67
Design Proposal for the SauceBot Zach Belanger Tylor Duval Nick Jakelski August Jarecki Greg Milks Laurentian University Bharti School of Engineering Mechanical Engineering Design Project ENGR 4595 December 20 th , 2015

Design Proposal Capstone

Embed Size (px)

Citation preview

Page 1: Design Proposal Capstone

DesignProposalfortheSauceBot

ZachBelangerTylorDuvalNickJakelskiAugustJareckiGregMilks

LaurentianUniversityBhartiSchoolofEngineering

MechanicalEngineeringDesignProjectENGR4595

December20th,2015

Page 2: Design Proposal Capstone

P a g e 2

Abstract

TheSauceBotisanautomatedhockeypuckpasser,whichallowsforefficient

and reliable passes to players without the needed assistance of a coach. This

machinewillminimize a coach’swork topass thepuckandallowhim to fully

focus on the players and the development of their skills. All of our group

membershaveplayedhockeythroughoutourlives;thiswasthegreatestreason

formotivation indesigning suchamachine. Asagroupourmaingoalsare to

worktogetherasefficientlyaspossible,andtodesignareliableandfunctioning

prototype. Working together as a team and ensuring proper communication

betweenoneanotherwillbetterourfunctionalityasagroup,andwillresultina

cost-effective and useful design for our final product. Our first step in this

processistocomeupwithaconceptanddrawthedesignonSolidWorks.From

herewecan furtherdiscussand finalizedesignsandbegin testingof the firing

system.Asdesigningcomestoanend,wewillbeabletobeginmanufacturingof

ourproduct.

Page 3: Design Proposal Capstone

P a g e 3

TableofContentsAbstract..........................................................................................................................................................2Acknowledgements..................................................................................................................................5ListofFigures..............................................................................................................................................6ListofTables................................................................................................................................................81. DesignOverview................................................................................................................................91.1HopperSystem...............................................................................................................................91.2Ramp...................................................................................................................................................91.3Conveyor...........................................................................................................................................91.4FiringSystem................................................................................................................................101.5RotatingSystem...........................................................................................................................10

2. ConceptDevelopment...................................................................................................................112.1ProblemStatement.....................................................................................................................112.2FunctionalRequirements........................................................................................................122.3ProductConstraints...................................................................................................................132.4PughMatrix....................................................................................................................................14

3. Calculations.......................................................................................................................................204. MaterialsandMassProperties..................................................................................................275. ResearchFindings...........................................................................................................................296. PreliminaryTestingandAlternativeSolutions..................................................................326.1 FiringSystem.............................................................................................................................356.2HopperSystem.............................................................................................................................38

7. FiniteElementAnalysis(FEA)...................................................................................................417.1LinearActuatorMount..............................................................................................................417.2WheelMount.................................................................................................................................427.3BasePlateSupport......................................................................................................................437.4SidePanel........................................................................................................................................44

8. ShootingPseudocode....................................................................................................................469. ElectronicInterfaceDiagram.....................................................................................................4810.UserControl.......................................................................................................................................4910.1HowtheUserInterfaceswiththeSaucebot..................................................................4910.2AppControls...............................................................................................................................49

11. BulkProductionAnalysis..........................................................................................................51AppendixA–EDrawingoftheDesign...........................................................................................54

Page 4: Design Proposal Capstone

P a g e 4

AppendixB–DrawingsofMajorComponents...........................................................................55AppendixC–WorkBreakdownSchedule(WBS)......................................................................63AppendixD–BillofMaterials............................................................................................................64AppendixE-GanttChart.......................................................................................................................67

Page 5: Design Proposal Capstone

P a g e 5

AcknowledgementsWewouldfirstliketothankMr.BradGreasleyfromStainlessSteelTechnologiesforsupplyinguswiththesomeofoursteelmaterialatadiscountedprice.AnotherindividualwewouldliketothankisMr.AndréDuval,forhavinghelpedtosolderourArduinoboard.WewouldliketothankMr.GregLakanenforbeingavailableatalltimestoansweranyquestionswemayhaveandforhiscontinuoussupport.Dr.BrahimChebbihasbeenagreatleaderthroughoutthemonths,andwasalwaysavailableforquestionsandneverhesitatedtohelpwhenitwasrequired.Wewouldliketothankhimforhiscontinuoussupport.Dr. Markus Timusk has been our professor for capstone, and has clearlydemonstrated to us the multiple steps needed to be taken to ensure a properconcept design. We would like to thank him for his continuous support andguidance.

Page 6: Design Proposal Capstone

P a g e 6

ListofFiguresFigure1:FreeBodyDiagram(FBD)ofthefiringsystem.......................................................20Figure2:Samplecalculationsoftheconveyorsystem...........................................................22Figure3:FreeBodyDiagram(FBD)oftheelectricallinearactuator...............................24Figure4:Schematicoftheelectricallinearactuator................................................................25Figure5:Derivationofequationstobeabletoselecttheappropriateelectricallinearactuator........................................................................................................................................................26Figure6:Finaltimeforacomplete90degreeoscillation......................................................26Figure7:Differentoptionsthatwereconsideredforthefiringsubsystem..................32Figure8:Thesingle/multipletubeloadinghopperandthevibratinghopperdesign..........................................................................................................................................................................33Figure9:Therotatingarmhopperdesign....................................................................................34Figure10:Thisfiguredisplaysthemainconceptofourinitialpuckshootingtests..35Figure11:Aviewfromtheshootingpositionofthefinalizedpuckshooterdesign.36Figure12:Firstconceptofapuckhopper....................................................................................38Figure13:Tentativefinalhopperdesign......................................................................................39Figure14:Topviewoffinalhopperdesigntesting..................................................................39Figure15:Anillustrationthatshowswheretheloadwasappliedandwhichsurfacewasfixed......................................................................................................................................................41Figure16:ADisplacementFiniteElementAnalysisontheLinearActuatorMount.Asexpected,onlythecolumnwiththeappliedloadwillexperienceadisplacement.Thismaximumdisplacementfeltbythecolumn(representedbythelightgreencolour)is0.0258mm..............................................................................................................................42Figure17:Anillustrationthatshowswheretheloadwasappliedandwhichsurfacewasfixed......................................................................................................................................................42Figure18:ADisplacementFiniteElementAnalysisontheWheelMount.Asexpected,wheretheplateandshaftmeet,wastheareathathadthemostdisplacement.Themaximumdisplacementfeltbytheshaft(representedbythelightyellow)is0.0696mm.............................................................................................................................43Figure19:Anillustrationthatshowswheretheloadswereappliedwithinthecollarandthebottomfaceoftheplatewhichwasfixed.....................................................................43Figure20:ADisplacementFiniteElementAnalysisontheBasePlatewhichsupportstheFrame.Asexpected,wherethecollarandplatemeet,experiencedthelargestdisplacement.Thismaximumdisplacementfeltbythecollaredge(representedbythelightyellowcolour)is0.0017mm.............................................................................................44Figure21:Anillustrationthatshowswhatareawasfixed.Theloadwasappliedtothebackofthepanel..............................................................................................................................44Figure22:ADisplacementFiniteElementAnalysisonaPanel.Applyingaloadof1000Ndidnotfracturethepanel.Themaximumdisplacementforthepanelis3.15mm........................................................................................................................................................45Figure23:Inthisfigure,theinterfacediagramfortheelectronicssystemwithinthesystemcanbeseen..................................................................................................................................48Figure24:ThisfigureshowsthetentativeAndroidAppinterfacethatwillbeused..........................................................................................................................................................................50

Page 7: Design Proposal Capstone

P a g e 7

Figure24:E-DrawingoftheSauceBot............................................................................................54Figure36:SolenoidDrawing..............................................................................................................61Figure37:FiringMotorsDrawing....................................................................................................61Figure38:LinearActuatorDrawing...............................................................................................62

Page 8: Design Proposal Capstone

P a g e 8

ListofTablesTable1:PughMatrix-FeedingSystem...........................................................................................15Table2:PughMatrix-Motor................................................................................................................16Table3:PughMatrix-Electronics.....................................................................................................17Table4:PughMatrix-PowerSource................................................................................................18Table5:PughMatrix-FiringSystem................................................................................................19Table6:Knownvaluesofoursystem,tocalculatevaluesfoundinthetablethatfollows..........................................................................................................................................................20Table7:Therequiredmotortorquetoensurethehockeypuckisproperlyfired.....20Table8:Constantvaluesrequiredforconveyorsystemcalculations..............................21Table9:Valuescalculatedfortheconveyorsystem.Themostsignificantvalueisthetorquerequiredfromourmotortoensureproperrotationoftheconveyor.Thepuckvelocity(vp)wasdeterminedbywantingtofireapuckeveryfiveseconds,thensimplydividingthetimebythelengthoftheconveyor(8”)................................................21Table10:InertiaofoursystemfoundfromSolidWorks........................................................22Table11:Tabulatedvaluesfoundfromcalculationsbelowtoensuretheproperselectionandpositioningoftheelectricallinearactuator....................................................23Table12:MaterialandApproximateMassPropertiesthataresubjectedtochangeifneedbeforthefinaldesign.................................................................................................................27Table13:Thistabledisplayspatentsthatwerediscoveredrelatedtoourdesign....30Table14:WebsiteCitations................................................................................................................31Table15:Pricesforthebulkpurchaseofcomponents...........................................................51Table16:Pricesforthebulkpurchaseofmanufacturedmaterials..................................52Table17:Costofhourlywagesforworkerstoassembleunits...........................................53Table18:Overallprofitfromthesaleof1000Saucebotunits............................................53Table19:BillofMaterials-FabricatedMaterialPortion.......................................................64Table20:BillofMaterials–ComponentPurchasingPortion..............................................65Table21:TotalCostofConceptualDesign...................................................................................66

Page 9: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 9

1. DesignOverview

TheSauceBot is anautomatedmachine that allows forhockeypuckpasses

without the assistances of a coach or player. Our design has multiple different

subsystemstoensurethepassisaccurateandsafe.Inthenextfewsections,wewill

giveadetaileddescriptionofhoweachsubsystemworks.

