125
Out Put: Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable Rqd. tensile Steel Reinforecement, A st 7700.34 mm 2 Provide 25 Ф bar 15.69 Nos. Say 16.00 Nos. Matching Rqd. Compressive Steel Reinforecement, A sc 981.74 mm 2 Provide 25 Ф bar 2.00 Nos. Say 2.00 Nos. Stirrups Provided: Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg =2 Crack Width Calculation: Stress in tensile reinforced level f sb 116.01 N/mm 2 Spacing of reinforcement S 21.933 mm a cr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 48.986 mm Ɛ 1b = [f s *((a' - x u ) / [(d-x u )*2*10 ^5] 0.0006332 Ɛ 2b = b t *(a'-x u )*(D-x u ) / [600000*A st *(d - x u )] 0.0001848 Ɛ mb = Ɛ 1b 2b 0.0004484 0.0652253 Stress in tensile reinforced level f st 124.704 N/mm 2 Ɛ 1t = f s *(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0006499 Ɛ 2t = b t *(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0003655 Ɛ mt = Ɛ 1t 2t 0.0002844 0.0415899 0.1068152 < 0.2 INPUT DATA:- Governing Load Case For Design LC 228 INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force: Design Shear force, F y 351.31 KN LC 219 Design Torsional Moment for shear T u =M x 58.92 KNm LC 219 Moment M' uz 3598.39 KN LC 228 Design Torsional Moment for moment T u =M x 23.81 KNm LC 228 Axial Force, F x 1440.39 KN T LC 228 Bending in another direction M uy 27.56 KNm LC 228 INPUT DATA:- Material Properties : Characteristic Strength of concrete, f ck 25.00 N/mm 2 Grade of Steel, f y 415.00 N/mm 2 INPUT DATA:- Material Properties and Dimensions of Beam: Thickness of flange, D f 200.00 mm Total Depth of T- Beam, D 1800.00 mm Width of Flange, b f 2400.00 mm Width of web in compression fibre, b cw 450.00 mm Width of web in tension, b tw ' 450.00 mm Layer of bar in tension zone 4.00 MOLUNG KHOLA BRIDGE MEMBER T - Beam with Trapezoidal Web, memb. No. 13 (6.5m) W crb = 3*a cr* Ɛ m / [1+2*(a cr - C min ) / (D - x u )] W crt = 3*a cr x Ɛ m / [1+2*(a cr - C min ) / (D - (-D))] W cr =W crb +W crt

Design of Trapezoidal T-Beam L Systematic Final

Embed Size (px)

DESCRIPTION

T-beam and L - beam designs

Citation preview

Page 1: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 7700.34 mm2

Provide 25 Ф bar 15.69 Nos. Say 16.00 Nos. Matching

Rqd. Compressive Steel Reinforecement, Asc 981.74 mm2

Provide 25 Ф bar 2.00 Nos. Say 2.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 116.01 N/mm

2

Spacing of reinforcement S 21.933 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 48.986 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0006332

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0001848

Ɛmb = Ɛ1b-Ɛ2b 0.0004484

0.0652253

Stress in tensile reinforced level fst 124.704 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0006499

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0003655

Ɛmt = Ɛ1t-Ɛ2t 0.0002844

0.0415899

0.1068152 < 0.2

INPUT DATA:- Governing Load Case For Design LC 228

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 351.31 KN LC 219

Design Torsional Moment for shear Tu=Mx 58.92 KNm LC 219

Moment M'uz 3598.39 KN LC 228

Design Torsional Moment for moment Tu=Mx 23.81 KNm LC 228

Axial Force, Fx 1440.39 KN T LC 228

Bending in another direction Muy 27.56 KNm LC 228

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 200.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 4.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 13 (6.5m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 2: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 2111.64 KNm

Design Moment Mu 2181.67 KNm

Design shear force Vu 560.80 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1654.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 621.687 mm

Centoid of section from tension fibre Ct 1178.313 mm

Df/d (Calculated) 0.121

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 6785.89 KNm

4604.216 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 3710.89 mm2

For Tension Area of Steel, Ast2 3989.45 mm2

for BM+Tension, total rqd. Steel, Ast 7700.34 mm2

Neutral Axis Ratio, Xu/d 0.03751

Neutral Axis, Xu 62.034 mm

Due to Mu Compressive strain Ɛcc 0.00027

Total Strain due to (Mu+Fx) Ɛcct 0.00040 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 7700.339 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 792.44 mm NA

yf,max 248.87 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 3: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1704.04 KN NA

Compressive force fo rParabolic portion, C2 1514.70 KN NA

Compressive force Trap. Web, Cu = C1+C2 3218.74 KN NA

Compressive force for Flange portion, C3 4348.50 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 7567.24 KN NA

Moment of C1 about Neutral Axis, Integration I1 1060992.17 KNmm NA

Moment C2 about Neutral Axis Integration I2 428683.70 KNmm NA

Moment f Cu about neutral axis Integration Iu 1489675.87 KNmm NA

CG of Cu from Neutral axis ,Y 462.814 mm NA

CG of Cu from Extreme Compression fibre X 329.630 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 197.673 mm NA

11020.28 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4262.80 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 11020.37 KNm NA

-8838.70 KNm SRS

1456.478 mm NA

1456.327 mm NA

20956.625 mm2

NA

20958.972 mm2

NA

-0.001929

11.66904

-8549.985

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 853.018 mm

yf=0.15*xu+0.65*Df 257.953 mm

Lever Arm z = jd 1643.994

18566.429 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 496.20 mm SRS-NA

yf,max 204.43 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Page 4: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 3989.45 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3989.45 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3989.447 mm2

SRS-NA

-0.001929 SRS-NA

11.66904 SRS-NA

2309.679 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -191.847 mm SRS-NA

yf=0.15*xu+0.65*Df 101.223 mm SRS-NA

Lever Arm z = jd 1532.220 SRS-NA

3943.667 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2500 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

Page 5: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 3989.45 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3989.45 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3989.447 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

Page 6: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1654.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 792.44 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00322 SRS-NA

Compressive level stress of steel fsc 355.993 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2)11.150 N/mm2 SRS-NA

Area of compressive stress Asc -16120.178 mm2

SRS-NA

-15396.566 mm2

SRS-NA

For DRS Total Area of tension steel Ast 5562.407 mm2

SRS-NA

for Tension, Area of Steel, Ast3 19386.01 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 24948.42 mm2

SRS-NA

Neutral Axis, Xu 792.444 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 11749.484 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00011915 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 24948.420 mm2

SRS-NA

Check for Shear forceDesign Shear force 560.80 KN

Shear stress 0.753 N/mm2

Percentage of tension steel, pt 1.055 %

Percentage of compressive steel, pc 0.132 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 7: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.907 %

α=0.8*fck/6.89*pt 0.592

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.060 N/mm2

1.00 x 1.060 = 1.060

> 0.753 Not OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. -263.411 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 8: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 8064.86 mm2

Provide 25 Ф bar 16.43 Nos. Say 16.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 981.74 mm2

Provide 25 Ф bar 2.00 Nos. Say 2.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 118.68 N/mm

2

Spacing of reinforcement S 21.933 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 48.986 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0006480

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0001760

Ɛmb = Ɛ1b-Ɛ2b 0.0004719

0.0686417

Stress in tensile reinforced level fst 122.032 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0006360

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0003489

Ɛmt = Ɛ1t-Ɛ2t 0.0002870

0.0419697

0.1106114 < 0.2

INPUT DATA:- Governing Load Case For Design LC 232

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 361.30 KN LC 231

Design Torsional Moment for shear Tu=Mx 24.55 KNm LC 231

Moment M'uz 3834.74 KN LC 232

Design Torsional Moment for moment Tu=Mx 8.15 KNm LC 232

Axial Force, Fx 1476.26 KN T LC 232

Bending in another direction Muy 29.41 KNm LC 232

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 200.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 4.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 25 (12.5m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 9: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 2310.96 KNm

Design Moment Mu 2334.93 KNm

Design shear force Vu 448.59 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1654.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 621.687 mm

Centoid of section from tension fibre Ct 1178.313 mm

Df/d (Calculated) 0.121

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 6785.89 KNm

4450.950 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 3976.07 mm2

For Tension Area of Steel, Ast2 4088.80 mm2

for BM+Tension, total rqd. Steel, Ast 8064.86 mm2

Neutral Axis Ratio, Xu/d 0.04019

Neutral Axis, Xu 66.467 mm

Due to Mu Compressive strain Ɛcc 0.00029

Total Strain due to (Mu+Fx) Ɛcct 0.00042 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 8064.863 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 792.44 mm NA

yf,max 248.87 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 10: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1704.04 KN NA

Compressive force fo rParabolic portion, C2 1514.70 KN NA

Compressive force Trap. Web, Cu = C1+C2 3218.74 KN NA

Compressive force for Flange portion, C3 4348.50 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 7567.24 KN NA

Moment of C1 about Neutral Axis, Integration I1 1060992.17 KNmm NA

Moment C2 about Neutral Axis Integration I2 428683.70 KNmm NA

Moment f Cu about neutral axis Integration Iu 1489675.87 KNmm NA

CG of Cu from Neutral axis ,Y 462.814 mm NA

CG of Cu from Extreme Compression fibre X 329.630 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 197.673 mm NA

11020.28 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4262.80 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 11020.37 KNm NA

-8685.43 KNm SRS

1456.478 mm NA

1456.327 mm NA

20956.625 mm2

NA

20958.972 mm2

NA

-0.001929

11.66904

-8549.985

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 853.018 mm

yf=0.15*xu+0.65*Df 257.953 mm

Lever Arm z = jd 1643.994

18566.429 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 496.20 mm SRS-NA

yf,max 204.43 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Page 11: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 4088.80 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 4088.80 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 4088.797 mm2

SRS-NA

-0.001929 SRS-NA

11.66904 SRS-NA

2156.413 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -179.472 mm SRS-NA

yf=0.15*xu+0.65*Df 103.079 mm SRS-NA

Lever Arm z = jd 1541.886 SRS-NA

4194.258 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2650 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

Page 12: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 4088.80 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 4088.80 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 4088.797 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

Page 13: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1654.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 792.44 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00322 SRS-NA

Compressive level stress of steel fsc 355.993 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -15840.649 mm2

SRS-NA

-15129.584 mm2

SRS-NA

For DRS Total Area of tension steel Ast 5829.388 mm2

SRS-NA

for Tension, Area of Steel, Ast3 19218.38 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 25047.77 mm2

SRS-NA

Neutral Axis, Xu 792.444 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 11749.484 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00011915 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 25047.769 mm2

SRS-NA

Check for Shear forceDesign Shear force 448.59 KN

Shear stress 0.603 N/mm2

Percentage of tension steel, pt 1.055 %

Percentage of compressive steel, pc 0.132 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 14: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.907 %

α=0.8*fck/6.89*pt 0.592

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.060 N/mm2

1.00 x 1.060 = 1.060

> 0.603 OK

Shear Reinforcement is NOT required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. -176.507 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 15: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 2603.14 mm2

Provide 25 Ф bar 5.30 Nos. Say 5.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 1963.48 mm2

Provide 25 Ф bar 4.00 Nos. Say 4.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 176.22 N/mm

2

Spacing of reinforcement S 82.250 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 60.654 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0009278

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0005364

Ɛmb = Ɛ1b-Ɛ2b 0.0003914

0.0695856

Stress in tensile reinforced level fst 64.491 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0003306

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0010635

Ɛmt = Ɛ1t-Ɛ2t -0.0007329

-0.1318418

-0.0622561 < 0.2

INPUT DATA:- Governing Load Case For Design LC 556

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 873.28 KN LC 515

Design Torsional Moment for shear Tu=Mx 58.18 KNm LC 515

Moment M'uz 1382.96 KN LC 556

Design Torsional Moment for moment Tu=Mx 20.22 KNm LC 556

Axial Force, Fx 251.82 KN T LC 556

Bending in another direction Muy 10.73 KNm LC 556

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 200.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 2.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 38 (19m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 16: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 1108.70 KNm

Design Moment Mu 1168.17 KNm

Design shear force Vu 1080.14 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1711.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 621.687 mm

Centoid of section from tension fibre Ct 1178.313 mm

Df/d (Calculated) 0.117

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 7032.13 KNm

5863.950 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 1905.68 mm2

For Tension Area of Steel, Ast2 697.47 mm2

for BM+Tension, total rqd. Steel, Ast 2603.14 mm2

Neutral Axis Ratio, Xu/d 0.01862

Neutral Axis, Xu 31.855 mm

Due to Mu Compressive strain Ɛcc 0.00014

Total Strain due to (Mu+Fx) Ɛcct 0.00026 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 2603.142 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 819.75 mm NA

yf,max 252.96 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 17: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1762.76 KN NA

Compressive force fo rParabolic portion, C2 1566.90 KN NA

Compressive force Trap. Web, Cu = C1+C2 3329.66 KN NA

Compressive force for Flange portion, C3 4348.50 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 7678.16 KN NA

Moment of C1 about Neutral Axis, Integration I1 1135379.86 KNmm NA

Moment C2 about Neutral Axis Integration I2 458739.34 KNmm NA

Moment f Cu about neutral axis Integration Iu 1594119.20 KNmm NA

CG of Cu from Neutral axis ,Y 478.763 mm NA

CG of Cu from Extreme Compression fibre X 340.990 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 204.506 mm NA

11567.01 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4561.67 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 11567.10 KNm NA

-10398.93 KNm SRS

1506.654 mm NA

1506.494 mm NA

21263.770 mm2

NA

21266.198 mm2

NA

-0.001929

12.08578

-8935.608

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 856.446 mm

yf=0.15*xu+0.65*Df 258.467 mm

Lever Arm z = jd 1700.989

18834.573 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 513.30 mm SRS-NA

yf,max 207.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 18: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 697.47 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 697.47 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 697.466 mm2

SRS-NA

-0.001929 SRS-NA

12.08578 SRS-NA

3484.285 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -276.124 mm SRS-NA

yf=0.15*xu+0.65*Df 88.581 mm SRS-NA

Lever Arm z = jd 1446.340 SRS-NA

2237.022 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2650 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 19: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 697.47 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 697.47 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 697.466 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 20: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1711.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 819.75 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00323 SRS-NA

Compressive level stress of steel fsc 356.075 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -18305.041 mm2

SRS-NA

-17487.496 mm2

SRS-NA

For DRS Total Area of tension steel Ast 3778.702 mm2

SRS-NA

for Tension, Area of Steel, Ast3 18184.96 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 21963.66 mm2

SRS-NA

Neutral Axis, Xu 819.753 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 11749.484 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00011915 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 21963.663 mm2

SRS-NA

Check for Shear forceDesign Shear force 1080.14 KN

Shear stress 1.403 N/mm2

Percentage of tension steel, pt 0.319 %

Percentage of compressive steel, pc 0.255 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 21: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.294 %

α=0.8*fck/6.89*pt 0.676

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.024 N/mm2

1.00 x 1.024 = 1.024

> 1.403 NOT OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 213.016 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 22: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 12063.72 mm2

Provide 32 Ф bar 15.00 Nos. Say 15.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 8728.57 mm2

Provide 25 Ф bar 17.78 Nos. Say 18.00 Nos.

