52
A Lecture edited By Ass istant Prof Dr Eha b B Matar Design of steel beams LRFD-AISC

Design of Steel Beams to AISC- LRFD

Embed Size (px)

Citation preview

Page 1: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 1/52

A Lecture edited

By

Assistant Prof Dr Ehab B Matar

Design of steel beams LRFD-AISC

Page 2: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 2/52

• The objectives of this lecture is to:-

1. Understanding the behavior of steel beams

under bending moments and shear

2. Identifying the different modes of failure for

laterally supported or laterally un-supported

steel beams

3. Practicing for the different code provisions

for the design of steel beams

Objectives

Page 3: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 3/52

Reference

• AISC- Specification for structural steel

buildings- March, 2005

• “Steel Structures, Design and Behavior”, by,

Charles G. Salmon, John E. Johnson, Faris A.

Malhas- Pearson Prentice Hall, 5th edition,

2009

Page 4: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 4/52

with codeignoranceResult of

Provisions

Page 5: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 5/52

Page 6: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 6/52

Page 7: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 7/52

Page 8: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 8/52

Load and Resistance Factor Design

(LRFD)

loadservicerelevanttheis

factor overloadtheis

capacitymemberorstrengthnominaltheis

factor reductionstrengththeis

:where

..

i

i

n

iin

Q

 R

Q R

 

 

    

Page 9: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 9/52

Resistance factor

• For tension members

=0.90 for yielding limit state

=0.75 for fracture limit state

• For beams =0.9 for shear and bending

• For compression members =0.85

•For fasteners =0.75

Page 10: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 10/52

Load combinations for LRFD

Q i and i for various load combinations as follows:

• 1.4*D

• 1.2*D+1.6L+0.5(Lr or S or R)

• 1.2D+1.6(Lr or S or R)+(0.5L or 0.8W)• 1.2D+1.3W+0.5L+0.5(Lr or S or R)

• 1.2D±1.0E+0.5L+ 0.2S

• 0.9D±(1.3W or 1.0E)

Where, D: Dead load, L: Live load, Lr: roof live load,W: wind load, E: earthquake load, S: Snow load,R: Rain water load

Page 11: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 11/52

Beams

Beams is a general word that can be applied to:

• Girders: which is the most important supporting elementfrequently spaced at wide distances

•  Joists: the less important beams closely spaced with a truss

type webs• Purlins: roof beams spaning between trusses

• Stringers: longitudinal bridge beams spanning between X –girders

• Girts: horizontal wall beams supporting corrugated sheets

at side walls of factories• Lintels: members supporting a wall over a window or door

Page 12: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 12/52

Examples for joists, lintels, purlins and

side girts

Page 13: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 13/52

Modes of failure for beams

• Failure of beams subjected to major axis bendingcan take the following modes:-

1. Occurrence of local buckling for the

compression flange2. Occurrence of lateral torsional buckling

3. Occurrence of warping

4. Occurrence of shear buckling5. Exceeding the serviceability limits (deflection,

vibration,…etc.)

Page 14: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 14/52

Bending &

local buckling

Page 15: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 15/52

Bending: local buckling collapse

example from the JHU structures lab.

Page 16: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 16/52

ELASTIC CRITICAL BUCKLING OF STIFFENED PLATEELASTIC CRITICAL BUCKLING OF STIFFENED PLATE

  cr 

2

2 2f   = k

E

12(1- )(w / t)

Page 17: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 17/52

FREQUENTLY USED k VALUESFREQUENTLY USED k VALUES

Page 18: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 18/52

Section Class

 – Class 1: Compact sections which achieve full plastic moment

capacity without local buckling

 – Class 2: Non-compact sections which achieve yield momentcapacity without local buckling

 – Class 3: Slender sections which cannot achieve yield moment

capacity without local buckling

Page 19: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 19/52

Local buckling

Page 20: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 20/52

Effect of local and dis-torsional buckling on

beams capacity

Pcrd

Py

local

distortional

Pcrd

Py

local

distortional

Page 21: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 21/52

Section

class

Part Stress

Profile

Compact p  Web Simple bending

 Axial Comp.

Flange Uniform Comp. Rolled

Sec.&

B.U.S

Non-Compact

Web Simple bending

 Axial Comp.

Flange Uniform Comp. Rolled

Sec.