1.1HopperSystem

The hopper system (see Figure 9) was a subsystem introduced into our

design to further assist players and coaches. It reduces the time required for

coaches and player to load the machine because hockey pucks can simply be

dumpedintothehopperandwiththehelpofbrushesandasmall12Volt-DCmotor

spinningatapproximately30RPM,thepuckswillbepushedintotheopeningwhere

theywillfalldowntheramp.Thehopperhastwocomponents,whicharetheinner

hopper and outer hopper. The inner hopper is made of plastic or sheet metal,

rotates,andhasmanydifferentbrushestoaidwiththemovementofthepucks.The

outerhopperisstationary,madeofsteelandactsasasupporttoensurethepucks

sitverticallyatthebottomofthehoppersubsystem.

1.2Ramp Therampisaveryimportantcomponentofthedesignasittakesthepucks

inaverticalpositionfromthebaseofthehopperandbringsthemtothebaseofthe

ramp where they will sit and wait for the solenoid to punch them flat onto the

conveyorsystem.Thematerialoftherampistobeplasticorsteel,whichwebelieve

tobeagreatmaterialinallowingthehockeypuckstoslidefreely.

1.3Conveyor

Theconveyor’sresponsibilityistotakethehockeypuckfromthebaseofthe

ramp to the firingwheels found at the front of the design. This conveyor is best

illustratedinFigure2andwillbedirectlymountedtoa12Volt-DCmotorspinningat

Page 10: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 10approximately 300RPM. The frame and rollers are made of steel and the belt is

madeofrubber.

1.4FiringSystem This subsystem is themost important aspectof theentiredesign. It allows

for the shooting of the hockey puck, which is the main purpose/objective of the

design.Oncethepuckhasbeenbroughttothesewheelsbytheconveyor,thepuck

willbeacceleratedthroughthesmallgapbetweenthewheels,resultinginthepass.

1.5RotatingSystem

The rotating system is one of our designs most unique subsystems, as no

similarexistingproductshavethisaspect.Togetavisualunderstandingofhowthe

rotating system functionswith thehelpof anelectrical linearactuator, seeFigure

32.Oneendofthelinearactuatorwillbefixedtothebaseplatewhiletheextending

andretractingportionwillbefixedtothebaseoftheframe.Astheactuatorextends

andretracts,itwillallowtheentiresystemfoundwithintheframetorotateatotal

spanof90degrees.

Page 11: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 11

2. ConceptDevelopment

Duringthelastfewmonths,ourgrouphasmeteveryWednesdaytodiscuss

designideas,issuesthathaverisen,anddetailedplansonwhateverygroupmember

wasrequiredtocompleteforthefollowingweek.Ontop,Dr.Timuskhadgivenus

weeklyassignmentstoensureasagroupwestudiedallthepossiblesolutions,and

then displayed our reasoning behind why we chose our final concept. All the

assignmentsareclearlydefinedorillustratedinthesubsectionsbelow.

2.1ProblemStatement

AsCanadians,manyofusare familiarwith theexpenses that surround the

gameofHockey.Foryears,teamsandorganizationshavespentcountlessdollarson

the training of players and goalies through coaching, exercises and costly

equipment. This has led our group to develop a cheaper alternative to multiple

formsof training.Ourproductwill offer the consumeranall-in-oneexperience to

fosterskillsinmanyareasofthesport.

Parentsorplayerswilloftenspendoveronehundred(100)dollarsperhour,

for an on-ice skills session. Themajority of the time an instructor or coachwill

simplyspendtimepassingandshootingthepuck,ratherthanfocusingontheskill

developmentoftheplayer.Avastproblemthatexistswithcurrentproductsisthe

cost associated. These prices range anywhere from $1300-$1500, another very

pricypurchasethatparentswillneedtoundertake.Theprototypewecreatewillbe

an automated passingmachine that will allow for a greater focus on player skill

cultivation. The device will also provide the opportunity for an individual to

developskillsindependently.

Intoday’shockeymarket,thereareveryfewpuck-passingmachines,noneof

which are capable of projecting the puck at various angles. Furthermore they are

unable to utilizemobile devices for the operation. The devices that do exist are

Page 12: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 12quitebasic;astheyonlypassinonedirection,operateusingatimer,andrelyonan

electricaloutletconnection.

2.2FunctionalRequirements

1. SizeandWeight:Thesuitablesizeandweightofourproductshouldallow

foreasymaneuverabilityandtransportation.Themaingoalistoensurethat

either two parents or two players are capable of lifting the product into a

vehicle.Thematerialusedtoconstructourproductwillbevitaltomeetthese

sizesandweightconstraints.

2. SystemControl:Thesystemcontrolshouldbeveryuserfriendly,whichwill

allow younger players to use the product without the help of an adult.

Operationsmaybecontrolledwiththeuseofahandheldwirelessdevice,as

wellasswitchesandcontrolsonacontrolpanel.

3. Cost:With a complex design, we will ensure the minimization of cost. A

reasonably priced product is vital as it will be competitive with existing

devicesinthemarketplaceandappealingtotheconsumer.

4. Speed and Capabilities: Speeds will vary so that both young and highly

skilledplayerscanusetheproduct.Theoptionofdeliveringdifferenttypesof

passeswillenhance theuserexperience.Furthermore theability topassat

various angles can increase the consumers’ interest in the product. The

productwillbeconsideredmaneuverable,withtheeliminationoftheuseof

anelectricoutletandutilizingabattery.

5. Care and Maintenance: The devicewill need to be charged on a per use

basisasitwillberelyingonbatterypower,insteadofusingelectricityfrom

an electrical outlet. The design will allow for easy access to the internal

components,ifmaintenanceisrequired.

6. Loading:Loadingpucksintothedeviceshouldbeaneffortlessprocess.The

capacity shouldbe largeenoughsuch that itdoesn’thave tobe refilled too

often.

Page 13: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 13

2.3ProductConstraints SizeandWeight:

● Abletoeasilyliftbytwoadults.● Easilyfitintoanylargevehicle.● Allowanyonetoeasilymovearoundtheice.● Mustfitthroughthedoortotheicesurface.

Power:

● Willnotrunwiththeuseofanelectricaloutlet.● Onlyhaveacertainavailabilityofpowerwiththeuseofabattery.● Withalimitedamountofpower,ourmachinewillnothavethecapabilitiesto

shootapuckathighspeeds(100mph).Wewillconstrainourproductasapassingmachine(0mph–45mph).

TypesofPasses:

● Passwithoutfluttering(stable).● Abletopassthepuckatvariouslocationsovera90-degreespan.● Passatvariablespeedstoaccommodatevariousskill-leveledplayers.

Cost:● Manufacturingcostlessthan$1000

OperatingConditions:● Operateintemperaturerangesfrom-20°Cto+30°C.● Operateswhenpucksarewet.

LoadingConditions:● Enoughpuckstoensuretheplayer/coacharen’tconstantlyreloadingpucks

(minimum20hockeypucks).● Efficientloading,whereplayer/coachdonothavetoplaceorstackpucks.

Theideaofeasilydumpingpucksintoacontainertosavetime.

Stability:● Abletogriptheice,andnotmovewhenpassing.

Safety:

● Easytostopincaseofmalfunction.● Playersshouldwearproperequipmentwhenusingtheproduct.● Properlywiredandabletooperateinwetconditionstoensurenoelectrical

shock.

Page 14: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 14

2.4PughMatrix The Pugh matrix is a great tool to use during the designing process of a

product.Itclearlyoutlinestheimportanceofeverysubsystemandaddsupthetotal

numberof positives andnegatives. It is very efficient to comparedifferentdesign

ideasduetothenumberingcriteriaandthenselectthemostsuitabledesignforyour

product.