Stirrups Provided:

Provide 10 Ф bar Spacing 199.07 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 698.31 N/mm

2

Spacing of reinforcement S 10.035 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 48.196 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0040228

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0000354

Ɛmb = Ɛ1b-Ɛ2b 0.0039874

0.5661088

Stress in tensile reinforced level fst 0.000 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0000000

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0001147

Ɛmt = Ɛ1t-Ɛ2t -0.0001147

-0.0165052

0.5496036 < 0.2

INPUT DATA:- Governing Load Case For Design LC 530

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 1152.88 KN LC 567

Design Torsional Moment for shear Tu=Mx 0.00 KNm LC 567

Moment M'uz 15000.00 KN LC 530

Design Torsional Moment for moment Tu=Mx 0.00 KNm LC 530

Axial Force, Fx 0.00 KN C LC 530

Bending in another direction Muy 0 KNm LC 530

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 225.00 mm

Total Depth of T- Beam, D 1600.00 mm

Width of Flange, bf 2500.00 mm

Width of web in compression fibre, bcw 600.00 mm

Width of web in tension, btw' 250.00 mm

Layer of bar in tension zone 3.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 46 (23m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 23: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 15000.00 KNm

Design Moment Mu 15000.00 KNm

Design shear force Vu 1152.88 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 268.48 mm

Width of Web, Average btw 425.00 mm

Effective Depth , d (Calculated) 1482.50 mm

Width of small portion in the flange, bs 49.219 mm

Centroid of Section from Compression fibre Cc 450.396 mm

Centoid of section from tension fibre Ct 1149.604 mm

Df/d (Calculated) 0.152

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? GO TO 2 (C)

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 7031.34 KNm DRS-NA

-7968.655 KNm DRS-NA

Neutral Axis lies in the Flange? NO DRS-NA

For Mu or Mu,lim Area of Steel, Ast 14016.31 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 14016.31 mm2

DRS-NA

Neutral Axis Ratio, Xu/d 0.15177 DRS-NA

Neutral Axis, Xu 225.000 mm DRS-NA

Due to Mu Compressive strain Ɛcc 0.00111 DRS-NA

Total Strain due to (Mu+Fx) Ɛcct 0.00123 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 24.41 N/mm2

DRS-NA

Additional compressive stress fcc 1.316 N/mm2

DRS-NA

Pu 1750.370 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

for BM+compression, Extra Increased area Ast 0.000 mm2

DRS-NA

Required Ast 10455.000 mm2

DRS-NA

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web YES

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 710.28 mm

yf,max 252.79 mm

Test : Muf,lim > Mu for Neutral in flange

Page 24: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1920.95 KN

Compressive force fo rParabolic portion, C2 1502.14 KN

Compressive force Trap. Web, Cu = C1+C2 3423.08 KN

Compressive force for Flange portion, C3 4766.63 KN

Compressive force for Small Flange portion, C4 61.74 KN

Total Compressive force, C 8251.45 KN

Moment of C1 about Neutral Axis, Integration I1 1077891.84 KNmm

Moment C2 about Neutral Axis Integration I2 387646.83 KNmm

Moment f Cu about neutral axis Integration Iu 1465538.67 KNmm

CG of Cu from Neutral axis ,Y 428.134 mm

CG of Cu from Extreme Compression fibre X 282.143 mm

For average web only X/d 0.19032

CG C from Extreme Compression fibre X 183.156 mm

10366.05 KNm

Capacity Mu, lim (Only for trapezodal Web) 4108.92 KNm

Capacity Mu, lim (trapezodal Web + Flange) 10721.47 KNm

4278.53 KNm DRS

1307.253 mm

1299.344 mm

21962.731 mm2

22854.032 mm2

-0.001871 DRS-NA

10.65773 DRS-NA

-8283.401 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 928.613 mm DRS-NA

yf=0.15*xu+0.65*Df 285.542 mm DRS-NA

Lever Arm z = jd 1475.432 DRS-NA

20126.475 mm2

DRS-NA

DRS-NA GO TO 2 (C)

Hit and Trial α = Xu/d 0.300000 DRS-NA

0.00000 DRS-NA

Neutral Axis for balanced design Xu 444.75 mm DRS-NA

yf,max 212.96 mm DRS-NA

Compressive force for straight portion, C1 0.00 KN DRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN DRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN DRS-NA

Compressive force for Flange portion, C3 0.00 KN DRS-NA

Compressive force for Small Flange portion, C4 0.00 KN DRS-NA

Total Compressive force, C 0.00 KN DRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 25: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm DRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm DRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm DRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm DRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm DRS-NA

For average web only X/d 0.00000 DRS-NA

CG C from Extreme Compression fibre X 0.000 mm DRS-NA

0.00 KNm DRS-NA

Mu(Only for trapezodal Web) 0.00 KNm DRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm DRS-NA

0.00 KNm DRS-NA

0.000 mm DRS-NA

0.000 mm DRS-NA

0.000 mm2

DRS-NA

0.00 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 0.00 mm2

DRS-NA

0.00 KN DRS-NA

Neutral Axis, Xu 0.00 mm DRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 DRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 3.89 N/mm2

DRS-NA

Additional compressive stress fcc 0.215 N/mm2

DRS-NA

Pu 251.367 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

Extra Increased area 0.000 mm2

DRS-NA

Required Singly reinforced Ast 1300.000 mm2

DRS-NA

-0.001871 DRS-NA

10.65773 DRS-NA

-9871.419 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 1164.157 mm DRS-NA

yf=0.15*xu+0.65*Df 320.874 mm DRS-NA

Lever Arm z = jd 1237.686 DRS-NA

33567.070 mm2

DRS-NA

DRS-NA GO TO 2 (C)

Hit and Trial α = Xu/d 0.2201 DRS-NA

α is chosen to make Test : C - T = 0 -51.3282 DRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 26: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 326.24 mm DRS-NA

yf 195.19 mm DRS-NA

Compressive force for straight portion, C1 911.02 KN DRS-NA

Compressive force fo rParabolic portion, C2 766.47 KN DRS-NA

Compressive force Trap.Web, Cu = C1+C2 1677.49 KN DRS-NA

Compressive force for Flange portion, C3 4135.03 KN DRS-NA

Compressive force for Small Flange portion, C4 53.56 KN DRS-NA

Total Compressive force, C 5866.08 KN DRS-NA

Moment of C1 about Neutral Axis, Integration I1 234094.27 KNmm DRS-NA

Moment C2 about Neutral Axis Integration I2 89945.16 KNmm DRS-NA

Moment f Cu about neutral axis Integration Iu 324039.43 KNmm DRS-NA

CG of Cu from Neutral axis ,Y 193.170 mm DRS-NA

CG of Cu from Extreme Comprssion fibre X 133.075 mm DRS-NA

For average web only X/d 0.0897641 DRS-NA

CG C from Extreme Compression fibre Xmax 118.726 mm DRS-NA

7934.72 KNm DRS-NA

Mu (Only for trapezodal Web) 2263.64 KNm DRS-NA

Mu,lim (trapezodal Web + Flange) 8000.00 KNm DRS-NA

-7000.00 KNm DRS-NA

1376.652 mm DRS-NA

1363.774 mm DRS-NA

15963.928 mm2

DRS-NA

16247.265 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 16247.27 mm2

DRS-NA

10998.89 KN DRS-NA

Neutral Axis, Xu 285.422 DRS-NA

Due to Mu Compressive strain Ɛcc 0.00141 DRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00154 <= 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 6916.530 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 26.59 N/mm2

DRS-NA

Additional compressive stress fcc 1.429 N/mm2

DRS-NA

Pu 1813.324 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013259 DRS-NA DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

Extra Increased area 0.000 mm2

DRS-NA

Required Singly reinforced Ast 6916.530 mm2

DRS-NA

-0.001005206 DRS-NA

b= 0.36*fck*bw*d 3.58225277 DRS-NA

-7330.30869 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a #NUM! DRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 27: Design of Trapezoidal T-Beam L Systematic Final

Lever Arm z = jd #NUM! DRS-NA

#NUM! mm2

DRS-NA

2 (C) Condition: Doubly Reinforced Section YES

Number of Layer of Comression bar 1.00 No.

Dia of Main reinforcement in compression 25 mm

Spacer for Vertical spacing 32 mm

Dia of Stirrups 8.00 mm

Clear cover, C 40.00 mm

Charactertistics strength of Concrete fck 25.00 N/mm2

Yield stress of steel fy 415.00 N/mm2

Helping calculation, d'' 57.00 mm

Effective depth from in compression side d' 60.50 mm

Effective depth at tension side d 1482.50 mm

Neutral Axis depth ration Xu,max/d 0.479

Neutral Axis Depth Xu.max 710.28 mmm

Compression level strain Ɛsc Or Ɛcc 0.00320

Compressive level stress of steel fsc 355.859 N/mm2

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2

Area of compressive stress Asc 8728.566 mm2

8333.510 mm2

For DRS Total Area of tension steel Ast 31187.542 mm2

for Tension, Area of Steel, Ast3 0.00 mm2

for BM+Tension, total rqd. Steel, Ast 31187.54 mm2

Neutral Axis, Xu 710.277 mm

Due to Mu Compressive strain Ɛcc 0.00350

Total Strain due to (Mu+P) Ɛcct 0.00350 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

Additional compressive stress fcc 0.000 N/mm2

Pu 0.000 KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00000000 YES

Test : Fx-Pu =0 -0.000010

Extra Increased area -19123.826 mm2

Required Double reinforced Ast 12063.716 mm2

Check for Shear forceDesign Shear force 1152.88 KN

Shear stress 1.830 N/mm2

Percentage of tension steel, pt 1.915 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 28: Design of Trapezoidal T-Beam L Systematic Final

Percentage of compressive steel, pc 1.402 %

Percentage of tension and compressive steel, pt 7.256 %

α=0.8*fck/6.89*pt 0.400

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.159 N/mm2

1.00 x 1.159 = 1.159

> 1.830 NOT OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 10.00 mm

Number of leg 2.00

Planned area to Provide Asv 157.08 mm2

Required spacing of stirrups Svreqd. 199.071 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 94.1698 mm2

Ф 7.7428 mm

Rqd. Stirrups Ф 10.00 Leg 2.000 199.07 mm C/C

Permissible shear stress,

K´tc =

Page 29: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 12867.96 mm2

Provide 25 Ф bar 26.21 Nos. Say 26.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 2293.97 mm2

Provide 25 Ф bar 4.67 Nos. Say 5.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 100.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 240.39 N/mm

2

Spacing of reinforcement S 15.160 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 48.473 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0012822

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0000668

Ɛmb = Ɛ1b-Ɛ2b 0.0012154

0.1737022

Stress in tensile reinforced level fst -91.744 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] -0.0004666

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0002371

Ɛmt = Ɛ1t-Ɛ2t -0.0007037

-0.1018498

0.0718524 < 0.2

INPUT DATA:- Governing Load Case For Design LC 268

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 1397.44 KN LC 538

Design Torsional Moment for shear Tu=Mx 62.88 KNm LC 538

Moment M'uz 6317.18 KN LC 268

Design Torsional Moment for moment Tu=Mx 53.65 KNm LC 268

Axial Force, Fx 1770.85 KN C LC 268

Bending in another direction Muy 72.28 KNm LC 268

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 200.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 500.00 mm Approx.Effective

Width of web in compression fibre, bcw 500.00 mm Approx.Effective

Width of web in tension, btw' 500.00 mm Approx.Effective

Layer of bar in tension zone 1.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 50 (25m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 30: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 6317.59 KNm

Design Moment Mu 6462.76 KNm

Design shear force Vu 1598.66 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 500.00 mm

Width of Web, Average btw 500.00 mm

Effective Depth , d (Calculated) 1739.50 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 859.649 mm

Centoid of section from tension fibre Ct 940.351 mm

Df/d (Calculated) 0.115

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? GO TO 2 (C)

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 1490.68 KNm DRS-NA

-4972.088 KNm DRS-NA

Neutral Axis lies in the Flange? NO DRS-NA

For Mu or Mu,lim Area of Steel, Ast 2492.04 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 2492.04 mm2

DRS-NA

Neutral Axis Ratio, Xu/d 0.11498 DRS-NA

Neutral Axis, Xu 200.000 mm DRS-NA

Due to Mu Compressive strain Ɛcc 0.00084 DRS-NA

Total Strain due to (Mu+Fx) Ɛcct 0.00096 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 24.41 N/mm2

DRS-NA

Additional compressive stress fcc 1.316 N/mm2

DRS-NA

Pu 1425.564 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

for BM+compression, Extra Increased area Ast 0.000 mm2

DRS-NA

Required Ast 10455.000 mm2

DRS-NA

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web YES

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 833.41 mm

yf,max 255.01 mm

Test : Muf,lim > Mu for Neutral in flange

Page 31: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1991.25 KN

Compressive force fo rParabolic portion, C2 1770.00 KN

Compressive force Trap. Web, Cu = C1+C2 3761.25 KN

Compressive force for Flange portion, C3 0.00 KN

Compressive force for Small Flange portion, C4 0.00 KN

Total Compressive force, C 3761.25 KN

Moment of C1 about Neutral Axis, Integration I1 1303909.73 KNmm

Moment C2 about Neutral Axis Integration I2 526832.21 KNmm

Moment f Cu about neutral axis Integration Iu 1830741.94 KNmm

CG of Cu from Neutral axis ,Y 486.738 mm

CG of Cu from Extreme Compression fibre X 346.669 mm

For average web only X/d 0.19929

CG C from Extreme Compression fibre X 346.669 mm

5238.67 KNm

Capacity Mu, lim (Only for trapezodal Web) 5238.78 KNm

Capacity Mu, lim (trapezodal Web + Flange) 5238.78 KNm

1223.98 KNm DRS

1392.802 mm

1392.831 mm

10417.525 mm2

10417.525 mm2

-0.001872 DRS-NA

7.82775 DRS-NA

-5238.780 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 836.663 mm DRS-NA

yf=0.15*xu+0.65*Df 255.499 mm DRS-NA

Lever Arm z = jd 1391.448 DRS-NA

10427.874 mm2

DRS-NA

DRS-NA GO TO 2 (C)

Hit and Trial α = Xu/d 0.300000 DRS-NA

0.00000 DRS-NA

Neutral Axis for balanced design Xu 521.85 mm DRS-NA

yf,max 208.28 mm DRS-NA

Compressive force for straight portion, C1 0.00 KN DRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN DRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN DRS-NA

Compressive force for Flange portion, C3 0.00 KN DRS-NA

Compressive force for Small Flange portion, C4 0.00 KN DRS-NA

Total Compressive force, C 0.00 KN DRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 32: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm DRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm DRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm DRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm DRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm DRS-NA

For average web only X/d 0.00000 DRS-NA

CG C from Extreme Compression fibre X 0.000 mm DRS-NA

0.00 KNm DRS-NA

Mu(Only for trapezodal Web) 0.00 KNm DRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm DRS-NA

0.00 KNm DRS-NA

0.000 mm DRS-NA

0.000 mm DRS-NA

0.000 mm2

DRS-NA

0.00 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 0.00 mm2

DRS-NA

0.00 KN DRS-NA

Neutral Axis, Xu 0.00 mm DRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 DRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 3.89 N/mm2