B.U.S

Note  Kc=4/SQRT(dw/tw) but shall not be taken less than 0.35 nor greaterthan 0.76

FL=0.7Fy for minor axis bending , major axis bending of slender web

built up I shaped members and major axis bending of compact and

non-compact web built up I shaped members with Sxt/Sxc≥0.7 (where

Sxt and Sxc are the elastic section modulus of tension and

compression flanges in symmetrical I section

 

 

 y yww   F  F  E t d  /1690/76.3/  

 NA

 y y f     F  F  E t C  /170/38.0/  

 yww   F  E t d  /7.5/  

 yww   F  E t d  /49.1/  

Local Buckling limits AISC- SI units (N,mm)

 y f     F  E t C  /0.1/  

 Lc f     F  E k t C  /95.0/  

Wid h / hi k i f i f

Page 22: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 22/52

Width /thickness ratio r for non-compact sections for

beams with different steel yield strengthWeb

hw/twWelded sections

Rolled

sections,

un-stiffened

flange

bf /2tf 

Fy (Mpa)

Flange

stiffened

box

section

bf /2tf 

Flange un-

stiffened

welded

B.U.S.

bf /2tf 

Kc=4/SQR

T(hw/tw)

h/tw

161.739.721.723.2

29.2

0.350.4

0.63

161.7100

40

27.7248

137.233.7

16.6

17.7

22.3

0.35

0.4

0.63

137.2

100

40

22.3345

130.832.1

15.4

16.5

20.8

0.35

0.4

0.63

130.8

100

40

21.0380

120.329.5

14.0

14.7

18.5

0.36

0.4

0.63

120.3

100

40

19.0448

Page 23: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 23/52

Lateral torsional buckling

Page 24: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 24/52

Warping of beams

St di t ib ti i b t

Page 25: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 25/52

Stress distribution in beams at

different stages of loading• M

y: yield moment =S

x.F

y

• Mp: plastic moment= Zx.Fy

• Sx, Zx are the elastic and plastic section

modulus,• Shape factor =Zx/Sx is nearly 1.09-1.18

Page 26: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 26/52

Restrained and Un-restrained

compression flange of steel beams

Page 27: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 27/52

Overall lateral buckling of a whole system

Page 28: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 28/52

Design of beams depend on:

• Section Class

Type of Steel

• Kind of stresses

Page 29: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 29/52

Design of laterally supported steel

beams i.e. Luact=0 against Flexure

 A- Case of compact sections

• Governing equation is:

.Mn≥Mu

=0.9

Mn=Z.Fy

Mu= ultimate moment due to ultimate loads

(N.mm)Z= plastic section modulus mm3

Fy= yield stress of steel (MPa i.e. N/mm2)

C ti

Page 30: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 30/52

Continue

B- Non-compact sections

For sections exactly satisfies the limitations fornon-compact sections r for both of web and

flanges, Governing equation is

.Mn≥Mu

=0.9

Mn=Mr=S.(Fy-Fr)

Mu= ultimate moment due to ultimate loads (N.mm)S= elastic section modulus mm3

Fy= yield stress of steel (MPa i.e. N/mm2)

Fr= residual stress – for rolled sec. =68.95MPa

continue

Page 31: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 31/52

continue

C- For partial compact sections

For partial compact sections with either flangeor web slenderness ratios lies in between

compact p and non-compact r sections

.Mn≥Mu

=0.9

sectionscompactnonorcompact

foror webflangesforlimitsrelativetheareor

c/tor/tdeitheris

*)(

f ww

  

 

  

  

 p

 pr 

 p

r  p pn   M  M  M  M 

 

 

 

 

Page 32: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 32/52

Design of steel beams against shear

• Shear stress in I section is

given by

• Where =shear stress

• S= first moment of area

• I= second moment of area of

the whole section• b= width of section under

consideration

• Q= shear force

 Ib

QS  

continue

Page 33: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 33/52

continue

• Governing designequation: .Vn≥Vu

=0.9

Vn=0.6.Fyw.Aw

Fyw= yield strength of web

(Mpa)Aw= web area (mm2)

Vu= ultimate shear force (N)

• The above governing

equation in condition thatthere is no shear bucklingin web i.e.d w  /t w ≤ 1100/SQRT(F yw  )

Page 34: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 34/52

Serviceability limit states for deflection

• Governing condition is

DL+LL≤ L/360

L= beam span

• For continuous beams, anapproximate value can be

calculated as follows

Where

Ms= moment at mid span

Ma, Mb= moments at

interior supports

))(1.0(48

5 2

ba s   M  M  M  EI 

 L 

Page 35: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 35/52

Example 1• Given: the shown beam,

fully laterally supported

• Required: select thelightest section tosustain the shown loads

using steel A36

• Solution:

• Loads and strainingactions

Wu=1.2Wd.L+1.6WL.L=1.2*2.9+1.6*11.67=22.16KN/m’