TheSauceBotwasbrokenupintofivesubsystems,whichare:feedingsystem,

motor, electronics, power source, and firing system. Each system was analyzed

individuallyduringtheconstructionofthePughMatrix.Tables1through5illustrate

a PughMatrix for each individual subsystem. In the alternative solutions section,

somealternativedesignsandconsiderationswillbediscussedaswell.

Page 15: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 15

Table1:PughMatrix-FeedingSystem

PughConceptSelectionMatrix

FeedingSystem

Weight

VibratingHo

pper

Singlese

lfloadingtube

Declined

Roller

Multip

lese

lfloadingtube

Rotatin

gHo

pper

SelectionCrite

ria

Performan

ce Speed 2 1 3 3 3 2

PowerUsage 2 -3 3 3 2 -2Accuracy 1 x x x x xNoise 2 -3 3 3 3 2Repeatability 2 1 3 3 3 3

Life

Jamming 3 -2 3 3 3 3Maintenance 3 -2 3 3 2 2TempRange 3 3 3 3 3 3LifeExpectancy 2 2 3 3 3 2Durability 3 3 3 3 3 3Reliability 3 2 3 3 3 2

EaseofU

se Loading 3 3 -3 -3 -3 3

Control 2 3 3 3 3 3

Manoeuvrability3 -1 1 2 -1 3

StartUpTime 1 2 3 3 3 2

Physical

Attributes

Size 3 2 2 -2 1 2Weight 3 -2 3 3 2 -1Safety 2 1 3 3 2 1Manufacturability 3 -2 3 1 2 -3Attractiveness 2 2 -2 2 2 3Cost 3 -2 3 3 2 -3

TOTAL+

25 51 50 46 39TOTAL- -17 -5 -5 -4 -9TOTALSCORE 8 46 45 42 30WEIGHTEDTOTAL+ 61 126 123 108 97WEIGHTEDTOTAL- -45 -13 -15 -12 -25WEIGHTEDSCORE 16 113 108 96 72

Page 16: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 16

Table2:PughMatrix-Motor

PughConceptSelectionMatrix

Motor

Weight

GearBox(1

Motor)

BeltDrive(1M

otor)

TwoMotors

SelectionCrite

ria

Performan

ce Speed 2 3 2 3

PowerUsage 3 -2 3 1Accuracy 2 x x xNoise 2 -3 3 -1Repeatability 2 x x x

Life

Jamming 3 x x xMaintenance 3 2 2 1TempRange 3 3 -1 2LifeExpectancy 3 3 -2 3Durability 3 3 1 3Reliability 3 3 3 1

EaseofU

se Loading 3 x x x

Control 2 x x 2

Manoeuvrability2 -1 3 1

StartUpTime 1 x x 2

PhysicalAttrib

utes

Size 3 2 3 2Weight 3 -2 3 -1Safety 2 2 3 2Manufacturability 3 -2 2 2Attractiveness 1 x x xCost 3 -3 3 -2

TOTAL+

21 31 25TOTAL- -13 -3 -4TOTALSCORE 8 28 21WEIGHTEDTOTAL+ 58 73 63WEIGHTEDTOTAL- -35 -9 -11WEIGHTEDSCORE 23 64 52

Page 17: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 17

Table3:PughMatrix-Electronics

PughConceptSelectionMatrix

Electronics

Weight

AndroidAp

p

IPho

neApp

Remote

AppandCo

ntrolPanel

Pane

lOnly

SelectionCrite

ria

Performan

ce Speed 2 X X X X X

PowerUsage 3 x x x 2 2Accuracy 2 x x x x xNoise 2 x x x x xRepeatability 2 x x 2 3 3

Life

Jamming 3 x x x x xMaintenance 3 1 1 -1 -2 -2TempRange 3 1 1 3 3 3LifeExpectancy 3 x x 1 2 2Durability 3 x x -2 2 3Reliability 3 1 1 2 3 3

EaseofU

se Loading 3 x x x x x

Control 2 3 3 3 3 2

Manoeuvrability1 x x x x x

StartUpTime 2 2 2 3 2 3

PhysicalAttrib

utes

Size 1 3 3 3 3 3Weight 3 3 3 3 3 3Safety 3 x x x x xManufacturability 1 -1 -3 -1 1 2Attractiveness 2 3 3 3 3 2Cost 3 0 0 2 -1 -1

TOTAL+

17 17 25 30 31TOTAL- -1 -3 -4 -3 -3TOTALSCORE 16 14 21 27 28WEIGHTEDTOTAL+ 37 37 58 71 76WEIGHTEDTOTAL- -1 -3 -10 -9 -9WEIGHTEDSCORE 36 34 48 62 67

Page 18: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 18

Table4:PughMatrix-PowerSource

PughConceptSelectionMatrix

PowerSource

Weight

LithiumIon

LeadAcid

ElectricalOutlet

Rechargeable

Non

-Rechargeable

SelectionCrite

ria

Performan

ce Speed 2 3 3 3 -1 3

PowerUsage 3 3 2 3 2 2Accuracy 2 x x x x xNoise 2 3 3 3 3 3Repeatability 2 x x x x x

Life

Jamming 3 x x x x xMaintenance 3 2 -1 2 -2 2TempRange 3 -1 -1 3 -2 -1LifeExpectancy 3 1 -2 3 3 -3Durability 3 3 3 1 -1 3

Reliability3 2 2 3 1 2

EaseofU

se

Loading 3 x x x x xControl 2 x x x x xManoeuvrability 2 2 -1 -2 2 2StartUpTime 1 1 1 2 1 1

PhysicalAttrib

utes

Size 3 1 1 3 1 1Weight 3 2 -1 3 2 0Safety 2 3 1 -3 2 1Manufacturability 3 x x x x xAttractiveness 1 3 -2 3 3 -3Cost 3 -2 2 1 -3 2

TOTAL+

29 18 33 20 22TOTAL- -3 -8 -5 -9 -7TOTALSCORE 26 10 28 11 15WEIGHTEDTOTAL+ 68 45 82 45 55WEIGHTEDTOTAL- -9 -19 -10 -26 -15WEIGHTEDSCORE 59 26 72 19 40

Page 19: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 19

Table5:PughMatrix-FiringSystem

PughConceptSelectionMatrix

FiringSystem

Weight

Rubb

erW

heels

ParallelBelts

ActuatorPun

ch

MechanicalA

rm

SlingShot

SelectionCrite

ria

Performan

ce Speed 2 2 3 1 -1 2

PowerUsage 3 2 1 3 3 3Accuracy 2 1 3 2 -1 3Noise 2 3 3 -3 1 1Repeatability 2 1 3 3 3 3

Life

Jamming 3 x x x x xMaintenance 3 2 2 1 3 3TempRange 3 -1 1 3 3 -1LifeExpectancy 3 2 2 3 3 -2Durability 3 3 1 2 2 -1Reliability 3 2 2 2 2 2

EaseofU

se

Loading 3 x x x x xControl 2 -2 3 3 3 2Maneuverability 2 3 -2 -1 -1 2StartUpTime 1 1 3 3 -1 -2

Physical

Attributes

Size 3 3 -1 -1 -3 1Weight 3 1 2 2 2 3Safety 2 2 2 1 -1 2Manufacturability 3 3 -1 0 2 2Attractiveness 1 2 2 1 -3 2Cost 3 3 2 -2 1 2

TOTAL+

36 35 30 28 33 TOTAL- -3 -4 -7 -11 -6 TOTALSCORE 33 31 23 17 27 WEIGHTEDTOTAL+ 90 75 72 77 80 WEIGHTEDTOTAL- -7 -10 -17 -21 -16 WEIGHTEDSCORE 83 65 55 56 54

Page 20: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 20

3. Calculations

1. FiringSystemCalculations:

𝐼! x 𝑤!"#$%"! = (0.5) x (𝑚!"#$) x (𝑣!!)+ (𝐼!) x (𝑤!"#$%! )Table6:Knownvaluesofoursystem,tocalculatevaluesfoundinthetablethatfollows.

DrivenValueforSystemDesignVariable Symbol Value Unit DrivenValue DrivenUnitPuckMass mp 0.170097 kg 6 Ounces

PuckVelocity vp 35.7632 m/s 80 MPHWheelRadius rw 0.1143 Meter 4.5 InchesWheelMass mw 4.53592 kg 10 LbWheelInertia Iw 0.05925948 kg*m^2 N/A N/A

WheelRotarySpeed w 312.888889 Rad/s 2987.868798 RPM

Table7:Therequiredmotortorquetoensurethehockeypuckisproperlyfired.

UsingConservationofEnergyandFBDtoFindBelowVariable Symbol Value Unit

SpeedofRotorsAfterFiring wafter 309.941675 rad/sTimetoShootAgain ts 5 Seconds

Delta_w Delta_w 2.94721377 rad/sAngularAccelerationRequiredtoRe-fire w_doubledot 0.58944275 rad/s^2

MotorTorqueRequired Tm0.03493007 Nm4.94609819 Oz-In

Figure1:FreeBodyDiagram(FBD)ofthefiringsystem.