DRS-NA

Additional compressive stress fcc 0.215 N/mm2

DRS-NA

Pu 198.286 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

Extra Increased area 0.000 mm2

DRS-NA

Required Singly reinforced Ast 1300.000 mm2

DRS-NA

-0.001872 DRS-NA

7.82775 DRS-NA

-6462.764 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 1132.161 mm DRS-NA

yf=0.15*xu+0.65*Df 299.824 mm DRS-NA

Lever Arm z = jd 1268.521 DRS-NA

14110.852 mm2

DRS-NA

DRS-NA GO TO 2 (C)

Hit and Trial α = Xu/d 0.2698 DRS-NA

α is chosen to make Test : C - T = 0 -20.6699 DRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 33: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 469.29 mm DRS-NA

yf 200.39 mm DRS-NA

Compressive force for straight portion, C1 1121.27 KN DRS-NA

Compressive force fo rParabolic portion, C2 996.68 KN DRS-NA

Compressive force Trap.Web, Cu = C1+C2 2117.96 KN DRS-NA

Compressive force for Flange portion, C3 0.00 KN DRS-NA

Compressive force for Small Flange portion, C4 0.00 KN DRS-NA

Total Compressive force, C 2117.96 KN DRS-NA

Moment of C1 about Neutral Axis, Integration I1 413444.48 KNmm DRS-NA

Moment C2 about Neutral Axis Integration I2 167048.28 KNmm DRS-NA

Moment f Cu about neutral axis Integration Iu 580492.76 KNmm DRS-NA

CG of Cu from Neutral axis ,Y 274.082 mm DRS-NA

CG of Cu from Extreme Comprssion fibre X 195.209 mm DRS-NA

For average web only X/d 0.1122215 DRS-NA

CG C from Extreme Compression fibre Xmax 195.209 mm DRS-NA

3261.21 KNm DRS-NA

Mu (Only for trapezodal Web) 3270.74 KNm DRS-NA

Mu,lim (trapezodal Web + Flange) 3270.74 KNm DRS-NA

-3192.03 KNm DRS-NA

1544.275 mm DRS-NA

1544.291 mm DRS-NA

5849.078 mm2

DRS-NA

5866.099 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 5866.10 mm2

DRS-NA

4184.94 KN DRS-NA

Neutral Axis, Xu 469.291 DRS-NA

Due to Mu Compressive strain Ɛcc 0.00197 DRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00211 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 27.88 N/mm2

DRS-NA

Additional compressive stress fcc 1.496 N/mm2

DRS-NA

Pu 1425.719 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 DRS-NA DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

Extra Increased area 0.000 mm2

DRS-NA

Required Singly reinforced Ast 3000.000 mm2

DRS-NA

-0.001872000 DRS-NA

b= 0.36*fck*bw*d 7.82775000 DRS-NA

-6462.76408 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 1132.161 DRS-NA

Lever Arm z = jd 1268.521 DRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 34: Design of Trapezoidal T-Beam L Systematic Final

14110.852 mm2

DRS-NA

2 (C) Condition: Doubly Reinforced Section YES

Number of Layer of Comression bar 5.00 No.

Dia of Main reinforcement in compression 25 mm

Spacer for Vertical spacing 32 mm

Dia of Stirrups 8.00 mm

Clear cover, C 40.00 mm

Charactertistics strength of Concrete fck 25.00 N/mm2

Yield stress of steel fy 415.00 N/mm2

Helping calculation, d'' 57.00 mm

Effective depth from in compression side d' 174.50 mm

Effective depth at tension side d 1739.50 mm

Neutral Axis depth ration Xu,max/d 0.479

Neutral Axis Depth Xu.max 833.41 mmm

Compression level strain Ɛsc Or Ɛcc 0.00277

Compressive level stress of steel fsc 352.086 N/mm2

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2

Area of compressive stress Asc 2293.975 mm2

2166.178 mm2

For DRS Total Area of tension steel Ast 12583.702 mm2

for Tension, Area of Steel, Ast3 0.00 mm2

for BM+Tension, total rqd. Steel, Ast 12583.70 mm2

Neutral Axis, Xu 833.407 mm

Due to Mu Compressive strain Ɛcc 0.00350

Total Strain due to (Mu+P) Ɛcct 0.00350 <= 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 12867.960 mm2

Due To Fx, Additional compressive stress fsc 31.96 N/mm2

Additional compressive stress fcc 1.706 N/mm2

Pu 1924.355 KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00015932 YES

Test : Fx-Pu =0 -153.508599

Extra Increased area 284.258 mm2

Required Double reinforced Ast 12867.960 mm2

Check for Shear forceDesign Shear force 1598.66 KN

Shear stress 1.671 N/mm2

Percentage of tension steel, pt 1.467 %

Percentage of compressive steel, pc 0.282 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 35: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 5.098 %

α=0.8*fck/6.89*pt 0.569

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.070 N/mm2

1.00 x 1.070 = 1.070

> 1.671 NOT OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 120.731 mm

Plan to Provide, spacing of stirrups Sv 100.000

Minimum required Asv 0.4*b*Sv/0.87*fy 55.3940 mm2

Ф 5.9384 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 100.00 mm C/C

Permissible shear stress,

K´tc =

Page 36: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 3093.46 mm2

Provide 25 Ф bar 6.30 Nos. Say 6.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 3216.99 mm2

Provide 25 Ф bar 6.55 Nos. Say 7.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 164.44 N/mm

2

Spacing of reinforcement S 65.800 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 56.367 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0008659

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0004506

Ɛmb = Ɛ1b-Ɛ2b 0.0004153

0.0689500

Stress in tensile reinforced level fst 76.267 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0003910

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0008949

Ɛmt = Ɛ1t-Ɛ2t -0.0005039

-0.0844476

-0.0154975 < 0.2

INPUT DATA:- Governing Load Case For Design LC 554

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 721.95 KN LC 251

Design Torsional Moment for shear Tu=Mx 60.62 KNm LC 251

Moment M'uz 1633.01 KN LC 554

Design Torsional Moment for moment Tu=Mx 15.92 KNm LC 554

Axial Force, Fx 353.89 KN T LC 554

Bending in another direction Muy 5.37 KNm LC 554

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 200.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 2.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 65 (32.5m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 37: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 1247.52 KNm

Design Moment Mu 1294.34 KNm

Design shear force Vu 937.49 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1711.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 621.687 mm

Centoid of section from tension fibre Ct 1178.313 mm

Df/d (Calculated) 0.117

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 7032.13 KNm

5737.784 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 2113.28 mm2

For Tension Area of Steel, Ast2 980.18 mm2

for BM+Tension, total rqd. Steel, Ast 3093.46 mm2

Neutral Axis Ratio, Xu/d 0.02065

Neutral Axis, Xu 35.326 mm

Due to Mu Compressive strain Ɛcc 0.00015

Total Strain due to (Mu+Fx) Ɛcct 0.00027 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 3093.460 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 819.75 mm NA

yf,max 252.96 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 38: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1762.76 KN NA

Compressive force fo rParabolic portion, C2 1566.90 KN NA

Compressive force Trap. Web, Cu = C1+C2 3329.66 KN NA

Compressive force for Flange portion, C3 4348.50 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 7678.16 KN NA

Moment of C1 about Neutral Axis, Integration I1 1135379.86 KNmm NA

Moment C2 about Neutral Axis Integration I2 458739.34 KNmm NA

Moment f Cu about neutral axis Integration Iu 1594119.20 KNmm NA

CG of Cu from Neutral axis ,Y 478.763 mm NA

CG of Cu from Extreme Compression fibre X 340.990 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 204.506 mm NA

11567.01 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4561.67 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 11567.10 KNm NA

-10272.76 KNm SRS

1506.654 mm NA

1506.494 mm NA

21263.770 mm2

NA

21266.198 mm2

NA

-0.001929

12.08578

-8935.608

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 856.446 mm

yf=0.15*xu+0.65*Df 258.467 mm

Lever Arm z = jd 1700.989

18834.573 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 513.30 mm SRS-NA

yf,max 207.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 39: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 980.18 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 980.18 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 980.178 mm2

SRS-NA

-0.001929 SRS-NA

12.08578 SRS-NA

3358.119 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -266.517 mm SRS-NA

yf=0.15*xu+0.65*Df 90.022 mm SRS-NA

Lever Arm z = jd 1474.332 SRS-NA

2431.566 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.0967 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 40: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 980.18 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 980.18 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 980.178 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 41: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1711.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 819.75 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00323 SRS-NA

Compressive level stress of steel fsc 356.075 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -18082.953 mm2

SRS-NA

-17275.327 mm2

SRS-NA

For DRS Total Area of tension steel Ast 3990.871 mm2

SRS-NA

for Tension, Area of Steel, Ast3 18255.51 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 22246.38 mm2

SRS-NA

Neutral Axis, Xu 819.753 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 22246.376 mm2

SRS-NA

Check for Shear forceDesign Shear force 937.49 KN

Shear stress 1.218 N/mm2

Percentage of tension steel, pt 0.383 %

Percentage of compressive steel, pc 0.446 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 42: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.549 %

α=0.8*fck/6.89*pt 0.638

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.040 N/mm2

1.00 x 1.040 = 1.040

> 1.218 NOT OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 453.162 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 43: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 7122.37 mm2

Provide 25 Ф bar 14.51 Nos. Say 15.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 981.74 mm2

Provide 25 Ф bar 2.00 Nos. Say 2.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 117.62 N/mm

2

Spacing of reinforcement S 23.214 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 51.069 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0006427

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0002004

Ɛmb = Ɛ1b-Ɛ2b 0.0004422

0.0669026

Stress in tensile reinforced level fst 123.094 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0006419

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0003953

Ɛmt = Ɛ1t-Ɛ2t 0.0002465

0.0375372

0.1044398 < 0.2

INPUT DATA:- Governing Load Case For Design LC 548

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 219.58 KN LC 268

Design Torsional Moment for shear Tu=Mx 6.32 KNm LC 268

Moment M'uz 3342.74 KN LC 548

Design Torsional Moment for moment Tu=Mx 19.49 KNm LC 548

Axial Force, Fx 1315.08 KN T LC 548

Bending in another direction Muy 34.48 KNm LC 548

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 200.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 4.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 80 (40m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 44: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 10.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 1988.09 KNm

Design Moment Mu 2045.41 KNm

Design shear force Vu 242.05 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1652.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 621.687 mm

Centoid of section from tension fibre Ct 1178.313 mm

Df/d (Calculated) 0.121

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 6777.25 KNm

4731.834 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 3479.99 mm2

For Tension Area of Steel, Ast2 3642.39 mm2

for BM+Tension, total rqd. Steel, Ast 7122.37 mm2

Neutral Axis Ratio, Xu/d 0.03521

Neutral Axis, Xu 58.174 mm

Due to Mu Compressive strain Ɛcc 0.00026

Total Strain due to (Mu+Fx) Ɛcct 0.00038 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 7122.372 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 791.49 mm NA

yf,max 248.72 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 45: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1701.98 KN NA

Compressive force fo rParabolic portion, C2 1512.87 KN NA

Compressive force Trap. Web, Cu = C1+C2 3214.84 KN NA

Compressive force for Flange portion, C3 4348.50 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 7563.34 KN NA

Moment of C1 about Neutral Axis, Integration I1 1058427.84 KNmm NA

Moment C2 about Neutral Axis Integration I2 427647.61 KNmm NA

Moment f Cu about neutral axis Integration Iu 1486075.45 KNmm NA

CG of Cu from Neutral axis ,Y 462.254 mm NA

CG of Cu from Extreme Compression fibre X 329.231 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 197.436 mm NA

11001.28 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4252.50 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 11001.37 KNm NA

-8955.96 KNm SRS

1454.715 mm NA

1454.564 mm NA

20945.848 mm2

NA

20948.192 mm2

NA

-0.001929

11.65441

-8536.638

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 852.913 mm

yf=0.15*xu+0.65*Df 257.937 mm

Lever Arm z = jd 1641.995

18556.993 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 495.60 mm SRS-NA

yf,max 204.34 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 46: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 3642.39 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3642.39 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3642.386 mm2

SRS-NA

-0.001929 SRS-NA

11.65441 SRS-NA

2440.284 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -202.592 mm SRS-NA

yf=0.15*xu+0.65*Df 99.611 mm SRS-NA

Lever Arm z = jd 1520.416 SRS-NA

3726.068 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2545 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 47: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 3642.39 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3642.39 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3642.386 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 48: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 10.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 66.00 mm SRS-NA

Effective depth at tension side d 1652.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 791.49 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00321 SRS-NA

Compressive level stress of steel fsc 355.913 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -16379.017 mm2

SRS-NA

-15640.169 mm2

SRS-NA

For DRS Total Area of tension steel Ast 5308.023 mm2

SRS-NA

for Tension, Area of Steel, Ast3 19282.55 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 24590.58 mm2

SRS-NA

Neutral Axis, Xu 791.486 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 24590.578 mm2

SRS-NA

Check for Shear forceDesign Shear force 242.05 KN

Shear stress 0.326 N/mm2

Percentage of tension steel, pt 0.990 %

Percentage of compressive steel, pc 0.132 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 49: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.843 %

α=0.8*fck/6.89*pt 0.599

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.056 N/mm2

1.00 x 1.056 = 1.056

> 0.326 OK

Shear Reinforcement is NOT required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. -110.404 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 50: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 7261.75 mm2

Provide 25 Ф bar 14.79 Nos. Say 15.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 981.74 mm2

Provide 25 Ф bar 2.00 Nos. Say 2.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 117.93 N/mm

2

Spacing of reinforcement S 23.500 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 49.130 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0006436

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0001962

Ɛmb = Ɛ1b-Ɛ2b 0.0004474

0.0652607

Stress in tensile reinforced level fst 122.779 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0006398

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0003875

Ɛmt = Ɛ1t-Ɛ2t 0.0002523

0.0370019

0.1022627 < 0.2

INPUT DATA:- Governing Load Case For Design LC 528

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 276.23 KN LC 519

Design Torsional Moment for shear Tu=Mx 57.13 KNm LC 519

Moment M'uz 3453.01 KN LC 528

Design Torsional Moment for moment Tu=Mx 21.07 KNm LC 528

Axial Force, Fx 1337.39 KN T LC 528

Bending in another direction Muy 35.09 KNm LC 528

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 250.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 4.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 173 (6.5m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 51: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 2030.93 KNm

Design Moment Mu 2092.90 KNm

Design shear force Vu 479.36 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1654.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 590.443 mm

Centoid of section from tension fibre Ct 1209.557 mm

Df/d (Calculated) 0.151

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 8370.05 KNm

6277.149 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 3557.58 mm2

For Tension Area of Steel, Ast2 3704.17 mm2

for BM+Tension, total rqd. Steel, Ast 7261.75 mm2

Neutral Axis Ratio, Xu/d 0.03596

Neutral Axis, Xu 59.471 mm

Due to Mu Compressive strain Ɛcc 0.00026

Total Strain due to (Mu+Fx) Ɛcct 0.00038 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 7261.747 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 792.44 mm NA

yf,max 281.37 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 52: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1704.04 KN NA

Compressive force fo rParabolic portion, C2 1514.70 KN NA

Compressive force Trap. Web, Cu = C1+C2 3218.74 KN NA

Compressive force for Flange portion, C3 5435.63 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 8654.36 KN NA

Moment of C1 about Neutral Axis, Integration I1 1060992.17 KNmm NA

Moment C2 about Neutral Axis Integration I2 428683.70 KNmm NA

Moment f Cu about neutral axis Integration Iu 1489675.87 KNmm NA

CG of Cu from Neutral axis ,Y 462.814 mm NA

CG of Cu from Extreme Compression fibre X 329.630 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 201.106 mm NA