Mu=Wu*L2

/8=99.698KN.m

Page 36: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 36/52

Continue• Selecting a trial section

For steel A36, Fy=250MPaMn≥Mu

Assuming compact section, then

*Zx*Fy ≥Mu Zx ≥Mu/(*Fy)

Zx ≥99.698E6/(0.9*250) ≥443102mm3

Try HEA 220, bf =220mm, tf =11mm, dw=152mm, tw=7mm,

Zx=Wpl.y=568.5cm3, own weight= 50.5 kg/m’

• Checking cross section class

bf /2tf =220/(2*11)=10<10.8 flange is compact

dw/tw=152/7=21.7<107 web is compact

Whole section is compact

Page 37: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 37/52

Continue• Checking section capacity

Mn= plastic section moment capacity as the section iscompact= Zx*Fy

*Zx*Fy=0.9*568.5E3*250=127.91E6N.mm=127.91KN.

m

Considering the own weight of steel beam, then

Mu=(1.2*(2.9+0.5)+1.6*11.67)*62/8=102.384KN.m

Then , Mn>Mu section is safe for flexure

Page 38: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 38/52

Example 2• Given: shown simply

supported beam, fulllaterally supported

• Required: select the lightestsection, consideringdeflection using A572 Gr 50

• Solution:

• Loads and straining actions:

a- service loadsW=7.3+14.59=21.89KN/m’

b- ultimate loadsWu=1.2*7.3+1.6*14.59=32.104

KN/m’

Mu=32.104*12.62/8=637.1KN.

m

Page 39: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 39/52

Continue• Selecting a trial section

For steel A572 Gr 50, Fy=350MPa

Mn≥Mu

Assuming compact section, then

*Zx*Fy ≥Mu Zx ≥Mu/(*Fy)

Zx ≥637.1E6/(0.9*350) ≥2022552mm3

Deflection can be only limited to L/360, if the inertia of the beam:

max=5/384*W*L4/(EI)≤L/360 5/384*21.89*126004/(2E5*I)≤12600/360 I≥1,026,286,655mm4

Try HEA 550, bf =300mm, tf =24mm, dw=438mm, tw=12.5mm,Zx=Wpl.y=4622cm3, I=111900cm4, own weight= 166 kg/m’

• Checking cross section class

bf /2tf =300/(2*24)=6.25<9.2 flange is compactdw/tw=438/12.5=35.04<90.5 web is compact

Whole section is compact

Page 40: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 40/52

Continue• Checking section capacity

Mn= plastic section moment capacity as the section iscompact= Zx*Fy

*Zx*Fy=0.9*4622E3*350=1455.9E6N.mm=1455.9KN.m

Considering the own weight of steel beam, thenMu=(1.2*(7.3+1.66)+1.6*14.59)*12.62/8=676.635KN.m

Then , Mn>Mu section is safe for flexure

it should be noted that the cross section is constrainedby serviceability requirements not by ultimate limitstates

Page 41: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 41/52

Design of laterally un-supported steel

beams

• The elastic lateral critical torsional buckling moment under

action of constant moment is given by

• For non-uniform moment, the value

of Mcr is multiplied by the moment

gradient factor Cb

 

 

 

 

)..(3

1constanttorsionalJ

 bendingaxisminoraboutinertiaof momentI

/4.hI/2.hIconstanttorsionalwarpingC

75800MPa))E/(2(1modulusshearG

modulussYoung'E

.....

3

y

2

y

2

f w

2

ii

 y ywcr 

t b

 J G I  E  I C  L

 E 

 L M 

 

  

Page 42: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 42/52

Zone 1: when Lu<Lpd then plastic moment capacity is

reached with large plastic rotation capacity- plastic

analysis is permitted- section should be compact

flangencompressioof gyrationof radius

Z.Fcapacitymoment plasticM

curvature)reversewhen(segmentunbraced 

laterallytheof endsat themomentsmaller

/1520024800

y p

1

1

ry

 M 

r  F 

 M  M  L  y

 y

 p

 pd 

9.0

.

.

 

 

 yn

un

 F  Z  M 

 M  M 

Page 43: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 43/52

Case 2: Lu≤Lp plastic moment is reached (Mn=Mp) with

little rotation capacity- section should be compact

 y

 y

 p   r  F 

 L790

9.0

.

.