Page 21: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 21

2. ConveyorSystemCalculations:

Table8:Constantvaluesrequiredforconveyorsystemcalculations.

ConstantsVariable Symbol Value Unit DrivenValue DrivenUnit

RotorDiameter D 0.015875 m 0.625 inRotorMass mR 0.1 kg N/A N/ABeltMass mb 0.042516236 kg N/A N/ALoadMass mL 0.170097 kg N/A N/A

FactorofSafety K 2 N/A N/A N/AConveyorLength Lb 0.2032 m 8 inTimetoShoot Tshoot 0.5 S N/A N/A

Start-uptimeofconveyor Tstart 5 s N/A N/ASlopeofConveyor(usingunitcircle) alpha 0 deg N/A N/ANumberofPulleysinConveyor N 3 N/A N/A N/ATable9:Valuescalculatedfortheconveyorsystem.Themostsignificantvalueisthetorquerequiredfromourmotortoensureproperrotationoftheconveyor.Thepuckvelocity(vp)wasdeterminedbywantingtofirea

puckeveryfiveseconds,thensimplydividingthetimebythelengthoftheconveyor(8”).

ConveyorSystemMotorCalculationsBasedonConveyorDesignVariable Symbol Value Unit DrivenValue DrivenUnit

RotorSpeed w 25.6 rad/s 244.461993 RPMPuckVelocity Vp 0.4064 m/s N/A in/sLoadInertia JL 1.07168E-05 kg*m^2 N/A N/APullyInertia Jp 9.45059E-06 kg*m^2 N/A N/ABeltInertia Jb 2.67869E-06 kg*m^2 N/A N/ATotalInertia JT 2.28461E-05 kg*m^2 N/A N/A

Tstart Ts 0.000116972 N*m N/A N/ATload Tl 0.015582261 N*m N/A N/ATtotal Tt 0.015699233 N*m N/A N/ATmotor Tm 0.031398466 N*m 4.44639737 Oz-in

Page 22: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 22

Figure2:Samplecalculationsoftheconveyorsystem.

3. LinearActuatorSelection:

Table10:InertiaofoursystemfoundfromSolidWorks

ReferencedFrom:AssemblyDim.AndStepperMotorCalc.SheetsVariable Symbol Value Unit

AssemblyInertia Ja 258416 oz-in^2BearingFrictionTorque Tf 3.1005 oz-in

Page 23: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 23Table11:Tabulatedvaluesfoundfromcalculationsbelowtoensuretheproperselectionandpositioningofthe

electricallinearactuator.

Variable Symbol Value UnitMountingRadiusToArm Rm 2 in

MountingAngle Bi 70 degMountingAngle Bi 1.22173048 rad

PrincessAuto:500lbVariable Symbol Value Unit

ActuatorForce Fa 500 lb

ActuatorForce Fa 8000 oz

StrokeLength S 6 in

ActuatorRetractedLength La 12 in

ActuatorExtendedLength Le 18 in

StrokeSpeed Vs 0.5 in/sPositioningCalculations

X1(FromDrawing) x1 1.41421356 in

X2(FromDrawing) x2 4.10424172 in

Y1(FromDrawing) y1 1.41421356 in

Y2(FromDrawing) y2 11.2763114 inFinalMountingAngle Bf 58.4168269 deg

X-Placement x 5.51845528 inY-Placement y -9.8620979 in

UsingFBDistheActuatorAcceptableRequiredStrokeLength

(90deg) Sr 1.2369604 in

AngularAccelerationOfAssembly theta_dd_a 0.0581697 rad/s^2

AngularVel.AfterTimeT theta_d_a 0.25 rad/sAngularVel.AfterTimeT theta_d_a 14.3239449 deg/sTimeToReachOperation

Speed T 4.29777008 s

AngleTraveledDuringAcceleration theta_a 0.53722126 rad

AngleTraveledDuringAcceleration theta_a 30.7805108 deg

TimeToTravel90deg T90 10.5434503 s

Page 24: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 24

Figure3:FreeBodyDiagram(FBD)oftheelectricallinearactuator.

Page 25: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 25

Figure4:Schematicoftheelectricallinearactuator.

Page 26: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 26

Figure5:Derivationofequationstobeabletoselecttheappropriateelectricallinearactuator.

Figure6:Finaltimeforacomplete90degreeoscillation.

Page 27: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 27

4. MaterialsandMassProperties Belowisatableofeverycomponentofthedesignanditsmassandmaterial

properties. These values andmaterialsmay change from now to the final design,

depending on time constraints, budgeting, and fabrication. The values below are

thosewehavefoundtobestsuitalltherequiredcharacteristicssuchasweightand

overallfunctionalityandaresubjectedtochangeifneedbe.

Table12:MaterialandApproximateMassPropertiesthataresubjectedtochangeifneedbeforthefinaldesign.

Material&ApproximateMassProperties

Part Material Quantity Weight(lbs) TotalWeight(lbs)

CasterWheels Plastic/Steel 2 2.2 4.4

Handle Steel 1 6.4 6.4Base Steel 1 15 15BasePlate Steel 1 2.2 2.2FrameBase

Plate Steel 1 1.4 1.4

LinearActuator 1 5 5

BaseCrosser Steel 2 1.9 2.8Spikes Steel 4 0.1 0.4Handle

Holder Steel 2 0.3 0.6

FrameBasePlate Steel 1 20 20

RotatingShaft Steel 1 0.6 0.6

ActuatorSupport Steel 2 0.4 0.8

BaseBackPlate Steel 1 2.1 2.1

AngleSupports Steel 4 0.1 0.4

Frame Steel 1 64 64

Wheels Rubber-Steel 2 5 10

WheelMountShaft Steel 2 1 2

Page 28: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 28

FiringBasePlate Plastic 1 1 1

ConveyorRubber Rubber 1 0.2 0.2

ConveyorFrame Steel 1 1.4 1.4

ConveyorShaft Steel 3 0.2 0.6

BatteryPack

NickelMetalHydride

6 1.5 9

InnerHopper Plastic 1 3.3 3.3OuterHopper Steel 1 20 20HopperRamp Plastic 1 1.1 1.1Solenoid Steel 1 1 1Conveyor

Motor Steel 1 1 1

HopperMotor Steel 1 1 1

FiringMotor 2 3 6SidePanel Plexiglass 2 10 20Front-Back

Panel Plexiglass 2 12 24

TopPanel Plexiglass 1 3.4 3.4

TOTALWEIGHT= 231.1 lbs

Page 29: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 29

5. ResearchFindings

While deciding upon a design many different options were analyzed and

discussedasagroup.Itwasnecessarytoinvestigatefurtherintopossibledeignsto

seewhat technologiesandormethodsalreadyexisted, andwhetherornot touse

thesepre-existingdesigns.

It was interesting to find that one group of engineering students from

DalhousieUniversitycompletedadesignprojectwithsomeaspectssimilartoours.

Theydesignedapuck-passingmachinethatrequiredtheusertoloadpucksbyhand

and could only fire a puck in one direction without the user having tomanually

changethedirectionthepasserwasfacing.Inadditiontothistheuserinterfacewas

only integrated into themachine,whichmeant ifaplayerpracticingwould like to

modify any of the system settings they would have to walk to the machine and

changeit.Afterseeingthis,ourgroupagreedthathavingeitherawirelesscontroller

orasmartphoneapptocontrolthedevicewouldbeideal.

Fromconducting further research,wewere able to find a companynamed

Pucco, located in Sweden. This company has developed several models of puck

shooterswith commendable characteristics. Therewas amodel of theirmachine

thatincludedanappcontrol,howeverthisappwasnotwireless.Highspeedscould

alsobereached.Thedownfall tothismachinewastheimmensesizeof1.3meters

longandweightofapproximately500+pounds.Thecostofthismachinewasvery

highaswell:over$5000CAD.

The Puck Passer Pro was another machine used for a similar task as the

Saucebot. This apparatus was smaller and lighter than the Pucco, however the

loadingandpowersourcesweresubstandard.Althoughitwasabletoshootpucks

atupto40milesperhourandat incrementsas lowas2seconds, itrequiredwall

power,aswellasmanualloadingofonlyupto18pucks.

Page 30: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 30

Wewantedourmachinetobeaseasytouseaspossiblefortheusertoprep

andloadsotherewasminimaltimelosttofillingthehopperwithpucksandsetup.

Alldesignswesawrequiredtheusertomanuallystackpucksinsomesortofhopper

system,whichconsumespracticetimefortheplayers.Thisledustodesignahopper

that allows the user to simply dump a bucket of pucks into and continue on

practicing. For this design it was necessary to research some automated sorting

machines like separators and vibratory sorters to give us a better idea of any

technologies we could use. Although the research was inconclusive as to a final

designtouseforourproductassortingwaferorpuckshapedobjectsisn’tcommon,

it sparked many new ideas within the group. With all previous aspects of

developmentoutlinedthroughtheearliersectionsofthisreport,thegroupwasable

to come up with a relatively compact sorting system that could be used in our

application.

