on the next turn and can mimic wrong pulsesSolution: Clear before write

write clearImplemented

in DRS4

Implementedin DRS4

Oct. 21st, 2008 IEEE/NSS Dresden 25

Sine Curve Fit Method

S. Lehner, B. Keil, PSI

i

j

500

0

1024

0

22 min)))2

sin(((j i

jijj

jji of

iay

yji : i-th sample of measurement jaj fj j oj : sine wave parametersi : phase error fixed jitter

“Iterative global fit”:

•Determine rough sine wave parameters for each measurement by fit

•Determine i using all measurements where sample “i” is near zero crossing

•Make several iterations

“Iterative global fit”:

•Determine rough sine wave parameters for each measurement by fit

•Determine i using all measurements where sample “i” is near zero crossing

•Make several iterations

Oct. 21st, 2008 IEEE/NSS Dresden 26

Signal-to-noise ratio (DRS3!)

“Fixed pattern” offset error of 5 mV RMScan be reduced to 0.35 mV by offsetcorrection in FPGA

SNR:

1 V linear range / 0.35 mV = 69 dB (11.5 bits)

“Fixed pattern” offset error of 5 mV RMScan be reduced to 0.35 mV by offsetcorrection in FPGA

SNR:

1 V linear range / 0.35 mV = 69 dB (11.5 bits)

AN

AL

OG

OU

TP

UT

[V

]

BIN NUMBER0 200 400 600 800 1000

0.48

0.49

0.5

0.51

0.52

Crosstalk from trigger signal

OC

CU

RE

NC

E

OUTPUT VOLTAGE [V]0.48 0.49 0.5 0.51 0.520

20

40

60

80

100

120

140

160

180

200

OC

CU

RE

NC

E

OUTPUT VOLTAGE [V]0.48 0.49 0.5 0.51 0.520

20

40

60

80

100

120

140

160

180

200

OffsetCorrection

Oct. 21st, 2008 IEEE/NSS Dresden 27

Global Timing Clock

signal

20 MHz Reference clock

PMT hit

Domino stops aftertrigger latency

8 inp

uts

shift registerReference

clock

domino wave

MUX

PLL jitter O(100ps) Timing difference between signals sampled by different chips need a global reference clock

PLL jitter O(100ps) Timing difference between signals sampled by different chips need a global reference clock

Oct. 21st, 2008 IEEE/NSS Dresden 28

Datasheet

http://midas.psi.ch/drshttp://midas.psi.ch/drs

Oct. 21st, 2008 IEEE/NSS Dresden 29

Interleaved samplingdela

ys

(200p

s/8 =

25ps)

G. Varner et al., Nucl.Instrum.Meth. A583, 447 (2007)G. Varner et al., Nucl.Instrum.Meth. A583, 447 (2007)

6 GSPS * 8 = 48 GSPS

Possible with DRS4 if delay is implemented on PCBPossible with DRS4 if delay is implemented on PCB

Oct. 21st, 2008 IEEE/NSS Dresden 30

Comparison with other chipsMATACQ

D. BretonLABRADORG. Varner

DRS4

Bandwidth (-3db) 300 MHz > 1000 MHz 950 MHz

Sampling frequency

1 or 2 GHz 10 MHz … 3.5 GHz

500 MHz … 6 GHz

Full scale range ±0.5 V +0.4 …2.1 V +0.1 … 1.1V

Effective #bits 12 bit 10 bit 12 bit

Sample points 1 x 2520 9 x 256 9 x 1024

Channel per board

4 N/A 64

Digitization 5 MHz N/A 30 MHz

Readout dead time

650 s 150 s 3 s – 370 s

Integral nonlinearity

± 0.1 % ± 0.1 % ± 0.05%

Radiation hard No No Yes (chip)

Board V1729 (CAEN)

- planned (CAEN)

Oct. 21st, 2008 IEEE/NSS Dresden 31

On-line waveform display

click

templatefit

pedestalhisto

848PMTs

“virtual oscilloscope”“virtual oscilloscope”

Oct. 21st, 2008 IEEE/NSS Dresden 32

Lat

ch

Lat

ch

Lat

ch

Lat

ch

Constant Fraction Discr.

Lat

ch

12 bit

Clock

+

+

MULT

Lat

ch

0

&<0

Delayedsignal

Invertedsignal

Sum