12573.78 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4262.80 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 12573.87 KNm NA

-10480.97 KNm SRS

1453.023 mm NA

1452.894 mm NA

23967.691 mm2

NA

23969.982 mm2

NA

-0.001929

11.56304

-9485.891

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 980.914 mm

yf=0.15*xu+0.65*Df 309.637 mm

Lever Arm z = jd 1644.067

21182.742 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 496.20 mm SRS-NA

yf,max 236.93 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 53: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 3704.17 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3704.17 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3704.168 mm2

SRS-NA

-0.001929 SRS-NA

11.56304 SRS-NA

3463.875 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -285.923 mm SRS-NA

yf=0.15*xu+0.65*Df 119.612 mm SRS-NA

Lever Arm z = jd 1450.716 SRS-NA

3995.747 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2552 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 54: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 3704.17 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3704.17 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3704.168 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 55: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1654.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 792.44 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00322 SRS-NA

Compressive level stress of steel fsc 355.993 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -19115.387 mm2

SRS-NA

-18257.323 mm2

SRS-NA

For DRS Total Area of tension steel Ast 5712.658 mm2

SRS-NA

for Tension, Area of Steel, Ast3 21961.49 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 27674.15 mm2

SRS-NA

Neutral Axis, Xu 792.444 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 27674.150 mm2

SRS-NA

Check for Shear forceDesign Shear force 479.36 KN

Shear stress 0.644 N/mm2

Percentage of tension steel, pt 0.989 %

Percentage of compressive steel, pc 0.132 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 56: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.841 %

α=0.8*fck/6.89*pt 0.600

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.056 N/mm2

1.00 x 1.056 = 1.056

> 0.644 OK

Shear Reinforcement is NOT required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. -195.743 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 57: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 7700.20 mm2

Provide 25 Ф bar 15.69 Nos. Say 16.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 1963.48 mm2

Provide 25 Ф bar 4.00 Nos. Say 4.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 119.54 N/mm

2

Spacing of reinforcement S 21.933 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 48.986 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0006526

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0001846

Ɛmb = Ɛ1b-Ɛ2b 0.0004680

0.0680647

Stress in tensile reinforced level fst 121.172 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0006315

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0003655

Ɛmt = Ɛ1t-Ɛ2t 0.0002660

0.0388975

0.1069622 < 0.2

INPUT DATA:- Governing Load Case For Design LC 508

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 361.08 KN LC 206

Design Torsional Moment for shear Tu=Mx 4.78 KNm LC 206

Moment M'uz 3722.93 KN LC 508

Design Torsional Moment for moment Tu=Mx 4.25 KNm LC 508

Axial Force, Fx 1399.57 KN T LC 508

Bending in another direction Muy 17.72 KNm LC 508

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 250.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 4.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No.185 (12.5m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 58: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 2234.48 KNm

Design Moment Mu 2246.98 KNm

Design shear force Vu 378.08 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1654.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 590.443 mm

Centoid of section from tension fibre Ct 1209.557 mm

Df/d (Calculated) 0.151

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 8370.05 KNm

6123.067 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 3823.81 mm2

For Tension Area of Steel, Ast2 3876.39 mm2

for BM+Tension, total rqd. Steel, Ast 7700.20 mm2

Neutral Axis Ratio, Xu/d 0.03865

Neutral Axis, Xu 63.922 mm

Due to Mu Compressive strain Ɛcc 0.00028

Total Strain due to (Mu+Fx) Ɛcct 0.00040 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 7700.201 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 792.44 mm NA

yf,max 281.37 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 59: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1704.04 KN NA

Compressive force fo rParabolic portion, C2 1514.70 KN NA

Compressive force Trap. Web, Cu = C1+C2 3218.74 KN NA

Compressive force for Flange portion, C3 5435.63 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 8654.36 KN NA

Moment of C1 about Neutral Axis, Integration I1 1060992.17 KNmm NA

Moment C2 about Neutral Axis Integration I2 428683.70 KNmm NA

Moment f Cu about neutral axis Integration Iu 1489675.87 KNmm NA

CG of Cu from Neutral axis ,Y 462.814 mm NA

CG of Cu from Extreme Compression fibre X 329.630 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 201.106 mm NA

12573.78 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4262.80 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 12573.87 KNm NA

-10326.89 KNm SRS

1453.023 mm NA

1452.894 mm NA

23967.691 mm2

NA

23969.982 mm2

NA

-0.001929

11.56304

-9485.891

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 980.914 mm

yf=0.15*xu+0.65*Df 309.637 mm

Lever Arm z = jd 1644.067

21182.742 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 496.20 mm SRS-NA

yf,max 236.93 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Page 60: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 3876.39 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3876.39 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3876.388 mm2

SRS-NA

-0.001929 SRS-NA

11.56304 SRS-NA

3309.793 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -273.736 mm SRS-NA

yf=0.15*xu+0.65*Df 121.440 mm SRS-NA

Lever Arm z = jd 1466.916 SRS-NA

4242.542 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2659 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

Page 61: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 3876.39 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3876.39 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3876.388 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

Page 62: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1654.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 792.44 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00322 SRS-NA

Compressive level stress of steel fsc 355.993 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -18834.371 mm2

SRS-NA

-17988.921 mm2

SRS-NA

For DRS Total Area of tension steel Ast 5981.060 mm2

SRS-NA

for Tension, Area of Steel, Ast3 21865.31 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 27846.37 mm2

SRS-NA

Neutral Axis, Xu 792.444 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 27846.370 mm2

SRS-NA

Check for Shear forceDesign Shear force 378.08 KN

Shear stress 0.508 N/mm2

Percentage of tension steel, pt 1.055 %

Percentage of compressive steel, pc 0.264 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 63: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 5.039 %

α=0.8*fck/6.89*pt 0.576

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.067 N/mm2

1.00 x 1.067 = 1.067

> 0.508 OK

Shear Reinforcement is NOT required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. -144.372 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 64: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 2731.67 mm2

Provide 25 Ф bar 5.56 Nos. Say 6.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 1963.48 mm2

Provide 25 Ф bar 4.00 Nos. Say 4.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 168.55 N/mm

2

Spacing of reinforcement S 65.800 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 56.367 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0008874

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0005112

Ɛmb = Ɛ1b-Ɛ2b 0.0003763

0.0624692

Stress in tensile reinforced level fst 72.158 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0003699

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0010135

Ɛmt = Ɛ1t-Ɛ2t -0.0006435

-0.1078396

-0.0453704 < 0.2

INPUT DATA:- Governing Load Case For Design LC 560

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 706.48 KN LC 515

Design Torsional Moment for shear Tu=Mx 68.67 KNm LC 515

Moment M'uz 1470.91 KN LC 560

Design Torsional Moment for moment Tu=Mx 11.18 KNm LC 560

Axial Force, Fx 295.67 KN T LC 560

Bending in another direction Muy 1.61 KNm LC 560

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 250.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 2.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 198 (19m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 65: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 1139.60 KNm

Design Moment Mu 1172.48 KNm

Design shear force Vu 950.64 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1711.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 590.443 mm

Centoid of section from tension fibre Ct 1209.557 mm

Df/d (Calculated) 0.146

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 8677.85 KNm

7505.364 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 1912.76 mm2

For Tension Area of Steel, Ast2 818.92 mm2

for BM+Tension, total rqd. Steel, Ast 2731.67 mm2

Neutral Axis Ratio, Xu/d 0.01869

Neutral Axis, Xu 31.974 mm

Due to Mu Compressive strain Ɛcc 0.00014

Total Strain due to (Mu+Fx) Ɛcct 0.00026 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 2731.674 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 819.75 mm NA

yf,max 285.46 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 66: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1762.76 KN NA

Compressive force fo rParabolic portion, C2 1566.90 KN NA

Compressive force Trap. Web, Cu = C1+C2 3329.66 KN NA

Compressive force for Flange portion, C3 5435.63 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 8765.29 KN NA

Moment of C1 about Neutral Axis, Integration I1 1135379.86 KNmm NA

Moment C2 about Neutral Axis Integration I2 458739.34 KNmm NA

Moment f Cu about neutral axis Integration Iu 1594119.20 KNmm NA

CG of Cu from Neutral axis ,Y 478.763 mm NA

CG of Cu from Extreme Compression fibre X 340.990 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 207.048 mm NA

13182.48 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4561.67 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 13182.57 KNm NA

-12010.09 KNm SRS

1504.090 mm NA

1503.952 mm NA

24274.821 mm2

NA

24277.207 mm2

NA

-0.001929

11.97979

-9893.202

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 980.733 mm

yf=0.15*xu+0.65*Df 309.610 mm

Lever Arm z = jd 1701.067

21464.036 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 513.30 mm SRS-NA

yf,max 239.50 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 67: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 818.92 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 818.92 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 818.917 mm2

SRS-NA

-0.001929 SRS-NA

11.97979 SRS-NA

4585.680 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -361.713 mm SRS-NA

yf=0.15*xu+0.65*Df 108.243 mm SRS-NA

Lever Arm z = jd 1319.563 SRS-NA

2460.983 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2698 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 68: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 818.92 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 818.92 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 818.917 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 69: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1711.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 819.75 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00323 SRS-NA

Compressive level stress of steel fsc 356.075 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -21141.137 mm2

SRS-NA

-20196.926 mm2

SRS-NA

For DRS Total Area of tension steel Ast 4080.281 mm2

SRS-NA

for Tension, Area of Steel, Ast3 21015.84 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 25096.12 mm2

SRS-NA

Neutral Axis, Xu 819.753 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 25096.124 mm2

SRS-NA

Check for Shear forceDesign Shear force 950.64 KN

Shear stress 1.235 N/mm2

Percentage of tension steel, pt 0.383 %

Percentage of compressive steel, pc 0.255 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 70: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.358 %

α=0.8*fck/6.89*pt 0.666

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.028 N/mm2

1.00 x 1.028 = 1.028

> 1.235 NOT OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 390.564 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 71: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 6916.69 mm2

Provide 25 Ф bar 14.09 Nos. Say 14.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 981.74 mm2

Provide 25 Ф bar 2.00 Nos. Say 2.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 100.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 301.10 N/mm

2

Spacing of reinforcement S 25.308 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 49.309 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0017588

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0001284

Ɛmb = Ɛ1b-Ɛ2b 0.0016303

0.2368237

Stress in tensile reinforced level fst -140.694 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] -0.0007332

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0004069

Ɛmt = Ɛ1t-Ɛ2t -0.0011401

-0.1677794

0.0690442 < 0.2

INPUT DATA:- Governing Load Case For Design LC 230

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 1068.57 KN LC 567

Design Torsional Moment for shear Tu=Mx 75.62 KNm LC 567

Moment M'uz 4092.23 KN LC 230

Design Torsional Moment for moment Tu=Mx 18.07 KNm LC 230

Axial Force, Fx 1459.71 KN C LC 230

Bending in another direction Muy 27.65 KNm LC 230

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 250.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 450.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 4.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 210 (25m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 72: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 4092.32 KNm

Design Moment Mu 4145.47 KNm

Design shear force Vu 1337.44 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1654.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 852.381 mm

Centoid of section from tension fibre Ct 947.619 mm

Df/d (Calculated) 0.151

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? GO TO 2 (B)

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 1569.38 KNm SRS-NA

-2576.087 KNm SRS-NA

Neutral Axis lies in the Flange? NO SRS-NA

For Mu or Mu,lim Area of Steel, Ast 2803.27 mm2

SRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 2803.27 mm2

SRS-NA

Neutral Axis Ratio, Xu/d 0.15115 SRS-NA

Neutral Axis, Xu 250.000 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00110 SRS-NA

Total Strain due to (Mu+Fx) Ɛcct 0.00123 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 24.41 N/mm2

SRS-NA

Additional compressive stress fcc 1.316 N/mm2

SRS-NA

Pu 1307.154 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 YES SRS-NA

Test : Fx-Pu =0 152.552663 SRS-NA

for BM+compression, Extra Increased area Ast 7651.732 mm2

SRS-NA

Required Ast 10455.000 mm2

SRS-NA

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web YES

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 792.44 mm

yf,max 281.37 mm

Test : Muf,lim > Mu for Neutral in flange

Page 73: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1704.04 KN

Compressive force fo rParabolic portion, C2 1514.70 KN

Compressive force Trap. Web, Cu = C1+C2 3218.74 KN

Compressive force for Flange portion, C3 0.00 KN

Compressive force for Small Flange portion, C4 0.00 KN

Total Compressive force, C 3218.74 KN

Moment of C1 about Neutral Axis, Integration I1 1060992.17 KNmm

Moment C2 about Neutral Axis Integration I2 428683.70 KNmm

Moment f Cu about neutral axis Integration Iu 1489675.87 KNmm

CG of Cu from Neutral axis ,Y 462.814 mm

CG of Cu from Extreme Compression fibre X 329.630 mm

For average web only X/d 0.19929

CG C from Extreme Compression fibre X 329.630 mm

4262.71 KNm

Capacity Mu, lim (Only for trapezodal Web) 4262.80 KNm

Capacity Mu, lim (trapezodal Web + Flange) 4262.80 KNm

-117.33 KNm SRS

1324.343 mm

1324.370 mm

8914.934 mm2

8914.934 mm2

-0.001685

6.69870

-4262.799

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 795.539 mm

yf=0.15*xu+0.65*Df 281.831 mm

Lever Arm z = jd 1323.056

8923.791 mm2

NA GO TO 2 (B)

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 496.20 mm SRS-NA

yf,max 236.93 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 74: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 0.00 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 3.89 N/mm2

SRS-NA

Additional compressive stress fcc 0.215 N/mm2

SRS-NA

Pu 178.934 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 1280.772357 SRS-NA

Extra Increased area 1300.000 mm2

SRS-NA

Required Singly reinforced Ast 1300.000 mm2

SRS-NA

-0.001685 SRS-NA

6.69870 SRS-NA

-4145.470 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 766.688 mm SRS-NA

yf=0.15*xu+0.65*Df 277.503 mm SRS-NA

Lever Arm z = jd 1335.058 SRS-NA

8600.158 mm2

SRS-NA

0.151 YES

Hit and Trial α = Xu/d 0.4753

α is chosen to make Test : C - T = 0 0.6912

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 75: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 786.12 mm

yf 280.42 mm

Compressive force for straight portion, C1 1690.45 KN

Compressive force fo rParabolic portion, C2 1502.62 KN

Compressive force Trap.Web, Cu = C1+C2 3193.06 KN

Compressive force for Flange portion, C3 0.00 KN

Compressive force for Small Flange portion, C4 0.00 KN

Total Compressive force, C 3193.06 KN

Moment of C1 about Neutral Axis, Integration I1 1044134.15 KNmm

Moment C2 about Neutral Axis Integration I2 421872.38 KNmm

Moment f Cu about neutral axis Integration Iu 1466006.53 KNmm

CG of Cu from Neutral axis ,Y 459.122 mm

CG of Cu from Extreme Comprssion fibre X 327.001 mm

For average web only X/d 0.1977030

CG C from Extreme Compression fibre Xmax 327.001 mm

4224.81 KNm

Mu (Only for trapezodal Web) 4237.19 KNm

Mu,lim (trapezodal Web + Flange) 4237.19 KNm

91.72 KNm

1326.973 mm

1326.999 mm

8818.165 mm2

8843.826 mm2

For Tension Area of Steel, Ast2 0.00 mm2

for BM+Tension, total rqd. Steel, Ast 8843.83 mm2

3123.94 KN

Neutral Axis, Xu 786.123

Due to Mu Compressive strain Ɛcc 0.00347

Total Strain due to (Mu+P) Ɛcct 0.00360 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 6916.690 mm2