Whendesigningourfiringsystemwecameupwithmultiplepossibilities.We

hadquickly scrappedmany of the initial ideas, as theywould not allow for quick

enough firing intervals. Using our knowledge of dynamics we calculated that the

mostenergyefficientwaytolaunchpucksatsuchanintervalwouldtoutilizeheavy

rotatingwheelsthatwouldallowustouseangularmomentumandkineticenergyto

ourbenefit.

Although multiple patent searches through federal and international

databaseswereconducted,therewereveryfewrelevantresultsfound.Someofthe

pertinentpatentsdiscoveredareshowninTable13below.

Table13:Thistabledisplayspatentsthatwerediscoveredrelatedtoourdesign.

PatentNameandNumber Inventor PublicationDate“Athletic training device,”

US5160138 AT. E. Sanders 03-Nov-1992

“Hockey practice device for

propelling pucks,” US3665910 AB. Orlando 30-May-1972

, “Hockey shooting training

device,” US7905800 B2D. Oneschuk 15-Mar-2011

Page 31: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 31“Hockey puck practice shooting

apparatus,” US3794318 AH. L. 26-Feb-1974

“Apparatus for projecting hockey

pucks,” US3876201 AK. G. Allan 08-Apr-1975

Someofthekeywordsthatwereusedforvarioussearchesofinformationare

inthelistasfollows:

• Projectingpuck(device/machine/apparatus/passer)

• Puckshooting(device/machine/apparatus/passer)

• Hockeyshooting(device/machine/apparatus/passer)

• Hockeytraining(device/machine/apparatus/passer)

• Puckpropelling(device/machine/apparatus/passer)

• Shooting(device/machine/apparatus/passer)

• Puck(device/machine/apparatus/passer)

• Hockeypuck(device/machine/apparatus/passer)

• Automatedpuck(device/machine/apparatus/passer)

• Automatedshooting(device/machine/apparatus/passer)

Table14:WebsiteCitations

ResearchComponent

Website/Article

HockeyPuckPasserDeignTeam3

http://poisson.me.dal.ca/~dp_09_03/WINTER%20REPORT.pdf

PuckPasserPro http://www.puckpasserpro.com/VibratorySortingMachines

https://www.youtube.com/watch?v=OjrFkjwRhmohttps://www.youtube.com/watch?v=xgoi8d-X8oUhttp://www.vibromatic.net/vibratoryfeederbowls2_1.html

ConveyorSystems

http://www.conveyorscience.com/file:///Users/nicholasjakelski/Downloads/bodine_sizing_gearmotors_for_conveyor_apps.pdfhttp://www.cnc.info.pl//files/tecmtrsiz_155.pdf

PuccoPuckShooter

http://www.paramecanic.se/default.asp?str=106&link=PUCCO%2090

PuckPasserPro http://www.puckpasserpro.com/products/

Page 32: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 32

6. PreliminaryTestingandAlternativeSolutions Since the beginning of September we have discussed several alternative

solutions to theonewehave finalized inour conceptproposal.The figuresbelow

are quick sketches of these different ideas. For the firing system we considered

multiple systems (see Figure 7) including a belt driven system, a linear actuator

punch, and a sling shot design.Aftermanydiscussions,wewere able to conclude

thatthewheeldrivensystemwasourbestoptionduetoitsreliabilityandefficiency.

Figure7:Differentoptionsthatwereconsideredforthefiringsubsystem.

Many different hopper designs were taken into consideration during

discussionsofourdesign.Wewantedtobedifferentfromanyotherproductfound

on themarket. Other considerations included a single/multiple tube loader and a

vibratinghopper(seeFigure8).Wedecidedthesingle/multipletubeloaderwasnot

thedesignforus,becauseplayersorcoacheswouldneedtomanuallyplaceandload

Page 33: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 33pucks,wastingalotoftime.Thevibratinghopperdesignwashighlyconsideredasa

viableoption,untilwere-createdacardboardmodelandtriedtotest it.Fromour

tests we were able to determine that jamming occurred quite easily and adding

vibrationtothesystemwouldmakeitloudandpossiblydamageothercomponents.

Figure8:Thesingle/multipletubeloadinghopperandthevibratinghopperdesign.

Page 34: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 34

Figure9:Therotatingarmhopperdesign.

Page 35: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 35

6.1 FiringSystemPhase1:

Figure10:Thisfiguredisplaysthemainconceptofourinitialpuckshootingtests.

Thiswasoneoftheveryfirstconceptsthoughtof,whichlaterdevelopedinto

the final firing mechanism system chosen. This system simply utilized pucks

attachedtometalrodstoacceleratethepuckthatwouldbefired.Theframeoftest

unitwassimplyconstructedoutofwood,asscrapwoodwasreadilyavailableinthe

machine shop. With testing we found that the use of hard rubber wheels was

unfeasible, as thepucksdidnotgripwell enoughevenwhenanabrasivematerial

such as sandpaperwas added to the outer edge.Also, the diameters of the pucks

weremuchtoosmalltoreachpassingspeeds.Withmotorspeedsofapproximately

2000 rpm, initial testing resulted in a puck velocity of 1m/s. This completely

eliminated theuseofhard rubberwheels forour firing systemas they lacked the

abilitytoefficientlyacceleratethepuck.

Page 36: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 36

Theresultsoftheseoriginaltestsledustobelievethatalargerdiameterand

soft firing wheel would be much more efficient at accelerating the puck when

comparedtothesmalldiameterhardrubberpuck.Thesofterfiringwheelscouldbe

placedincloserproximity,leadingtoamuchbettergripofthepuck,whilethelarger

diameterwould result inahighervelocitywhencompared toa smallerdiameter-

firingwheelwhenrotatingatthesameangularvelocity.

Phase2:

Figure11:Aviewfromtheshootingpositionofthefinalizedpuckshooterdesign.

Theseconditerationofourtestfiringsystemworkedonthesameprinciple

asPhase1testingbutthesmallhardpuckswerereplacedwithpneumatictiresthat

Page 37: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 37had a diameter of 8 inches. Thewheelswere attached to rods using handcrafted

plates. The plates were welded onto the drive shafts and in turn were spun by

motors (in our testing drillswere used as electricmotors).With the use of these

largepneumatictiresandmotorspeedsof2000rpmand1000rpmpuckvelocitiesof

approximately12m/sor25mphwerereached.Thepucktraveledalongastraight

path even though uneven motor speeds were utilized. From our motor speed

calculationsandinitialresultswewereabletoconcludethatmotorspeedsof4500

rpmorgreaterwererequiredtoreachthedesiredmaxvelocityof50mphincluding

afactorofsafety.

These initial testing of the firing system allowed us to comfortably decide

uponourfinaldesignbyrulingoutthefirstsystemandgivingusinsightastowhat

wouldwork. Thephase1 testingmade it apparent that a largediameter and soft

wheelwould bemore suitable for firing the puckswhen compared to hard small

diameterwheels.Thephase2testingshowedusthatthefiringsystemwouldwork

andallowedustoorder/purchasecomponentsthatwewerepreviouslyunsureofas

theyaccountedforalargepercentageofthefinalbudget.

Page 38: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 38

6.2HopperSystemPhase1:

Figure12:Firstconceptofapuckhopper.

The first concepts that we developed when thinking of simple loading

hoppers, which allowed for large numbers of pucks to be loaded without

placing/stacking pucks,were simple rectangular hoppers (example above). These

hoppers would be vibrated to allow for pucks to easily exit the hopper. These

systemswereconstructedoutofcardboardtotestforjammingandotherproblems

thatmayoccur.Whenwetestedthesehoppersjammingoccurredonaregularbasis,

andbothprovedtobenoisy.Forthesereasonswewereabletoruleoutrectangular

vibratedhoppers,as theywereunreliable,often jammingandwouldbeextremely

noisywhenconstructedofmetal.

Page 39: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 39Phase2:

Figure13:Tentativefinalhopperdesign.

Figure14:Topviewoffinalhopperdesigntesting.

Page 40: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 40

After discussion and several other hopper ideas our group conceived a

potentialhoppersystemthathadlowchancesofjammingandwouldallowforlarge

numbers of pucks to be loaded without placement. This system has a stationary

outsidewitharotatingmiddlesection.Thepucksexitthroughthecutoutslotinthe

stationary exterior. To determine the validity of this design a simple model,

constructedofsheetmetal,wascreated,whichprovedtoworkextremelywell.The

motor used in our testing rotated at too high of a rate (100-200rpm) and the

constructionofthemodelwasnotveryprecise.Evenwiththeseproblemsthemodel

provedthatthedesignwouldfunctionaswehoped.(Theaboveimagesareofonly

aprototypeofourfinaldesign,averyroughrepresentation)

Page 41: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 41

7. FiniteElementAnalysis(FEA)

Webelieved that anFEAof certain componentswas required to avoid any

possible failure thatmayoccurduringoperation.The figuresbeloware theFEA’s

thatwereperformedoncomponents, thatwe thoughthad the largest tendency to

fail.Thefiniteelementanalysiswasabletoreassurewhatwehadalreadybelieved,

thatbeing;ourdesignwasproperlyconstructedtoavoidfailure.