 

 

 yn

un

 F  Z  M 

 M  M 

Case 3: when Lp< Lu≤Lr- lateral torsional buckling

Page 44: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 44/52

Case 3: when Lp< Lu≤Lr lateral torsional buckling

of compact sections may occur in the inelastic

range (Mp>Mn≥Mr)

 bendingaxismajoraboutmodulussectionelasticS

68.95MPastressresidualF

flangencompressioof strengthyieldF

axisminoraboutinertiaof momentI

flangencompressioof gyrationof radiusr 

modulusshearG

200000MPamodulussYoung'E

sectiontheof areasectionalcrossA

constanttorsionalJ

constantwarping

4

2

)(11)(

.

x

yf 

y

y

2

2

1

2

2

1

  

  

w

 x

 y

w

 x

r  yf  

r  yf  

 y

GJ S 

 I C  X 

 EGJA

S  X 

 F  F  X  F  F 

 X r  L

 

Page 45: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 45/52

Continue case 3

lengthunbracedof length3/4andhalf quarter,atmoment bendingM,M,M

lengthunbracedhinmoment wit bendingmax.

3435.25.12

)

CBA

max

max

max

 

 

 

  

  

 

 M 

 M  M  M  M  M C 

 M  L L

 L L M  M  M C  M 

 M  M 

C  B A

b

 p

 pr 

 pu

r  p pbn

un 

Case 4 L <L ≤L General limit state for any section

Page 46: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 46/52

Case 4: Lp<Lu≤Lr General limit state for any section

where nominal moment strength Mn occurs in the

inelastic range

• When Lp<Lu≤Lr or p< <

r whether for flange or

web, then

 

  

 

 

  

 

 pr 

 pu

r  p pbn

 pr 

 p

r  p pn

 L L

 L L M  M  M C  M 

 M  M  M  M 

 bucklingtorsionallateralforstateLimit

 bucklinglocalof stateslimitM.M un

  

  

 

Case 5: Lu>Lr general limit state where nominal

Page 47: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 47/52

Case 5: u r ge e a t state e e o a

moment strength Mn equals the elastic buckling

strength Mcr

 J G I  E  I C  L

 E 

 LC  M Mn

 M  M 

 y yw

uu

bcr 

un

....

.

2

 

  

 

  

 

Page 48: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 48/52

Example 3

• Given: the shown beam,laterally un-supported

• Required: select the

lightest section to sustain

the shown loads using

steel A36- considering

D.L=20% of W

• Solution:

• Loads and straining

actions

Page 49: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 49/52

Continue Ex. 3

• Wu=14.6(1.2*0.2+1.6*0.8)=22.2KN/m’

Mu=22.2*15

^2

/8=624.375KN.m- Assuming compact sec.,

- Zx≥Mu /(*F y )  ≥624.4E6/(0.9*250)=2775E3mm3

• Try HEA 450, Zx=3216cm3, Sx=2896cm3,Iy=9465cm4, ry=7.29cm, bf =300mm, tf =21mm,dw=344mm, tw=11.5mm, A=178cm2, G=140Kg/m’, J=It=243.8cm4, Cw=Iw=4.148cm6

•Checking sec. class: flange; bf /2tf =7.14<10.8

flange is compact

• dw/tw=29.91<107 web is compact, wholesec. is compact

Page 50: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 50/52

continue

• Checking max. lateral un-supported length

r uact  p

 x

 y

w

 x

 L

 y

uact  y

 y

 p

 L L L

mm E  Lr 

 E  E 

 E 

 E 

 E 

GJ 

 I 

C  X 

 E  E  E  E 

 EGJAS 

 X 

 F  X  F 

 X r  L

mm Lmmr  F 

 L

 

  

  

  

 

11286)95.68250(*11305.411)95.68250(

19820*9.72

11305.448.243*75800

32896

49465

6148.4*44

198202*)3.01(2

2178*48.243*)52(328962

.11.

750036429.72*250

790.790

2

22

2

2

1

2

2

1

  

Page 51: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 51/52

continue

• Calculating moment gradient factor 

3.1

.65.629

.72.503

.84.293

.625.6718/15*)4.1*2.1(4.624

3435.25.12

2

max

max

max

b

 B

 A

C  B A

b

m KN  M 

m KN  M 

m KN  M 

m KN  M 

 M  M  M  M  M C 

Page 52: Design of Steel Beams to AISC- LRFD

7/24/2019 Design of Steel Beams to AISC- LRFD

http://slidepdf.com/reader/full/design-of-steel-beams-to-aisc-lrfd 52/52

continue

• Moment capacity for the section:-

•Mn=Cb[Mp-(Mp-Mr){(Luact-Lp)/(Lr-Lp)}]

• Mp=Zx.Fy=3216E3*250=804E6N.mm

• Mr=Sx(Fy-Fr)=2896E3(250-68.95)=524E6N.mm

• Mn=1.3[804-(804-524){(7.5-3.64)/(11.286-3.64)}]=861.4KN.m804E6N.mm

•   Mn=0.9*804=723.6KN.m>Mu=671.625KN.

m o.k. safe for flexural limit states