Due To Fx, Additional compressive stress fsc 26.19 N/mm2

Additional compressive stress fcc 1.408 N/mm2

Pu 1312.216 KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013058 YES

Test : Fx-Pu =0 147.490189

Extra Increased area -1927.136 mm2

Required Singly reinforced Ast 6916.690 mm2

-0.001684800

b= 0.36*fck*bw*d 6.69870000

-4145.47047

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 766.688

Lever Arm z = jd 1335.058

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 76: Design of Trapezoidal T-Beam L Systematic Final

8600.158 mm2

2 (C) Condition: Doubly Reinforced Section GO TO 2 (B)

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1654.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 792.44 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00322 SRS-NA

Compressive level stress of steel fsc 355.993 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2)11.150 N/mm2 SRS-NA

Area of compressive stress Asc -213.985 mm2

SRS-NA

-204.380 mm2

SRS-NA

For DRS Total Area of tension steel Ast 8710.554 mm2

SRS-NA

for Tension, Area of Steel, Ast3 0.00 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 8710.55 mm2

SRS-NA

Neutral Axis, Xu 792.444 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12867.960 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 23.78 N/mm2

SRS-NA

Additional compressive stress fcc 1.283 N/mm2

SRS-NA

Pu 1328.378 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00011854 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 4157.406 mm2

SRS-NA

Required Double reinforced Ast 12867.960 mm2

SRS-NA

Check for Shear forceDesign Shear force 1337.44 KN

Shear stress 1.797 N/mm2

Percentage of tension steel, pt 0.923 %

Percentage of compressive steel, pc 0.132 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 77: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.775 %

α=0.8*fck/6.89*pt 0.608

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.052 N/mm2

1.00 x 1.052 = 1.052

> 1.797 Not OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 108.351 mm

Plan to Provide, spacing of stirrups Sv 100.000

Minimum required Asv 0.4*b*Sv/0.87*fy 49.8546 mm2

Ф 5.6337 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 100.00 mm C/C

Permissible shear stress,

K´tc =

Page 78: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 12867.96 mm2

Provide 25 Ф bar 26.21 Nos. Say 26.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 2263.98 mm2

Provide 25 Ф bar 4.61 Nos. Say 5.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 100.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 239.80 N/mm

2

Spacing of reinforcement S 15.160 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 48.473 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0012790

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0000668

Ɛmb = Ɛ1b-Ɛ2b 0.0012123

0.1732484

Stress in tensile reinforced level fst -98.948 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] -0.0005032

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0002371

Ɛmt = Ɛ1t-Ɛ2t -0.0007403

-0.1071519

0.0660965 < 0.2

INPUT DATA:- Governing Load Case For Design LC 534

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 1459.77 KN LC 238

Design Torsional Moment for shear Tu=Mx 30.45 KNm LC 238

Moment M'uz 6357.32 KN LC 534

Design Torsional Moment for moment Tu=Mx 33.01 KNm LC 534

Axial Force, Fx 1909.89 KN C LC 534

Bending in another direction Muy 38.87 KNm LC 534

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 250.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 500.00 mm Approx.Effective

Width of web in compression fibre, bcw 500.00 mm Approx.Effective

Width of web in tension, btw' 500.00 mm Approx.Effective

Layer of bar in tension zone 1.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 210 (25m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 79: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 6357.44 KNm

Design Moment Mu 6446.76 KNm

Design shear force Vu 1557.21 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 500.00 mm

Width of Web, Average btw 500.00 mm

Effective Depth , d (Calculated) 1739.50 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 852.381 mm

Centoid of section from tension fibre Ct 947.619 mm

Df/d (Calculated) 0.144

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? GO TO 2 (C)

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 1839.95 KNm DRS-NA

-4606.813 KNm DRS-NA

Neutral Axis lies in the Flange? NO DRS-NA

For Mu or Mu,lim Area of Steel, Ast 3114.81 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 3114.81 mm2

DRS-NA

Neutral Axis Ratio, Xu/d 0.14372 DRS-NA

Neutral Axis, Xu 250.000 mm DRS-NA

Due to Mu Compressive strain Ɛcc 0.00105 DRS-NA

Total Strain due to (Mu+Fx) Ɛcct 0.00117 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 24.41 N/mm2

DRS-NA

Additional compressive stress fcc 1.316 N/mm2

DRS-NA

Pu 1425.564 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

for BM+compression, Extra Increased area Ast 0.000 mm2

DRS-NA

Required Ast 10455.000 mm2

DRS-NA

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web YES

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 833.41 mm

yf,max 287.51 mm

Test : Muf,lim > Mu for Neutral in flange

Page 80: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1991.25 KN

Compressive force fo rParabolic portion, C2 1770.00 KN

Compressive force Trap. Web, Cu = C1+C2 3761.25 KN

Compressive force for Flange portion, C3 0.00 KN

Compressive force for Small Flange portion, C4 0.00 KN

Total Compressive force, C 3761.25 KN

Moment of C1 about Neutral Axis, Integration I1 1303909.73 KNmm

Moment C2 about Neutral Axis Integration I2 526832.21 KNmm

Moment f Cu about neutral axis Integration Iu 1830741.94 KNmm

CG of Cu from Neutral axis ,Y 486.738 mm

CG of Cu from Extreme Compression fibre X 346.669 mm

For average web only X/d 0.19929

CG C from Extreme Compression fibre X 346.669 mm

5238.67 KNm

Capacity Mu, lim (Only for trapezodal Web) 5238.78 KNm

Capacity Mu, lim (trapezodal Web + Flange) 5238.78 KNm

1207.98 KNm DRS

1392.802 mm

1392.831 mm

10417.525 mm2

10417.525 mm2

-0.001872 DRS-NA

7.82775 DRS-NA

-5238.780 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 836.663 mm DRS-NA

yf=0.15*xu+0.65*Df 287.999 mm DRS-NA

Lever Arm z = jd 1391.448 DRS-NA

10427.874 mm2

DRS-NA

DRS-NA GO TO 2 (C)

Hit and Trial α = Xu/d 0.300000 DRS-NA

0.00000 DRS-NA

Neutral Axis for balanced design Xu 521.85 mm DRS-NA

yf,max 240.78 mm DRS-NA

Compressive force for straight portion, C1 0.00 KN DRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN DRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN DRS-NA

Compressive force for Flange portion, C3 0.00 KN DRS-NA

Compressive force for Small Flange portion, C4 0.00 KN DRS-NA

Total Compressive force, C 0.00 KN DRS-NA

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

For Df/d > 0.2 Ast

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

Page 81: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm DRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm DRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm DRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm DRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm DRS-NA

For average web only X/d 0.00000 DRS-NA

CG C from Extreme Compression fibre X 0.000 mm DRS-NA

0.00 KNm DRS-NA

Mu(Only for trapezodal Web) 0.00 KNm DRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm DRS-NA

0.00 KNm DRS-NA

0.000 mm DRS-NA

0.000 mm DRS-NA

0.000 mm2

DRS-NA

0.00 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 0.00 mm2

DRS-NA

0.00 KN DRS-NA

Neutral Axis, Xu 0.00 mm DRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 DRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 3.89 N/mm2

DRS-NA

Additional compressive stress fcc 0.215 N/mm2

DRS-NA

Pu 198.286 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

Extra Increased area 0.000 mm2

DRS-NA

Required Singly reinforced Ast 1300.000 mm2

DRS-NA

-0.001872 DRS-NA

7.82775 DRS-NA

-6446.760 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 1127.712 mm DRS-NA

yf=0.15*xu+0.65*Df 331.657 mm DRS-NA

Lever Arm z = jd 1270.372 DRS-NA

14055.402 mm2

DRS-NA

DRS-NA GO TO 2 (C)

Hit and Trial α = Xu/d 0.1445 DRS-NA

α is chosen to make Test : C - T = 0 -28.0871 DRS-NA

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

Page 82: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 251.36 mm DRS-NA

yf 200.20 mm DRS-NA

Compressive force for straight portion, C1 600.57 KN DRS-NA

Compressive force fo rParabolic portion, C2 533.84 KN DRS-NA

Compressive force Trap.Web, Cu = C1+C2 1134.40 KN DRS-NA

Compressive force for Flange portion, C3 0.00 KN DRS-NA

Compressive force for Small Flange portion, C4 0.00 KN DRS-NA

Total Compressive force, C 1134.40 KN DRS-NA

Moment of C1 about Neutral Axis, Integration I1 118608.90 KNmm DRS-NA

Moment C2 about Neutral Axis Integration I2 47922.79 KNmm DRS-NA

Moment f Cu about neutral axis Integration Iu 166531.69 KNmm DRS-NA

CG of Cu from Neutral axis ,Y 146.801 mm DRS-NA

CG of Cu from Extreme Comprssion fibre X 104.556 mm DRS-NA

For average web only X/d 0.0601071 DRS-NA

CG C from Extreme Compression fibre Xmax 104.556 mm DRS-NA

1849.29 KNm DRS-NA

Mu (Only for trapezodal Web) 1854.68 KNm DRS-NA

Mu,lim (trapezodal Web + Flange) 1854.68 KNm DRS-NA

-4592.08 KNm DRS-NA

1634.935 mm DRS-NA

1634.944 mm DRS-NA

3132.834 mm2

DRS-NA

3141.951 mm2

DRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

DRS-NA

for BM+Tension, total rqd. Steel, Ast 3141.95 mm2

DRS-NA

3943.11 KN DRS-NA

Neutral Axis, Xu 251.358 DRS-NA

Due to Mu Compressive strain Ɛcc 0.00106 DRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00119 < 0.0035 DRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

DRS-NA

Due To Fx, Additional compressive stress fsc 27.88 N/mm2

DRS-NA

Additional compressive stress fcc 1.496 N/mm2

DRS-NA

Pu 1425.719 KN DRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 DRS-NA DRS-NA

Test : Fx-Pu =0 0.000000 DRS-NA

Extra Increased area 0.000 mm2

DRS-NA

Required Singly reinforced Ast 3000.000 mm2

DRS-NA

-0.001872000 DRS-NA

b= 0.36*fck*bw*d 7.82775000 DRS-NA

-6446.76001 DRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 1127.712 DRS-NA

Lever Arm z = jd 1270.372 DRS-NA

For (web +Flange) balanced section Ast

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

Force of Tension, T

Page 83: Design of Trapezoidal T-Beam L Systematic Final

14055.402 mm2

DRS-NA

2 (C) Condition: Doubly Reinforced Section YES

Number of Layer of Comression bar 5.00 No.

Dia of Main reinforcement in compression 25 mm

Spacer for Vertical spacing 32 mm

Dia of Stirrups 8.00 mm

Clear cover, C 40.00 mm

Charactertistics strength of Concrete fck 25.00 N/mm2

Yield stress of steel fy 415.00 N/mm2

Helping calculation, d'' 57.00 mm

Effective depth from in compression side d' 174.50 mm

Effective depth at tension side d 1739.50 mm

Neutral Axis depth ration Xu,max/d 0.479

Neutral Axis Depth Xu.max 833.41 mmm

Compression level strain Ɛsc Or Ɛcc 0.00277

Compressive level stress of steel fsc 352.086 N/mm2

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2)11.150 N/mm2

Area of compressive stress Asc 2263.980 mm2

2137.854 mm2

For DRS Total Area of tension steel Ast 12555.379 mm2

for Tension, Area of Steel, Ast3 0.00 mm2

for BM+Tension, total rqd. Steel, Ast 12555.38 mm2

Neutral Axis, Xu 833.407 mm

Due to Mu Compressive strain Ɛcc 0.00350

Total Strain due to (Mu+P) Ɛcct 0.003500 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 12867.960 mm2

Due To Fx, Additional compressive stress fsc 31.71 N/mm2

Additional compressive stress fcc 1.693 N/mm2

Pu 1909.887 KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00015808 YES

Test : Fx-Pu =0 0.000000

Extra Increased area 312.581 mm2

Required Double reinforced Ast 12867.960 mm2

Check for Shear forceDesign Shear force 1557.21 KN

Shear stress 1.628 N/mm2

Percentage of tension steel, pt 1.467 %

Percentage of compressive steel, pc 0.282 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 84: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 5.098 %

α=0.8*fck/6.89*pt 0.569

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.070 N/mm2

1.00 x 1.070 = 1.070

> 1.628 Not OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 130.104 mm

Plan to Provide, spacing of stirrups Sv 100.000

Minimum required Asv 0.4*b*Sv/0.87*fy 55.3940 mm2

Ф 5.9384 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 100.00 mm C/C

Permissible shear stress,

K´tc =

Page 85: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 3210.46 mm2

Provide 25 Ф bar 6.54 Nos. Say 7.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 3216.99 mm2

Provide 25 Ф bar 6.55 Nos. Say 7.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 155.29 N/mm

2

Spacing of reinforcement S 54.833 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 53.922 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0008176

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0004343

Ɛmb = Ɛ1b-Ɛ2b 0.0003833

0.0610487

Stress in tensile reinforced level fst 85.422 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0004379

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0008623

Ɛmt = Ɛ1t-Ɛ2t -0.0004244

-0.0681247

-0.0070760 < 0.2

INPUT DATA:- Governing Load Case For Design LC 544

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 620.99 KN LC 251

Design Torsional Moment for shear Tu=Mx 67.38 KNm LC 251

Moment M'uz 1667.71 KN LC 544

Design Torsional Moment for moment Tu=Mx 21.05 KNm LC 544

Axial Force, Fx 411.36 KN T LC 544

Bending in another direction Muy 12.3 KNm LC 544

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 250.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 2.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 225 (32.5m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 86: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 25.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 1206.81 KNm

Design Moment Mu 1268.73 KNm

Design shear force Vu 860.56 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1711.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 590.443 mm

Centoid of section from tension fibre Ct 1209.557 mm

Df/d (Calculated) 0.146

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 8677.85 KNm

7409.120 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 2071.10 mm2

For Tension Area of Steel, Ast2 1139.35 mm2

for BM+Tension, total rqd. Steel, Ast 3210.46 mm2

Neutral Axis Ratio, Xu/d 0.02023

Neutral Axis, Xu 34.621 mm

Due to Mu Compressive strain Ɛcc 0.00015

Total Strain due to (Mu+Fx) Ɛcct 0.00027 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 3210.455 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 819.75 mm NA

yf,max 285.46 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 87: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1762.76 KN NA

Compressive force fo rParabolic portion, C2 1566.90 KN NA

Compressive force Trap. Web, Cu = C1+C2 3329.66 KN NA

Compressive force for Flange portion, C3 5435.63 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 8765.29 KN NA

Moment of C1 about Neutral Axis, Integration I1 1135379.86 KNmm NA

Moment C2 about Neutral Axis Integration I2 458739.34 KNmm NA

Moment f Cu about neutral axis Integration Iu 1594119.20 KNmm NA

CG of Cu from Neutral axis ,Y 478.763 mm NA

CG of Cu from Extreme Compression fibre X 340.990 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 207.048 mm NA