7.1LinearActuatorMount

The firstcomponentwedidanFEAonwasthe linearactuatormount.Thetop

surfacewasfixedandtheload(100lbs.)wasappliedtothebackcolumn,wherethe

actuator is to be mounted. This load is an extreme worst-case scenario and still

provedtosupplyagoodfactorofsafety.

Figure15:Anillustrationthatshowswheretheloadwasappliedandwhichsurfacewasfixed.

Page 42: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 42

Figure16:ADisplacementFiniteElementAnalysisontheLinearActuatorMount.Asexpected,onlythecolumn

withtheappliedloadwillexperienceadisplacement.Thismaximumdisplacementfeltbythecolumn(representedbythelightgreencolour)is0.0258mm.

7.2WheelMount

ThenextcomponentweperformedanFEAonwasthetwowheelmounts.

Thesecomponentswerefixedattheboltholes,andtwoloads(1000N)wereapplied

ontheupperandlowerpartsoftheshaft(seeFigure17).Again,theloadsapplied

wereextremelygenerouscomparedtotheloadstheywouldactuallyfeelfromthe

puckpassingbetweenthewheels.

Figure17:Anillustrationthatshowswheretheloadwasappliedandwhichsurfacewasfixed.

Page 43: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 43

Figure18:ADisplacementFiniteElementAnalysisontheWheelMount.Asexpected,wheretheplateandshaftmeet,wastheareathathadthemostdisplacement.Themaximumdisplacementfeltbytheshaft(represented

bythelightyellow)is0.0696mm.

7.3BasePlateSupport

Our base plate which supports the entire frame was one of the most

important components to perform an FEA, to ensure that it was capable of

supportingtheentiredesign.Weappliedtwoloads(2000Neach)withinthecollar

andalsofixedthebottomoftheplate.

Figure19:Anillustrationthatshowswheretheloadswereappliedwithinthecollarandthebottomfaceofthe

platewhichwasfixed.

Page 44: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 44

Figure20:ADisplacementFiniteElementAnalysisontheBasePlatewhichsupportstheFrame.Asexpected,wherethecollarandplatemeet,experiencedthelargestdisplacement.Thismaximumdisplacementfeltbythe

collaredge(representedbythelightyellowcolour)is0.0017mm

7.4SidePanel

AquickFEAofourpanelswasdonetoseewhatwouldhappenifaplayer

accidentallyhititwithapuck.Thegreenarrowsrepresentthefixedareaofthe

panelandtheappliedload(1000N)isfoundontheback.

Figure21:Anillustrationthatshowswhatareawasfixed.Theloadwasappliedtothebackofthepanel.

Page 45: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 45

Figure22:ADisplacementFiniteElementAnalysisonaPanel.Applyingaloadof1000Ndidnotfracturethe

panel.Themaximumdisplacementforthepanelis3.15mm.

Page 46: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 46

8. ShootingPseudocodeArduinoPseudocodevoidon(){ turnonmotors; poweractuator/solenoid; voidloop{ setspeedstovaluedeterminedbypotentiometer(orapp); }}voidoff(){ turnoffmotors/actuator/solenoid;}voidstraight(){ voidloop(){serialstringtoextend/retractsolenoid(punch);delayfor5-10seconds;if(Serial1.read()=1){break;}}}voidoscillate(){ setangleto0°(allthewayleft)viaserialstringsenttoactuator; counter=0;voidloop(){ for(i=0;i<4;i++){serialstringtoextend/retractsolenoid(punch);incrementcounter;delayfor5-10seconds;if(counter=0){setangle0°};if(counter=1){setangle22.5°};if(counter=2){setangle45°};if(counter=3){setangle67.5°};if(Serial1.read()=1){break;}if(counter=4){setangle90°for(i=4;i>0;i--){ serialstringtoextend/retractsolenoid(punch); decrementcounter; delayfor5-10secondsif(counter=3){setangle67.5°};if(counter=2){setangle45°};if(counter=1){setangle22.5°};

Page 47: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 47if(counter=0){setangle0°};if(Serial1.read()=1){break;} }} }Codeapplicableonlywithappvoidpass(){ serialstringtoextend/retractsolenoid(punch);}voidangle(){ setangleto1of5presetvaluesusingslideronapp; voidloop(){Serial.read(); ifserial0=0°;ifserial1=22.5°;etc}voidspeed(){ setmotorspeedstopwmvalueselectedonsliderbysendingserialcodetoArduino}voidstop(){sendserialcodewhichbreaksallloops;} AppCodeGUIinterfacewithbuttonsandslidersOn/offbuttonsendsserialcodetotogglepoweronoroffPassbuttonsendsserialcodetosolenoidtopunchapuckontoconveyorTwobuttonstorunpreloadedcodesforconstantstraightpassingoroscillatorypassingStopbuttontobreakloopofpreloadedcodesAngleslidertoadjustangleofthemachinetooneoffivepresetsSpeedslidertoadjustspeedofmotorsviapwm

Page 48: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 48

9. ElectronicInterfaceDiagram

Figure23:Inthisfigure,theinterfacediagramfortheelectronicssystemwithinthesystemcanbeseen.

Page 49: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 49

10.UserControl

10.1HowtheUserInterfaceswiththeSaucebot

Thecontrolpanelwillconsistof3buttons,anon/offswitchanda

potentiometerdial.OnebuttonwillinitiatetheArduinocodetohavetheSaucebot

repeatedlypasspucksinastraightlineuntilstopped.Thesecondbuttonwillinitiate

thecodefortheSaucebottooperateinanoscillatorymanner,turning22.5°after

everypuckispassed.Thethirdbuttonwillbreakallloopsinthecodetostopeither

ofthetwoprevioussettings.Theon/offswitchwillcontrolpowertothemotors.

Lastlythepotentiometerdialwillbeusedtoregulatethespeedatwhichthetwo

pucklaunchingmotorsoperateat,inturncontrollingthevelocityatwhichpucksare

passedfromthemachine.

10.2AppControls

Theappwillprovidealloftheaforementionedfunctionalitiesthrough

buttonsand/orslidersonaGUIwhichtransmitstherequiredserialsignalstothe

ArduinoviaBluetoothandtheuseofaBluefruitEZ-linkArduinoshield.Inaddition

theappwilladdthecapabilitytolaunchpucksoncommandatthepushofabutton,

aswellassettheangleoftheSaucebottooneofthefivepre-setvalueswiththeuse

ofaslider.

Page 50: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 50

Figure24:ThisfigureshowsthetentativeAndroidAppinterfacethatwillbeused.

Page 51: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 51

11. BulkProductionAnalysis

For this analysis, we assumed that 1000 units of the Saucebot would be

producedforsales.Byresearchingbulkpricesofmaterialsandcomponents,along

withaveragelabourpricesforvariousprofessions,wewereabletocomeupwitha

realisticcostanalysis. ThisanalysiscanbeseenintheTables15to18below,and

demonstrate the viable business opportunity that this product is capable of

providing.Table15:Pricesforthebulkpurchaseofcomponents.

ComponentPurchase Components Quantity Cost

RubberWheels 2000 $10,000.00Panels 1000 $42,546.36

BaseandHandle 1000 $30,948.30

Solenoid 1000 $1,370.00

ConveyorMotor 1000 $4,110.00ConveyorBearings 10000 $2,740.00

TenergySmartUniversalCharger 1000 $4,096.30HopperMotor 1000 $4,110.00

LinearActuator 1000 $24,660.00

BlueFruitEZ-LinkShield 1000 $34,233.53

MotorBracket 4000 $2,740.00ThrustBearingsw/Washers 2000 $274.00ThrustBearingw/Washers 1000 $137.00NeedleRollerBearing 1000 $411.00

BallBearings 2000 $548.00

FiringMotors 2000 $91,543.40

ArduinoCompatibleATmega2560 1000 $1,370.00MotorDriver 1000 $54,745.20VoltageRelay 1000 $5,310.00

Battery 1000 $13,700.00

Page 52: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 52

Wires 2000 $2,740.00Potentiometer 1000 $137.00

Total $332,470.10

Totalw/Tax: $375,691.21

Table16:Pricesforthebulkpurchaseofmanufacturedmaterials.