13182.48 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4561.67 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 13182.57 KNm NA

-11913.85 KNm SRS

1504.090 mm NA

1503.952 mm NA

24274.821 mm2

NA

24277.207 mm2

NA

-0.001929

11.97979

-9893.202

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 980.733 mm

yf=0.15*xu+0.65*Df 309.610 mm

Lever Arm z = jd 1701.067

21464.036 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 513.30 mm SRS-NA

yf,max 239.50 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 88: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 1139.35 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 1139.35 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 1139.353 mm2

SRS-NA

-0.001929 SRS-NA

11.97979 SRS-NA

4489.436 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -354.510 mm SRS-NA

yf=0.15*xu+0.65*Df 109.324 mm SRS-NA

Lever Arm z = jd 1347.985 SRS-NA

2606.845 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.0983 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 89: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 1139.35 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 1139.35 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 1139.353 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 90: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 2.00 No. SRS-NA

Dia of Main reinforcement in compression 25 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 57.00 mm SRS-NA

Effective depth from in compression side d' 89.00 mm SRS-NA

Effective depth at tension side d 1711.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 819.75 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00312 SRS-NA

Compressive level stress of steel fsc 355.148 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -21352.309 mm2

SRS-NA

-20343.879 mm2

SRS-NA

For DRS Total Area of tension steel Ast 3933.328 mm2

SRS-NA

for Tension, Area of Steel, Ast3 21483.23 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 25416.56 mm2

SRS-NA

Neutral Axis, Xu 819.753 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 25416.560 mm2

SRS-NA

Check for Shear forceDesign Shear force 860.56 KN

Shear stress 1.118 N/mm2

Percentage of tension steel, pt 0.446 %

Percentage of compressive steel, pc 0.446 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 91: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.613 %

α=0.8*fck/6.89*pt 0.629

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.043 N/mm2

1.00 x 1.043 = 1.043

> 1.118 NOT OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 1084.332 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 92: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 6680.54 mm2

Provide 25 Ф bar 13.61 Nos. Say 14.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 1608.50 mm2

Provide 25 Ф bar 3.28 Nos. Say 3.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 200.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 114.33 N/mm

2

Spacing of reinforcement S 25.308 mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = 49.309 mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0006293

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0002159

Ɛmb = Ɛ1b-Ɛ2b 0.0004134

0.0605038

Stress in tensile reinforced level fst 126.381 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0006613

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0004230

Ɛmt = Ɛ1t-Ɛ2t 0.0002383

0.0350757

0.0955795 < 0.2

INPUT DATA:- Governing Load Case For Design LC 224

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 186.39 KN LC 268

Design Torsional Moment for shear Tu=Mx 8.32 KNm LC 268

Moment M'uz 3173.95 KN LC 224

Design Torsional Moment for moment Tu=Mx 2.97 KNm LC 224

Axial Force, Fx 1266.44 KN T LC 224

Bending in another direction Muy 20.1 KNm LC 224

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 250.00 mm

Total Depth of T- Beam, D 1800.00 mm

Width of Flange, bf 2400.00 mm

Width of web in compression fibre, bcw 450.00 mm

Width of web in tension, btw' 450.00 mm

Layer of bar in tension zone 4.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 240 (40m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 93: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 32.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 1844.85 KNm

Design Moment Mu 1853.59 KNm

Design shear force Vu 215.97 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 450.00 mm

Width of Web, Average btw 450.00 mm

Effective Depth , d (Calculated) 1640.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 590.443 mm

Centoid of section from tension fibre Ct 1209.557 mm

Df/d (Calculated) 0.152

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 8294.45 KNm

6440.858 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 3172.87 mm2

For Tension Area of Steel, Ast2 3507.67 mm2

for BM+Tension, total rqd. Steel, Ast 6680.54 mm2

Neutral Axis Ratio, Xu/d 0.03234

Neutral Axis, Xu 53.039 mm

Due to Mu Compressive strain Ɛcc 0.00024

Total Strain due to (Mu+Fx) Ɛcct 0.00036 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 10455.000 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 6680.540 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 785.74 mm NA

yf,max 280.36 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 94: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 1689.61 KN NA

Compressive force fo rParabolic portion, C2 1501.88 KN NA

Compressive force Trap. Web, Cu = C1+C2 3191.49 KN NA

Compressive force for Flange portion, C3 5435.63 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 8627.12 KN NA

Moment of C1 about Neutral Axis, Integration I1 1043107.01 KNmm NA

Moment C2 about Neutral Axis Integration I2 421457.38 KNmm NA

Moment f Cu about neutral axis Integration Iu 1464564.39 KNmm NA

CG of Cu from Neutral axis ,Y 458.896 mm NA

CG of Cu from Extreme Compression fibre X 326.840 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 199.668 mm NA

12425.83 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 4190.94 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 12425.91 KNm NA

-10572.33 KNm SRS

1440.459 mm NA

1440.332 mm NA

23892.256 mm2

NA

23894.523 mm2

NA

-0.001929

11.46068

-9387.398

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 981.163 mm

yf=0.15*xu+0.65*Df 309.674 mm

Lever Arm z = jd 1630.066

21113.278 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 492.00 mm SRS-NA

yf,max 236.30 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 95: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 3507.67 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3507.67 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3507.667 mm2

SRS-NA

-0.001929 SRS-NA

11.46068 SRS-NA

3653.720 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a -303.316 mm SRS-NA

yf=0.15*xu+0.65*Df 117.003 mm SRS-NA

Lever Arm z = jd 1409.041 SRS-NA

3643.528 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2418 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Page 96: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 3507.67 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 3507.67 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 3507.667 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Page 97: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1640.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 785.74 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00321 SRS-NA

Compressive level stress of steel fsc 355.972 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -19454.466 mm2

SRS-NA

-18580.053 mm2

SRS-NA

For DRS Total Area of tension steel Ast 5314.470 mm2

SRS-NA

for Tension, Area of Steel, Ast3 22087.72 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 27402.19 mm2

SRS-NA

Neutral Axis, Xu 785.736 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 27402.190 mm2

SRS-NA

Check for Shear forceDesign Shear force 215.97 KN

Shear stress 0.293 N/mm2

Percentage of tension steel, pt 0.931 %

Percentage of compressive steel, pc 0.200 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 98: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 4.851 %

α=0.8*fck/6.89*pt 0.598

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 1.057 N/mm2

1.00 x 1.057 = 1.057

> 0.293 OK

Shear Reinforcement is NOT required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. -105.577 mm

Plan to Provide, spacing of stirrups Sv 200.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 200.00 mm C/C

Permissible shear stress,

K´tc =

Page 99: Design of Trapezoidal T-Beam L Systematic Final

Out Put:Note : DRS = Doubly Reinforced Section, SRS = Singly Reinforced Section, NA = Not Applicable

Rqd. tensile Steel Reinforecement, Ast 318.80 mm2

Provide 20 Ф bar 1.01 Nos. Say 1.00 Nos.

Rqd. Compressive Steel Reinforecement, Asc 628.00 mm2

Provide 20 Ф bar 2.00 Nos. Say 2.00 Nos.

Stirrups Provided:

Provide 8 Ф bar Spacing 300.00 mm @ C/C Leg = 2

Crack Width Calculation:Stress in tensile reinforced level fsb 240.72 N/mm

2

Spacing of reinforcement S #DIV/0! mm

acr = ((S / 2)^2+d'^2)^0.5 - Dia /2 = #DIV/0! mm

Ɛ1b = [fs*((a' - xu) / [(d-xu)*2*10 ^5] 0.0012535

Ɛ2b= bt*(a'-xu)*(D-xu) / [600000*Ast*(d - xu)] 0.0023804

Ɛmb = Ɛ1b-Ɛ2b -0.0011269

#DIV/0!

Stress in tensile reinforced level fst 0.000 N/mm2

Ɛ1t= fs*(a' - (-D)) / [(d- (-D))*2*10 ^5] 0.0000000

Ɛ2t= bt*(a'-(-D))*(D-(-D)) / [600000*Ast*(d - (-D))] 0.0047978

Ɛmt = Ɛ1t-Ɛ2t -0.0047978

#DIV/0!

#DIV/0! < 0.2

INPUT DATA:- Governing Load Case For Design LC 248

INPUT DATA:- Axial force, Torsion Moments, Bending moments and Shear force:

Design Shear force, Fy 153.30 KN LC 234

Design Torsional Moment for shear Tu=Mx 0.00 KNm LC 234

Moment M'uz 163.95 KN LC 248

Design Torsional Moment for moment Tu=Mx 0.00 KNm LC 248

Axial Force, Fx 0.00 KN T LC 248

Bending in another direction Muy 0 KNm LC 248

INPUT DATA:- Material Properties :

Characteristic Strength of concrete, fck 25.00 N/mm2

Grade of Steel, fy 415.00 N/mm2

INPUT DATA:- Material Properties and Dimensions of Beam:

Thickness of flange, Df 175.00 mm

Total Depth of T- Beam, D 1500.00 mm

Width of Flange, bf 300.00 mm

Width of web in compression fibre, bcw 300.00 mm

Width of web in tension, btw' 300.00 mm

Layer of bar in tension zone 1.00

MOLUNG KHOLA BRIDGE MEMBER

T - Beam with Trapezoidal Web, memb. No. 80 (40m)

Wcrb = 3*acr*Ɛm/ [1+2*(acr - Cmin) / (D - xu)]

Wcrt = 3*acr x Ɛm / [1+2*(acr - Cmin) / (D - (-D))]

Wcr =Wcrb+Wcrt

Page 100: Design of Trapezoidal T-Beam L Systematic Final

Cover, C 40.00 mm

Stirrups of Design purpose 8.00 mm

Dia of bar for design purpose 20.00 mm

Spacer for vertical spacing 32.00 mm

Calculations of required Design Moments, Shear forces:

Resultant Moment of ( Muy and Muz') = M''uz 163.95 KNm

Design Moment Mu 163.95 KNm

Design shear force Vu 153.30 KN

Calculations of required Section properties:

Width of web in reiforcement level in tension, btw 300.00 mm

Width of Web, Average btw 300.00 mm

Effective Depth , d (Calculated) 1442.00 mm

Width of small portion in the flange, bs 0.000 mm

Centroid of Section from Compression fibre Cc 715.092 mm

Centoid of section from tension fibre Ct 784.908 mm

Df/d (Calculated) 0.121

RESULT IN ACCORDANCE WITH DIFFERENT CONDITIONS:

1. Condition: If Neutral Axis lies in the flange? YES

Muf, lim= 0.36*fck*bf*Df*(d-0.416*Df) 646.95 KNm

483.000 KNm

Neutral Axis lies in the Flange? YES

For Mu or Mu,lim Area of Steel, Ast 318.80 mm2

For Tension Area of Steel, Ast2 0.00 mm2

for BM+Tension, total rqd. Steel, Ast 318.80 mm2

Neutral Axis Ratio, Xu/d 0.02957

Neutral Axis, Xu 42.634 mm

Due to Mu Compressive strain Ɛcc 0.00022

Total Strain due to (Mu+Fx) Ɛcct 0.00034 < 0.0035 OK

for BM+compression, TrialTotal Rqd. Steel, Ast 331.010 mm2

Due To Fx, Additional compressive stress fsc NA N/mm2

Additional compressive stress fcc NA N/mm2

Pu NA KN

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012170 NA

Test : Fx-Pu =0 NA

for BM+compression, Extra Increased area Ast 0.000 mm2

Required Ast 318.805 mm2

2. Condition: If Neutral Axis lies in the webNeutral Axis lies in the Web NA

Neutral axis depth ratio α = Xu,max/d 0.4791

Maximum Neutral Axis for balanced design Xu,max 690.87 mm NA

yf,max 217.38 mm NA

Test : Muf,lim > Mu for Neutral in flange

Page 101: Design of Trapezoidal T-Beam L Systematic Final

Compressive force for straight portion, C1 990.42 KN NA

Compressive force fo rParabolic portion, C2 880.37 KN NA

Compressive force Trap. Web, Cu = C1+C2 1870.79 KN NA

Compressive force for Flange portion, C3 0.00 KN NA

Compressive force for Small Flange portion, C4 0.00 KN NA

Total Compressive force, C 1870.79 KN NA

Moment of C1 about Neutral Axis, Integration I1 537626.21 KNmm NA

Moment C2 about Neutral Axis Integration I2 217222.71 KNmm NA

Moment f Cu about neutral axis Integration Iu 754848.92 KNmm NA

CG of Cu from Neutral axis ,Y 403.493 mm NA

CG of Cu from Extreme Compression fibre X 287.380 mm NA

For average web only X/d 0.19929 NA

CG C from Extreme Compression fibre X 287.380 mm NA

2160.00 KNm NA

Capacity Mu, lim (Only for trapezodal Web) 2160.05 KNm NA

Capacity Mu, lim (trapezodal Web + Flange) 2160.05 KNm NA

-1996.10 KNm SRS

1154.597 mm NA

1154.620 mm NA

5181.513 mm2

NA

5181.513 mm2

NA

-0.001123

3.89340

-2160.046

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 693.572 mm

yf=0.15*xu+0.65*Df 217.786 mm

Lever Arm z = jd 1153.474

5186.661 mm2

NA GO TO 1

Hit and Trial α = Xu/d 0.300000 SRS-NA

0.00000 SRS-NA

Neutral Axis for balanced design Xu 432.60 mm SRS-NA

yf,max 178.64 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Capacity if average web +flange Muw, lim=

0.36*fck*bw*Xu,max*(d-0.416*Xu,max) + 0.446*fck*(bf-

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (A) IF Df/d > 0.2

α is chosen to make Test : C = T

Page 102: Design of Trapezoidal T-Beam L Systematic Final

Moment of C1 about Neutral Axis, Integration I1 NA KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.00000 SRS-NA

CG C from Extreme Compression fibre X 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu(Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.00 mm2

SRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 0.00 mm2

SRS-NA

NA KN SRS-NA

Neutral Axis, Xu 0.00 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00002 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 1300.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00001938 YES SRS-NA

Test : Fx-Pu =0 NA SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 0.000 mm2

SRS-NA

-0.001123 SRS-NA

3.89340 SRS-NA

-163.950 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 42.634 mm SRS-NA

yf=0.15*xu+0.65*Df 120.145 mm SRS-NA

Lever Arm z = jd 1424.264 SRS-NA

318.826 mm2

SRS-NA

NA GO TO 1

Hit and Trial α = Xu/d 0.2545 SRS-NA

α is chosen to make Test : C - T = 0 0.0000 SRS-NA

average web +flange Muw= 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast,max

For (web +Flange) balanced section Ast,max

Force of Tension, T

a= - 0.14976*fck*bw - 0.0050175*fck*(bf - bw)

b= 0.36*fck*bw*d + 0.00669*fck*(bf - bw)

c= 0.2899*fck*Df*(bf - bw)*(d-0.325*Df)-Mu

For Df/d > 0.2 Ast

2 (B) IF Df/d < = 0.2

Page 103: Design of Trapezoidal T-Beam L Systematic Final

Neutral Axis for balanced design Xu 0.00 mm SRS-NA

yf 0.00 mm SRS-NA

Compressive force for straight portion, C1 0.00 KN SRS-NA

Compressive force fo rParabolic portion, C2 0.00 KN SRS-NA

Compressive force Trap.Web, Cu = C1+C2 0.00 KN SRS-NA

Compressive force for Flange portion, C3 0.00 KN SRS-NA

Compressive force for Small Flange portion, C4 0.00 KN SRS-NA

Total Compressive force, C 0.00 KN SRS-NA

Moment of C1 about Neutral Axis, Integration I1 0.00 KNmm SRS-NA

Moment C2 about Neutral Axis Integration I2 0.00 KNmm SRS-NA

Moment f Cu about neutral axis Integration Iu 0.00 KNmm SRS-NA

CG of Cu from Neutral axis ,Y 0.000 mm SRS-NA

CG of Cu from Extreme Comprssion fibre X 0.000 mm SRS-NA

For average web only X/d 0.0000000 SRS-NA

CG C from Extreme Compression fibre Xmax 0.000 mm SRS-NA

0.00 KNm SRS-NA

Mu (Only for trapezodal Web) 0.00 KNm SRS-NA

Mu,lim (trapezodal Web + Flange) 0.00 KNm SRS-NA

0.00 KNm SRS-NA

0.000 mm SRS-NA

0.000 mm SRS-NA

0.000 mm2

SRS-NA

0.000 mm2

SRS-NA

For Tension Area of Steel, Ast2 0.00 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 0.00 mm2

SRS-NA

0.00 KN SRS-NA

Neutral Axis, Xu 0.000 SRS-NA

Due to Mu Compressive strain Ɛcc 0.00000 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00014 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 3000.000 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc 0.00 N/mm2

SRS-NA

Additional compressive stress fcc 0.000 N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00013902 SRS-NA SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Singly reinforced Ast 0.000 mm2

SRS-NA

0.000000000 SRS-NA

b= 0.36*fck*bw*d 0.00000000 SRS-NA

0.00000 SRS-NA

Neutral Axis Xu=(-b+√(b2-4*a*c))/2*a 0.000 SRS-NA

Lever Arm z = jd 0.000 SRS-NA

average web +flange Muw = 0.36*fck*bw*Xu,max*(d-

0.416*Xu,max) + 0.446*fck*(bf-bw)*yf*(d-0.5*yf,max)

Test, Mu > Mu,lim (Doubly or Singly), Mu - Mu,lim=

for average web Lever Arm z= jd

for (Trap. Web+ Flange) Lever Arm z= jd

For avg. web +flange balanced section Ast

For (web +Flange) balanced section Ast

Force of Tension, T

a= -0.14976*fck*bw

c= 0.446*fck*Df*(bf - bw)*(d-0.5*Df)-Mu

Page 104: Design of Trapezoidal T-Beam L Systematic Final

0.000 mm2

SRS-NA

2 (C) Condition: Doubly Reinforced Section GO TO 1

Number of Layer of Comression bar 1.00 No. SRS-NA

Dia of Main reinforcement in compression 32 mm SRS-NA

Spacer for Vertical spacing 32 mm SRS-NA

Dia of Stirrups 8.00 mm SRS-NA

Clear cover, C 40.00 mm SRS-NA

Charactertistics strength of Concrete fck 25.00 N/mm2 SRS-NA

Yield stress of steel fy 415.00 N/mm2 SRS-NA

Helping calculation, d'' 64.00 mm SRS-NA

Effective depth from in compression side d' 64.00 mm SRS-NA

Effective depth at tension side d 1442.00 mm SRS-NA

Neutral Axis depth ration Xu,max/d 0.479 SRS-NA

Neutral Axis Depth Xu.max 690.87 mmm SRS-NA

Compression level strain Ɛsc Or Ɛcc 0.00318 SRS-NA

Compressive level stress of steel fsc 355.632 N/mm2 SRS-NA

Compressive level stress of concrete fcc=446*fck*(Ԑcc-250*Ԑcc^2) 11.150 N/mm2 SRS-NA

Area of compressive stress Asc -4204.994 mm2

SRS-NA

-4012.037 mm2

SRS-NA

For DRS Total Area of tension steel Ast 1169.476 mm2

SRS-NA

for Tension, Area of Steel, Ast3 4012.04 mm2

SRS-NA

for BM+Tension, total rqd. Steel, Ast 5181.51 mm2

SRS-NA

Neutral Axis, Xu 690.873 mm SRS-NA

Due to Mu Compressive strain Ɛcc 0.00350 SRS-NA

Total Strain due to (Mu+P) Ɛcct 0.00362 < 0.0035 SRS-NA

for BM+compression, TrialTotal Rqd. Steel, Ast 12063.716 mm2

SRS-NA

Due To Fx, Additional compressive stress fsc NA N/mm2

SRS-NA

Additional compressive stress fcc NA N/mm2

SRS-NA

Pu 0.000 KN SRS-NA

Hit and trial, Extra Comprssve strain due to P, Ɛcc 0.00012335 YES SRS-NA

Test : Fx-Pu =0 0.000000 SRS-NA

Extra Increased area 0.000 mm2

SRS-NA

Required Double reinforced Ast 5181.513 mm2

SRS-NA

Check for Shear forceDesign Shear force 153.30 KN

Shear stress 0.354 N/mm2

Percentage of tension steel, pt 0.073 %

Percentage of compressive steel, pc 0.145 %

For Df/d < 0.2 Ast

for Asc, Area of tension steel Ast2

Page 105: Design of Trapezoidal T-Beam L Systematic Final

Percentage of tension and compressive steel, pt 0.218 %

α=0.8*fck/6.89*pt 13.324

tc = 0.85*SQRT(0.8*fck)*(SQRT(1+5*α)-1)/6*α 0.343 N/mm2

1.00 x 0.343 = 0.343

> 0.354 NOT OK

Shear Reinforcement is required.

Dia of of Vertical Stirrups 8.00 mm

Number of leg 2.00

Planned area to Provide Asv 100.53 mm2

Required spacing of stirrups Svreqd. 11092.042 mm

Plan to Provide, spacing of stirrups Sv 300.000

Minimum required Asv 0.4*b*Sv/0.87*fy 99.7092 mm2

Ф 7.9672 mm

Rqd. Stirrups Ф 8.00 Leg 2.000 300.00 mm C/C

Permissible shear stress,

K´tc =

Page 106: Design of Trapezoidal T-Beam L Systematic Final

P/fck 0.07864

1.9660 % As

Total number of bar 21 No. area of one bar

500 mm Face As

1800 mm Face Bar No.

40 mm Number of row

1735.6232 mm Spacing of bar, Sy

8 mm Spacing of bar, Sx

64.376777 mm Percentage of one bar

25 N/mm2

reqd. dia Ф in mm

415 N/mm2 Puz

831.57855 mm Pu,x

0.4619881

0.6136042

Total Strain due to (Mu+P) Ɛcct 0.003500

ku,b = Xu,b/D g C1 C2 Xu Mc, KN

0.4619881 292.4 0.1672 0.1922 831.579 2084.881

0.190805 5.8 0.0691 0.0794 343.448 1176.652

######### 0.0 0.4470 0.5000 ######### 0.000

k = Xu/D g C1 C2 Xu Mc, KN

0.571488 15.99 0.2069 0.2377 1028.679 2197.376

Find Mux1 0.000 check Mux1 3379.311 For As

Find Mux1 0.000 Check Mux1 3379.311 For As

N. Axis ratio Cntrod Cff. N. Axis

k = Xu/D g C1 C2 Xu Mc, KN

0.571 15.99 0.2069 0.2377 1028.679 2197.376

ku,0.002

Go on putting value of k here, get locus of ∑ Mi and ∑ Pi for drawing Mcap against Pcap

DATA Prepared for INTERACTION DIAGRAM

For Compression

Ties

depth in compression d'x

Concrete grade fck

Yield Stress of Steel , fy

Xu,b

ku,b

Interaction Diagram Program

Percentage of Steel, p

Dimention of Column, b

Dimention of Column, D

Cover of Bar, C

Effective depth dx

Page 107: Design of Trapezoidal T-Beam L Systematic Final

0.300 19.753086 0.1086 0.1248 540 1650.242

0.400 400.000 0.145 0.166 720.00 1956.364

0.600 11.111 0.217 0.250 1080.00 2202.669

0.800 2.367 0.290 0.333 1440.00 1961.055

1.000 1.000 0.362 0.416 1800.00 1231.524

1.200 0.549 0.400 0.458 2160.00 675.737

1.400 0.346 0.418 0.475 2520.00 426.135

1.600 0.238 0.427 0.483 2880.00 293.047

1.800 0.174 0.432 0.488 3240.00 213.807

2.000 0.132 0.436 0.491 3600.000 162.847

4.000 0.026 0.445 0.498 7200.000 31.527

10.000 0.004 0.447 0.500 18000.000 4.390

15.000 0.002 0.447 0.500 27000.000 1.894

######### 0.000 0.447 0.500 ######### 0.000

Used Col. Used Col. Imp col. Used Col. Used Col.

INPUT Formulated Formulated Formulated

Rows As y Ԑsi fsi, N/mm2 fci(N/mm2)

1 4825.49 835.62 0.003281 356.545 11.175

2 0 517.29 0.002198 335.182 11.175

3 0 198.96 0.001115 223.602 8.986

4 0 -119.37 0.000032 6.350 0.351

5 0 -437.71 -0.001051 -210.902 0.000

6 0 -756.04 -0.002135 -332.849 0.000

7 0 0.00 0.000438 87.819 4.357

0 0 0.00 0.000438 87.819 4.357

1 0 0.00 0.000438 87.819 4.357

2 0 756.04 0.003010 354.195 11.175

3 0 437.71 0.001927 325.206 11.160

4 0 119.37 0.000844 169.289 7.442

5 0 -198.96 -0.000239 -47.963 0.000

6 0 -517.29 -0.001322 -265.215 0.000

7 12867.963 -835.62 -0.002405 -342.825 0.000

Check 17693.449

Design Value ((Moment and Compression Load)

CONFIGURATION of Steel for INTERACTION DIAGRAM OF RECTANGULAR COLUMN

INPUT of FORMULATED

Page 108: Design of Trapezoidal T-Beam L Systematic Final

% 1.966

∑ Mi∑ Pi

For, k 0.5714883 5078.952 -2744.88 For, k

Ԑsi fsi, N/mm2 fci(N/mm2) Ԑ'si f'sci, N/mm

2 Ԑsi

0.00328 356.545 11.175 0.00328 356.545 0.00151

0.00220 335.182 11.175 0.00220 335.182 0.00050

0.00111 223.602 8.986 0.00111 223.602 -0.00051

0.00003 6.350 0.351 0.00003 6.350 -0.00153

-0.00105 -210.902 0.000 0.00105 210.902 -0.00254

-0.00213 -332.849 0.000 0.00213 332.849 -0.00355

0.00044 87.819 4.357 0.00044 87.819 -0.00115

0.00044 87.819 4.357 0.00044 87.819 -0.00115

0.00044 87.819 4.357 0.00044 87.819 -0.00115

0.00301 354.195 11.175 0.00301 354.195 0.00126

0.00193 325.206 11.160 0.00193 325.206 0.00025

0.00084 169.289 7.442 0.00084 169.289 -0.00077

-0.00024 -47.963 0.000 0.00024 47.963 -0.00178

-0.00132 -265.215 0.000 0.00132 265.215 -0.00279

-0.00241 -342.825 0.000 0.00241 342.825 -0.00381

∑ Mi∑ Pi

For, k 1.000 1140.503 1976.17 For, k

Ԑsi fsi, N/mm2 fci(N/mm2) Ԑ'si f'sci, N/mm

2 Ԑsi

0.00337 357.360 11.175 0.00337 357.360 0.00302

0.00276 351.917 11.175 0.00276 351.917 0.00256

0.00214 332.935 11.175 0.00214 332.935 0.00210

0.00152 296.240 10.526 0.00152 296.240 0.00164

0.00090 180.305 7.788 0.00090 180.305 0.00118

0.00028 56.148 2.909 0.00028 56.148 0.00073

0.00175 314.363 11.000 0.00175 314.363 0.00181

0.00175 314.363 11.000 0.00175 314.363 0.00181

0.00175 314.363 11.000 0.00175 314.363 0.00181

0.00322 356.017 11.175 0.00322 356.017 0.00290

0.00260 347.926 11.175 0.00260 347.926 0.00245

0.00198 327.234 11.174 0.00198 327.234 0.00199

0.00136 273.423 10.042 0.00136 273.423 0.00153

0.00074 149.266 6.769 0.00074 149.266 0.00107

Page 109: Design of Trapezoidal T-Beam L Systematic Final

0.00013 25.108 1.355 0.00013 25.108 0.00061

∑ Mi∑ Pi

For, k 2.000 -1389.672 4887.83 For, k

Ԑsi fsi, N/mm2 fci(N/mm2) Ԑ'si f'sci, N/mm

2 Ԑsi

0.00250 345.317 11.175 0.00250 345.317 0.00222

0.00227 338.018 11.175 0.00227 338.018 0.00212

0.00205 329.726 11.175 0.00205 329.726 0.00202

0.00182 319.012 11.089 0.00182 319.012 0.00192

0.00160 304.004 10.727 0.00160 304.004 0.00182

0.00137 275.705 10.082 0.00137 275.705 0.00172

0.00191 324.266 11.152 0.00191 324.266 0.00196

0.00191 324.266 11.152 0.00191 324.266 0.00196

0.00191 324.266 11.152 0.00191 324.266 0.00196

0.00244 343.866 11.175 0.00244 343.866 0.00220

0.00222 335.945 11.175 0.00222 335.945 0.00210

0.00199 327.653 11.175 0.00199 327.653 0.00200

0.00177 315.509 11.025 0.00177 315.509 0.00190

0.00154 298.658 10.592 0.00154 298.658 0.00180

0.00132 264.418 9.876 0.00132 264.418 0.00170

Page 110: Design of Trapezoidal T-Beam L Systematic Final

17694.000 mm2

area of one bar 842.57 mm2

3580.9 mm2

Face Bar No. 4 Nos.

Number of row 6 N0s

Spacing of bar, Sy 318.3 mm

Spacing of bar, Sx 70.7 mm

Percentage of one bar 0.093619 %

reqd. dia Ф in mm 32.754

15433.20 KN

1909.890 KN

Pc, KN ∑ Mi∑ Pi Mu, KN Pu, KN 3-IMP Value

3762.893 5078.952 -2744.883 7163.833 1018.010 IMP Pub

1554.104 2064.172 -3971.600 3240.824 -2417.496 IMP, Mp

10057.500 0.000 7648.724 0.000 17706.224 IMP Puz

Pc, KN ∑ Mi∑ Pi Mcap, KN Pcap, KN TEST

4654.772 5078.952 -2744.883 7276.329 1909.890 Trialing

1.966 %, K 0.2629259

1.966 %, Xu 262.92594

Pc, KN ∑ Mi∑ Pi Mcap, KN Pcap, KN At k

4654.772 5078.952 -2744.883 7276.3 1909.890 0.239300

Go on putting value of k here, get locus of ∑ Mi and ∑ Pi for drawing Mcap against Pcap

DATA Prepared for INTERACTION DIAGRAM

For Compression PASTE here OUTPUT Interaction Diagram

Interaction Diagram Program

-2000.000

0.000

2000.000

4000.000

6000.000

8000.000

10000.000

12000.000

14000.000

16000.000

18000.000

-4000.0 -2000.0 0.0 2000.0 4000.0 6000.0

Page 111: Design of Trapezoidal T-Beam L Systematic Final

2443.500 5032.791 -3269.157 6683.0 -825.7

3258.000 5225.103 -3039.015 7181.5 219.0

4887.000 4968.149 -2611.411 7170.8 2275.6

6516.000 2944.563 -185.394 4905.6 6330.6

8145.000 1140.503 1976.168 2372.0 10121.2

9006.354 127.32 3158.79 803.1 12165.1

9394.623 -475.29 3862.39 -49.2 13257.0

9601.649 -880.99 4321.57 -587.9 13923.2

9724.911 -1172.023 4645.513 -958.2 14370.4

9804.182 -1389.67 4887.83 -1226.8 14692.0

10008.458 -1919.59 5432.03 -1888.1 15440.5

10050.672 -2063.61 5555.36 -2059.2 15606.0

10054.554 -2091.52 5578.75 -2089.6 15633.3

10057.500 -2128.493 5603.822 ######### 15661.3

6357.32 1909.89

Help Col. Help Col.