MaterialPurchase Component Quantity Cost Size

SquareHollowSteelTubing 4000 $29,713.00 1"x1"x10'

BearingMount&HopperMount 196 $29,619.00 0.25"x48"x96"

FrameBasePlate&WheelPlates 32 $7,928.00 0.25"x48"x96"

BasePlate(SupportFrame) 94 $15,960.00 0.188"x48"x96"

WheelMountShaft 125 $1,150.00 0.625"x8'

Rollers 125 $1,150.00 0.625"x8'

LowerPlate/PuckSlidingPlate/ConveyorFrame 63 $7,520.00 0.12"x48"x96"

OuterHopper 188 $13,690.00 0.12"x48"x96"

InnerHopper 144 $10,512.00 0.125"x48"x96"

BaseShaft 43 $2,072.00 1.25"x8'

BaseSupportShaft 21 $495.00 1.25"x0.12"x8'

HandleSupports 63 $764.00 1.125"x0.0625"x8'

BasePlateAngle 4 $850.00 0.188"x48"x96"

BaseAngleSupport 12 $2,440.00 0.188"x48"x96"

Total: $123,863.00

Totalw/Tax: $139,965.19

Page 53: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 53

Table17:Costofhourlywagesforworkerstoassembleunits.

Manufacturing Typeof

Labour AvgWage

For1Unit:For1000

Units:

Cost:

ManLabour $15.00 /hr CuttingAllMaterial@5/hr 200 hr $3,000.00

Machinest $19.00 /hr Preparingparts@1/hr 1000 hr $19,000.00

Welder $22.80 /hr WeldingFrame@3/hr 333.33 hr $7,600.00

Assemblerx2 $15.00 /hr AssemblingComponents@2/hr 500 hr $7,500.00Junior

Electrician $22.50 /hr Wiring@2/hr 500 hr $11,250.00

TOTAL: $48,350.00

Table18:Overallprofitfromthesaleof1000Saucebotunits.

GRANDTOTALCOSTFORPRODUCING1000UNITS: $564,006.40

ESTIMATEDSALESREVENUEAT$1200/UNIT $1,200,000.00

TOTALBULKSALESPROFITAFTERTAX=

$635,993.60

$635.99 /UNIT

From the tables above, one can see that the Saucebot has thepotential for

profits,atapricesimilar to,ormuch lower thananyothercomparableunit. This

hasledourgrouptotheconclusionthatwehaveproducedastellarproductwhich

carriesagreatpotential.

Page 54: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 54

AppendixA–EDrawingoftheDesign

Figure25:E-DrawingoftheSauceBot.

Page 55: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 55

AppendixB–DrawingsofMajorComponents

Figure26:FrameDrawing

Page 56: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 56

Figure28:WheelMountPlateDrawing

Figure27:FiringBaseDrawing

Page 57: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 57

Figure30:ConveyorAssemblyDrawing

Figure29:HopperAssemblyDrawing

Page 58: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 58

Figure32:BatteryAssemblyDrawing

Figure31:BaseAssemblyDrawing

Page 59: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 59

Figure34:ProposalConceptAssemblyDrawing

Figure33:RotatingSubsystemDrawing

Page 60: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 60

Figure36:ConveyorMotorDrawing

Figure35:HopperMotorDrawing

Page 61: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 61

Figure37:SolenoidDrawing

Figure38:FiringMotorsDrawing

Page 62: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 62

Figure39:LinearActuatorDrawing

Page 63: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 63

AppendixC–WorkBreakdownSchedule(WBS)

PuckPasser

1.0Body

1.1Frame

1.1.1OuterShell

1.1.1.1

CADModel

1.1.1.2

Material

Specifica@ons

1.1.1.3

Fabrica@on

1.1.2Rota@ngCore

1.1.2.1

Calcula@ons

1.1.2.2

CADModel

1.1.2.3

Construct

1.2Targe@ngSystem

1.2.1Eleva@onActuator

1.2.1.1

Calcula@ons

1.2.2Rota@ngCore

1.2.2.1

CADModel

1.2.2.2

Calcula@ons

1.2.2.3

Assemble

2.0FeedingSystem

2.1Hopper

2.1.1ElectricMotor

Selec@on

2.1.1.1

Calcula@ons

2.1.1.2

Mount

Design

2.1.2Design&

Modeling

2.1.2.1

CADModel

2.2Delivery

2.2.1SlopedRam

p

2.2.1.1

CADModel

2.2.2ActuatedGate

2.2.2.1

CADModel

2.2.2.2

ActuatorSelec@on

3.0FiringSystem

3.1ElectricMotor

3.1.1Wheels&

Belt

3.1.1.1

CADModel

3.1.1.2

Calcula@ons

3.1.1.3

Material

Specifica@on

3.1.2Gearbox

3.1.2.1

Calcula@ons

3.1.2.2

CADModel

3.1.2.3

Material

Specifica@on

4.0ElectronicsandPow

er

4.1App

4.1.1AndroidAppDevelopm

ent

4.1.1.1

CodeGUI

4.1.1.2

Implem

enta@on

4.1.2iPhoneApp

Development

4.1.2.1

CodeGUI

4.1.2.2

Implem

enta@on

4.2BaRerySupply

4.2.1ChargingSystem

4.2.1.1

AvailablePow

er

4.2.1.2

ChargeTime

4.2.1.2

UsageTim

e

4.2.2Mount

4.2.2.1

CADModel

Page 64: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 64

AppendixD–BillofMaterials

Table19:BillofMaterials-FabricatedMaterialPortion.

Component Quantity Cost Material MachiningProcess Size

SquareHollowSteelTubing 4 $55.00 Steel Welding&Cutting 1"x1"x10"

BearingMount&HopperMount

1 $21.31 Steel-ColdRolledPlate

Welding,Drilling,Cutting 2.5"x36"x1/4"

FrameBasePlate&Wheel

Plates1 $26.92 Steel-Cold

RolledPlateWelding,Drilling,

Cutting 12"x12"x1/4"

BasePlate(SupportFrame)

1 $42.85Steel-ColdRolledSheetA1011CQ

Drilling,Welding 24"x18"x0.188"

WheelMountShaft 1 $10.42

Steel-ColdRolledRoundBar1018

Lathe 0.625"x12"

Rollers 1 $10.42Steel-Cold

RolledRoundBar1018

Lathe 0.625"x12"

LowerPlate/PuckSliding

Plate/ConveyorFrame

1 $26.01Steel-Hot

RolledSheetA1011CQ

Lathe&CNC 12"x24"x0.12"

OuterHopper 1 $70.00 Steel-ColdRolledSheet Bending 24"x36"x0.12"

InnerHopper 1 $29.60 Plastic Bending 1/16"x5'x11"

BaseShaft 1 $13.54Steel-Cold

RolledRoundBarC1018

Lathe&CNC 1.25"x4"

BaseSupportShaft 1 $14.84

Steel-ColdRolledRoundBarC1018

Lathe&CNC 2"x1.25"

HandleSupports 1 $12.80

Steel-ColdRolleRoundTubeDOM

Lathe&CNC 1.125"x0.125"

BasePlateAngle 1 $18.39

Steel-HotRolledSheetA1011

Lathe&CNC 5"x18"x0.188"

BaseAngleSupport 1 $24.53

Steel-ColdRolledFlatC1018

Lathe&CNC 0.25"x1"x60"

TOTAL= $376.09

Page 65: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 65

Table20:BillofMaterials–ComponentPurchasingPortion.

Components Size Supplier Quantity CostperUnit TotalCost

RubberWheels 8"diameter PrincessAuto 2 $24.99 $56.48

Panels 48"x72"x0.075"

MetalSupermarket 1 $81.19 $81.19

BaseandHandle 24"x18" CanadianTire 1 $22.59 $22.59

Solenoid N/A Amazon 1 $15.50 $15.50

ConveyorMotor 2.2"x1.5" Amazon 1 $23.65 $23.65

ConveyorBearings 0.197"x5/8"x.196" Amazon 10 $3.53 $2.39

TenergySmartUniversalCharger

16.5x8.9x4.4cm Amazon 1 $32.76 $32.76

HopperMotor N/A Amazon 1 $9.19 $9.19

LinearActuator 8"stroke eBay 1 $68.48 $68.48

BlueFruitEZ-LinkShield 2.7"x2"x0.2" BC-Robotics 1 $44.69 $44.69

MotorBracket 2.5" Lowes 4 $2.02 $8.09

ThrustBearingsw/Washers 0.5" McMasterCarr 2 $2.91 $5.82

ThrustBearingw/Washers 1.25" McMasterCarr 1 $9.11 $9.11

NeedleRollerBearing 1"x1.25" McMasterCarr 1 $10.98 $10.98

BallBearings 0.5" McMasterCarr 2 $8.64 $17.27

FiringMotors N/A RobotShop 2 $41.49 $82.98

ArduinoCompatibleATmega2560 4"x2.1" eBay 1 $12.40 $12.40

MotorDriver 2.56"x2.02"x0.38" AliExpress 1 $14.19 $14.19

VoltageRelay 8"x5.7"1.2" Amazon 1 $24.86 $24.86

Battery 2.42"x1.3" Ebay 10 $14.24 $142.40

Wires Variouslengths Amazon 1 $3.63 $2.18

Potentiometer 0.59"x0.4"0.87" Amazon 1 $7.89 $7.89

TOTAL= $695.09

Page 66: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 66

Table21:TotalCostofConceptualDesign.