Formulated Formulated Formulated Formulated Formulated Formulated

Ԑ'si f'sci, N/mm2 ∑ Mi

∑ Pi Mu, KN Pu, KN

0.00328 356.545 5078.952 -2744.883 7276.329 1909.890

0.00220 335.182

0.00111 223.602

0.00003 6.350

0.00105 210.902

0.00213 332.849 IF($A$24<=1,IF($A$24<$D$14,0.003805*($A$24-0.5+$C51/$D$6)/($D$8/$D$6-$A$24),0.0035*($A$24-0.5+$C51/$D$6)/$A$24),0.002*(1+($C51/$D$6-1/14)/($A$24-3/7)))

0.00044 87.819

0.00044 87.819

0.00044 87.819

0.00301 354.195

0.00193 325.206

0.00084 169.289

0.00024 47.963

0.00132 265.215

0.00241 342.825

Design Value ((Moment and Compression Load)

CONFIGURATION of Steel for INTERACTION DIAGRAM OF RECTANGULAR COLUMNOUT PUT TO BE PASTED CHECK

Page 112: Design of Trapezoidal T-Beam L Systematic Final

∑ Mi∑ Pi

0.300 5032.791 -3269.16 For, k 0.400

fsi, N/mm2 fci(N/mm2) Ԑ'si f'sci, N/mm

2 Ԑsi fsi, N/mm2

295.837 10.514 0.00151 295.837 0.00246 344.191

100.406 4.894 0.00050 100.406 0.00126 253.467

-102.800 0.000 0.00051 102.800 0.00007 14.246

-296.971 0.000 0.00153 296.971 -0.00112 -224.974

-346.315 0.000 0.00254 346.315 -0.00231 -339.469

-358.895 0.000 0.00355 358.895 -0.00351 -358.506

-229.804 0.000 0.00115 229.804 -0.00067 -135.266

-229.804 0.000 0.00115 229.804 -0.00067 -135.266

-229.804 0.000 0.00115 229.804 -0.00067 -135.266

252.810 9.647 0.00126 252.810 0.00216 333.718

49.604 2.593 0.00025 49.604 0.00097 193.662

-153.602 0.000 0.00077 153.602 -0.00023 -45.559

-316.158 0.000 0.00178 316.158 -0.00142 -284.779

-352.301 0.000 0.00279 352.301 -0.00261 -348.217

-361.050 0.000 0.00381 361.050 -0.00381 -361.050

∑ Mi∑ Pi

1.200 127.324 3158.79 For, k 1.400

fsi, N/mm2 fci(N/mm2) Ԑ'si f'sci, N/mm

2 Ԑsi fsi, N/mm2

354.266 11.175 0.00302 354.266 0.00281 352.447

346.863 11.175 0.00256 346.863 0.00244 343.890

331.627 11.175 0.00210 331.627 0.00208 330.858

307.694 10.819 0.00164 307.694 0.00172 312.271

237.565 9.316 0.00118 237.565 0.00135 271.248

145.597 6.640 0.00073 145.597 0.00099 198.214

318.397 11.079 0.00181 318.397 0.00185 320.771

318.397 11.079 0.00181 318.397 0.00185 320.771

318.397 11.079 0.00181 318.397 0.00185 320.771

353.271 11.175 0.00290 353.271 0.00272 350.933

343.907 11.175 0.00245 343.907 0.00235 340.919

327.404 11.175 0.00199 327.404 0.00199 327.505

297.225 10.553 0.00153 297.225 0.00163 306.453

214.573 8.757 0.00107 214.573 0.00126 252.990

Page 113: Design of Trapezoidal T-Beam L Systematic Final

122.605 5.787 0.00061 122.605 0.00090 179.956

∑ Mi∑ Pi

4.000 -1919.585 5432.03 For, k 10.000

fsi, N/mm2 fci(N/mm2) Ԑ'si f'sci, N/mm

2 Ԑsi fsi, N/mm2

335.997 11.175 0.00222 335.997 0.00208 330.916

332.348 11.175 0.00212 332.348 0.00205 329.555

328.699 11.175 0.00202 328.699 0.00201 328.193

325.050 11.158 0.00192 325.050 0.00197 326.832

318.958 11.088 0.00182 318.958 0.00193 325.470

312.793 10.963 0.00172 312.793 0.00190 323.532

326.419 11.171 0.00196 326.419 0.00199 327.342

326.419 11.171 0.00196 326.419 0.00199 327.342

326.419 11.171 0.00196 326.419 0.00199 327.342

335.084 11.175 0.00220 335.084 0.00207 330.576

331.436 11.175 0.00210 331.436 0.00204 329.214

327.787 11.175 0.00200 327.787 0.00200 327.853

323.582 11.146 0.00190 323.582 0.00196 326.492

317.417 11.062 0.00180 317.417 0.00193 325.130

311.252 10.924 0.00170 311.252 0.00189 322.957

Page 114: Design of Trapezoidal T-Beam L Systematic Final

Mu,b KN

7163.83

6255.60

Mu,b KN

7276.33

Wrong points

Wrong points

8000.0

Series1

Page 115: Design of Trapezoidal T-Beam L Systematic Final

6729.19

7035.32

7281.62

7040.01

6310.48

5754.69

5505.09

5372.00

5292.76

5241.80

5110.48

5083.34

5080.85

5078.95

IF($A$24<=1,IF($A$24<$D$14,0.003805*($A$24-0.5+$C51/$D$6)/($D$8/$D$6-$A$24),0.0035*($A$24-0.5+$C51/$D$6)/$A$24),0.002*(1+($C51/$D$6-1/14)/($A$24-3/7)))

Page 116: Design of Trapezoidal T-Beam L Systematic Final

∑ Mi∑ Pi ∑ Mi

5225.103 -3039.01 For, k 0.600 4968.149

fci(N/mm2) Ԑ'si f'sci, N/mm2 Ԑsi fsi, N/mm

2 fci(N/mm2)

11.175 0.00246 344.191 0.00329 356.636 11.175

9.660 0.00126 253.467 0.00226 337.462 11.175

0.780 0.00007 14.246 0.00123 246.337 9.510

0.000 0.00112 224.974 0.00020 39.409 2.088

0.000 0.00231 339.469 -0.00084 -167.520 0.000

0.000 0.00351 358.506 -0.00187 -321.633 0.000

0.000 0.00067 135.266 0.00058 117.007 5.568

0.000 0.00067 135.266 0.00058 117.007 5.568

0.000 0.00067 135.266 0.00058 117.007 5.568

11.175 0.00216 333.718 0.00303 354.397 11.175

8.185 0.00097 193.662 0.00200 327.960 11.175

0.000 0.00023 45.559 0.00097 194.605 8.212

0.000 0.00142 284.779 -0.00006 -12.323 0.000

0.000 0.00261 348.217 -0.00109 -219.252 0.000

0.000 0.00381 361.050 -0.00212 -332.487 0.000

∑ Mi∑ Pi ∑ Mi

-475.294 3862.39 For, k 1.600 -880.987

fci(N/mm2) Ԑ'si f'sci, N/mm2 Ԑsi fsi, N/mm

2 fci(N/mm2)

11.175 0.00281 352.447 0.00267 349.719 11.175

11.175 0.00244 343.890 0.00237 341.476 11.175

11.175 0.00208 330.858 0.00207 330.352 11.175

10.950 0.00172 312.271 0.00176 315.285 11.020

10.003 0.00135 271.248 0.00146 291.014 10.369

8.315 0.00099 198.214 0.00116 232.865 9.208

11.115 0.00185 320.771 0.00188 322.334 11.133

11.115 0.00185 320.771 0.00188 322.334 11.133

11.115 0.00185 320.771 0.00188 322.334 11.133

11.175 0.00272 350.933 0.00260 347.773 11.175

11.175 0.00235 340.919 0.00229 338.695 11.175

11.175 0.00199 327.505 0.00199 327.571 11.175

10.783 0.00163 306.453 0.00169 310.586 10.905

9.650 0.00126 252.990 0.00139 278.288 10.127

Page 117: Design of Trapezoidal T-Beam L Systematic Final

7.777 0.00090 179.956 0.00109 217.724 8.838

∑ Mi∑ Pi ∑ Mi

-2063.611 5555.36 For, k 15.000 -2091.520

fci(N/mm2) Ԑ'si f'sci, N/mm2 Ԑsi fsi, N/mm

2 fci(N/mm2)

11.175 0.00208 330.916 0.00205 329.879 11.175

11.175 0.00205 329.555 0.00203 328.984 11.175

11.175 0.00201 328.193 0.00201 328.090 11.175

11.173 0.00197 326.832 0.00198 327.196 11.174

11.163 0.00193 325.470 0.00196 326.302 11.170

11.146 0.00190 323.532 0.00193 325.407 11.162

11.174 0.00199 327.342 0.00199 327.531 11.175

11.174 0.00199 327.342 0.00199 327.531 11.175

11.174 0.00199 327.342 0.00199 327.531 11.175

11.175 0.00207 330.576 0.00205 329.655 11.175

11.175 0.00204 329.214 0.00202 328.761 11.175

11.175 0.00200 327.853 0.00200 327.867 11.175

11.171 0.00196 326.492 0.00198 326.972 11.173

11.159 0.00193 325.130 0.00195 326.078 11.168

11.140 0.00189 322.957 0.00193 325.184 11.160

0.000

Page 118: Design of Trapezoidal T-Beam L Systematic Final

Pu,b KN

1018.01

-1190.78

Pu,b KN

1909.89

Wrong points

Wrong points

Page 119: Design of Trapezoidal T-Beam L Systematic Final

-301.38

513.12

2142.12

3771.12

5400.12

6261.47

6649.74

6856.77

6980.03

7059.30

7263.58

7305.79

7309.67

7312.62

IF($A$24<=1,IF($A$24<$D$14,0.003805*($A$24-0.5+$C51/$D$6)/($D$8/$D$6-$A$24),0.0035*($A$24-0.5+$C51/$D$6)/$A$24),0.002*(1+($C51/$D$6-1/14)/($A$24-3/7)))

Page 120: Design of Trapezoidal T-Beam L Systematic Final

∑ Pi ∑ Mi∑ Pi

-2611.41 For, k 0.800 2944.563 -185.39

Ԑ'si f'sci, N/mm2 Ԑsi fsi, N/mm

2 fci(N/mm2) Ԑ'si

0.00329 356.636 0.00334 357.088 11.175 0.00334

0.00226 337.462 0.00257 347.119 11.175 0.00257

0.00123 246.337 0.00180 317.231 11.059 0.00180

0.00020 39.409 0.00102 205.067 8.505 0.00102

0.00084 167.520 0.00025 49.871 2.606 0.00025

0.00187 321.633 -0.00053 -105.326 0.000 0.00053

0.00058 117.007 0.00131 263.266 9.855 0.00131

0.00058 117.007 0.00131 263.266 9.855 0.00131

0.00058 117.007 0.00131 263.266 9.855 0.00131

0.00303 354.397 0.00315 355.409 11.175 0.00315

0.00200 327.960 0.00238 341.759 11.175 0.00238

0.00097 194.605 0.00160 304.294 10.734 0.00160

0.00006 12.323 0.00083 166.268 7.344 0.00083

0.00109 219.252 0.00006 11.072 0.608 0.00006

0.00212 332.487 -0.00072 -144.125 0.000 0.00072

∑ Pi ∑ Mi∑ Pi

4321.57 For, k 1.800 -1172.023 4645.51

Ԑ'si f'sci, N/mm2 Ԑsi fsi, N/mm

2 fci(N/mm2) Ԑ'si

0.00267 349.719 0.00257 347.197 11.175 0.00257

0.00237 341.476 0.00231 339.495 11.175 0.00231

0.00207 330.352 0.00206 329.993 11.175 0.00206

0.00176 315.285 0.00180 317.420 11.062 0.00180

0.00146 291.014 0.00154 298.456 10.587 0.00154

0.00116 232.865 0.00128 257.409 9.740 0.00128

0.00188 322.334 0.00190 323.441 11.145 0.00190

0.00188 322.334 0.00190 323.441 11.145 0.00190

0.00188 322.334 0.00190 323.441 11.145 0.00190

0.00260 347.773 0.00251 345.534 11.175 0.00251

0.00229 338.695 0.00225 337.120 11.175 0.00225

0.00199 327.571 0.00199 327.618 11.175 0.00199

0.00169 310.586 0.00173 313.406 10.978 0.00173

0.00139 278.288 0.00148 292.330 10.410 0.00148

Page 121: Design of Trapezoidal T-Beam L Systematic Final

0.00109 217.724 0.00122 244.476 9.470 0.00122

∑ Pi ∑ Mi∑ Pi

5578.75 For, k ######### -2128.493 5603.82

Ԑ'si f'sci, N/mm2 Ԑsi fsi, N/mm

2 fci(N/mm2) Ԑ'si

0.00205 329.879 0.00200 327.892 11.175 0.00200

0.00203 328.984 0.00200 327.892 11.175 0.00200

0.00201 328.090 0.00200 327.892 11.175 0.00200

0.00198 327.196 0.00200 327.892 11.175 0.00200

0.00196 326.302 0.00200 327.892 11.175 0.00200

0.00193 325.407 0.00200 327.892 11.175 0.00200

0.00199 327.531 0.00200 327.892 11.175 0.00200

0.00199 327.531 0.00200 327.892 11.175 0.00200

0.00199 327.531 0.00200 327.892 11.175 0.00200

0.00205 329.655 0.00200 327.892 11.175 0.00200

0.00202 328.761 0.00200 327.892 11.175 0.00200

0.00200 327.867 0.00200 327.892 11.175 0.00200

0.00198 326.972 0.00200 327.892 11.175 0.00200

0.00195 326.078 0.00200 327.892 11.175 0.00200

0.00193 325.184 0.00200 327.892 11.175 0.00200

Page 122: Design of Trapezoidal T-Beam L Systematic Final
Page 123: Design of Trapezoidal T-Beam L Systematic Final
Page 124: Design of Trapezoidal T-Beam L Systematic Final

f'sci, N/mm2

357.088

347.119

317.231

205.067

49.871

105.326

263.266

263.266

263.266

355.409

341.759

304.294

166.268

11.072

144.125

f'sci, N/mm2

347.197

339.495

329.993

317.420

298.456

257.409

323.441

323.441

323.441

345.534

337.120

327.618

313.406

292.330

Page 125: Design of Trapezoidal T-Beam L Systematic Final

244.476

f'sci, N/mm2

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892

327.892