TotalforFabricatedComponents: $376.63TotalforPurchasedComponents: $695.09GRANDTOTAL: $1071.72

Page 67: Design Proposal Capstone

E N G R 4 5 9 5 S a u c e B o t P a g e 67

AppendixE-GanttChart

S8 Nov 15

M T W T F S S15 Nov 15

M T W T F S S22 Nov 15

M T W T F S S29 Nov 15

M T W T F S S6 Dec 15

M T W T F S S13 Dec 15

M T W T F S S20 Dec 15

M T W T F S S27 Dec 15

M T W T F S S3 Jan 16

M T W T F S S10 Jan 16

M T W T F S S17 Jan 16

M T W T F S S24 Jan 16

M T W T F S S31 Jan 16

M T W T F S S7 Feb 16

M T W T F S S14 Feb 16

M T W T F S S21 Feb 16

M T W T F S S28 Feb 16

M T W T F S S6 Mar 16

M T W T F S S13 Mar 16

M T W T F S S20 Mar 16

M T W T F S S27 Mar 16

M T W T1 Body 54 days? 11/11/15 8:00 AM 1/25/16 5:00 PM2 Frame 54 days? 11/11/15 8:00 AM 1/25/16 5:00 PM3 Outer Shell 53 days? 11/11/15 8:00 AM 1/22/16 5:00 PM4 CAD Model 18 days? 11/11/15 8:00 AM 12/4/15 5:00 PM5 Material Selection 3 days? 12/7/15 8:00 AM 12/9/15 5:00 PM 46 FEA Analysis 2 days? 12/10/15 8:00 AM 12/11/15 5:00 PM 57 Fabricate 10 days? 1/11/16 8:00 AM 1/22/16 5:00 PM 68 Rotating Core 54 days? 11/11/15 8:00 AM 1/25/16 5:00 PM9 Calculations 6 days? 11/11/15 8:00 AM 11/18/15 5:00 PM

1 0 CAD Model 11.5 days? 11/19/15 8:00 AM 12/4/15 1:00 PM 91 1 Motor Selection 3 days? 12/4/15 1:00 PM 12/9/15 1:00 PM 1 01 2 Material Selection 2 days? 12/9/15 1:00 PM 12/11/15 1:00 PM 1 11 3 FEA Analysis 2 days? 12/11/15 1:00 PM 12/15/15 1:00 PM 1 21 4 Manufacturing Pr... 1 day? 12/15/15 1:00 PM 12/16/15 1:00 PM 1 31 5 Fabricate 11 days? 1/11/16 8:00 AM 1/25/16 5:00 PM 1 41 6 Targetting System 49 days? 11/11/15 8:00 AM 1/18/16 5:00 PM1 7 Elevation Actuato... 49 days? 11/11/15 8:00 AM 1/18/16 5:00 PM1 8 Actuator Selection 10.125 d... 11/11/15 8:00 AM 11/25/15 9:00 AM1 9 CAD Model 7.875 days? 11/25/15 9:00 AM 12/4/15 5:00 PM 1 82 0 FEA Analysis 2 days? 12/7/15 8:00 AM 12/8/15 5:00 PM 1 92 1 Fabricate 6 days? 1/11/16 8:00 AM 1/18/16 5:00 PM 2 02 2 Feeding System 59 days? 11/11/15 8:00 AM 2/1/16 5:00 PM2 3 Hopper 54 days? 11/11/15 8:00 AM 1/25/16 5:00 PM2 4 CAD Model 17.75 days? 11/11/15 8:00 AM 12/4/15 3:00 PM2 5 Mount Design 2 days? 12/4/15 3:00 PM 12/8/15 3:00 PM 2 42 6 Motor Selection 0 days? 12/8/15 3:00 PM 12/8/15 3:00 PM 2 52 7 Material Selection 2 days? 12/8/15 3:00 PM 12/10/15 3:00 PM 2 62 8 FEA Analysis 1 day? 12/10/15 3:00 PM 12/11/15 3:00 PM 2 72 9 Fabrication 6 days? 1/18/16 8:00 AM 1/25/16 5:00 PM 2 83 0 Puck Delivery 59 days? 11/11/15 8:00 AM 2/1/16 5:00 PM3 1 Feeding Ramp 54 days? 11/11/15 8:00 AM 1/25/16 5:00 PM3 2 CAD Model 17 days? 11/11/15 8:00 AM 12/3/15 5:00 PM3 3 Testing 1 day? 12/4/15 8:00 AM 12/4/15 5:00 PM 3 23 4 Material Selection 2 days? 12/7/15 8:00 AM 12/8/15 5:00 PM 3 33 5 FEA Analysis 1 day? 12/9/15 8:00 AM 12/9/15 5:00 PM 3 43 6 Fabrication 6 days? 1/18/16 8:00 AM 1/25/16 5:00 PM 3 53 7 Puck Feeder 59 days? 11/11/15 8:00 AM 2/1/16 5:00 PM3 8 Concept Design 1.5 days? 11/11/15 8:00 AM 11/12/15 1:00 PM3 9 CAD Model 15.5 days? 11/12/15 1:00 PM 12/3/15 5:00 PM 3 84 0 Actuator Selection 1 day? 12/4/15 8:00 AM 12/4/15 5:00 PM 3 94 1 FEA Analysis 1 day? 12/7/15 8:00 AM 12/7/15 5:00 PM 4 04 2 Fabrication 6 days? 1/25/16 8:00 AM 2/1/16 5:00 PM 4 14 3 Firing System 69 days? 11/11/15 8:00 AM 2/15/16 5:00 PM4 4 Electric Motor 18 days? 11/11/15 8:00 AM 12/4/15 5:00 PM4 5 Wheel Selection 1 day? 11/11/15 8:00 AM 11/11/15 5:00 PM4 6 Calculations 5 days? 11/12/15 8:00 AM 11/18/15 5:00 PM 4 54 7 Excel File/Code 11 days? 11/19/15 8:00 AM 12/3/15 5:00 PM 4 64 8 CAD Model 1 day? 12/4/15 8:00 AM 12/4/15 5:00 PM 4 74 9 Fabrication 1 day? 11/11/15 8:00 AM 11/11/15 5:00 PM5 0 Gearbox 69 days? 11/11/15 8:00 AM 2/15/16 5:00 PM5 1 Calculations 1 day? 11/11/15 8:00 AM 11/11/15 5:00 PM5 2 CAD Model 5 days? 11/12/15 8:00 AM 11/18/15 5:00 PM 5 15 3 FEA Analysis 1 day? 11/19/15 8:00 AM 11/19/15 5:00 PM 5 25 4 Fabrication 11 days? 2/1/16 8:00 AM 2/15/16 5:00 PM 5 35 5 Electronics and Power 80 days? 11/11/15 8:00 AM 3/1/16 5:00 PM5 6 App Development 80 days? 11/11/15 8:00 AM 3/1/16 5:00 PM5 7 Pseudo Code 18 days? 11/11/15 8:00 AM 12/4/15 5:00 PM5 8 Code GUI 31 days? 1/4/16 8:00 AM 2/15/16 5:00 PM 5 75 9 Implementation 11 days? 2/16/16 8:00 AM 3/1/16 5:00 PM 5 86 0 Electronic Compon... 79 days? 11/11/15 8:00 AM 2/29/16 5:00 PM6 1 Motor Control 1 day? 11/11/15 8:00 AM 11/11/15 5:00 PM6 2 Servo Control 1 day? 11/12/15 8:00 AM 11/12/15 5:00 PM 6 16 3 Actuator Control 1 day? 11/13/15 8:00 AM 11/13/15 5:00 PM 6 26 4 Wireless Aspect 1 day? 11/18/15 8:00 AM 11/18/15 5:00 PM 6 36 5 Component Selecti... 5 days? 11/19/15 8:00 AM 11/25/15 5:00 PM 6 46 6 Implementation 11 days? 2/15/16 8:00 AM 2/29/16 5:00 PM 6 56 7 Power Supply 25 days? 11/11/15 8:00 AM 12/15/15 5:00 PM6 8 Available Power 6 days? 11/11/15 8:00 AM 11/18/15 5:00 PM6 9 Charge Time 1 day? 11/19/15 8:00 AM 11/19/15 5:00 PM 6 87 0 Usage Time 1 day? 11/20/15 8:00 AM 11/20/15 5:00 PM 6 97 1 Battery Mount 15 days? 11/23/15 8:00 AM 12/11/15 5:00 PM 7 07 2 CAD Model 1 day? 12/14/15 8:00 AM 12/14/15 5:00 PM 7 17 3 FEA Analysis 1 day? 12/15/15 8:00 AM 12/15/15 5:00 PM 7 2

Name Duration Start Finish Predecessors Resource Names

12/8

CAPSTONE - page1