Design Requirements HVDC [Compatibility Mode]

  • Upload
    pvenky

  • View
    19

  • Download
    1

Embed Size (px)

DESCRIPTION

hvdc

Citation preview

  • Design Of HVDC System

    Page 1 23.08.2011 ET-PS Energy Transmission

  • Objectives for Design Of HVDC SystemSystem

    Maximum reliability / availability y y High Flexibility. Low Maintenance Safety

    Page 2 23.08.2011 ET-PS Energy Transmission

  • System Consideration for Design Of HVDC SystemHVDC System

    Outage risks for planning High capacity Links.g p g g p y Inter-tripping Schemes to take care of HVDC pole/Bipole

    outages. Minimum and Maximum Fault levels. Reactive Power Exchange with System.

    N d f E t l D i t Need for External Dynamic support. Load rejection Over voltages (TOV). Recovery from AC and DC faults Recovery from AC and DC faults. Commutation failure performance.

    Page 3 23.08.2011 ET-PS Energy Transmission

  • COMMUNICATIONCOMMUNICATION

    Highly reliable and effective telecommunication systemshould be available between the terminals.

    Telecommunication link can be either PLCC or OPGWTelecommunication link can be either PLCC or OPGW.

    Optical Ground Wire (OPGW) can be installed on one ofth k f th HVDC lithe peaks of the HVDC line.

    Page 4 23.08.2011 ET-PS Energy Transmission

  • System SpecificationSystem Specification

    Configuration

    Main Power Requirements and modes of operation

    System Parameters and main requirements

    VoltageVoltageFrequencyHarmonic ImpedanceReactive Power ExchangeReactive Power ExchangeShort Circuit LevelEnvironmental Conditions temp, soil, location etc.

    Page 5 23.08.2011 ET-PS Energy Transmission

  • AC SYSTEM CONFIGURATIONAC SYSTEM CONFIGURATION

    AC system 400kV; The HVDC system shall be designed yvoltage

    ; y gfor voltages from 360 to 440kV but the performance shall be guaranteed for voltages from 380 to 420 kVfrom 380 to 420 kV

    Frequency 50Hz; The HVDC system shall be designed for frequencies ranging from 47.5 Hz to 52.5 g gHz but the performance shall be guaranteed for frequencies from 48.5 Hz to 51.5 Hz

    Short Circuit Levels

    Ranges to be given for both rectifier and inverter side.

    Page 6 23.08.2011 ET-PS Energy Transmission

    Levels

  • Single Line Diagram for a Bipolar Transmission SystemTransmission System

    AC SystemAC System HVDC Station DC Overhead Line HVDC Station

    Page 7 23.08.2011 ET-PS Energy Transmission

  • Single Line Diagram for a Back-to-Back SystemBack System

    AC S t HVDC St ti ACAC System HVDC Station AC System

    Page 8 23.08.2011 ET-PS Energy Transmission

  • Bipolar HVDC TerminalBipolar HVDC Terminal

    ACSystem 1 System 2

    ACACACAC

    1 AC Switchyard

    2 AC Filters

    Controls, Protection, MonitoringTo/ fromotherterminal

    3 Transformers

    4 Converter Valves

    Pole 1

    ACfilter

    DCfilter

    5 Smoothing Reactorsand DC Filters

    6 DC Switchyard

    Pole 2

    6611 22 33 44 55

    DCfilter

    Page 9 23.08.2011 ET-PS Energy Transmission

  • Basic Design ProcessBasic Design Process

    S p e c i f i c a t i o nS p e c i f i c a t i o n Main transmission Data

    Pdc Udc Idc etc.AC-Network Load flow study

    St bilit t d

    Simulator Computer

    Stability studyMain data of converter station (U, I, , Q)

    DC H i AC Harmonics

    Insulationcoordination Thyristor

    Simulation study

    DC FiltersSmoothing DC Li AC-Filters Converter

    DC-Harmonics AC-Harmonics

    coordinationand arresters

    yvalves

    DC-Filtersgreactor DC-LineAC Filters Converter

    transformer

    Page 10 23.08.2011 ET-PS Energy Transmission

    Design data for all equipment of the HVDC-system

  • Main Data of Converter Station

    Basic Control ConceptBasic Control ConceptDC-Voltage, DC-Current, ...

    Thyristor TypeShort Circuit Current Capability

    Main DataDC Voltage V and DC Current IDC Voltage Vdc and DC Current IdcReactive Power QFiring Angles AC B V lt (T Ch )

    Page 11 23.08.2011 ET-PS Energy Transmission

    AC-Bus Voltage (Tap Changers)

  • Main design parametersMain design parameters

    P t T l h K lParameter Talcher Kolar

    Min AC Voltage (normal/extreme) 380/360kV 380/360kV

    Max AC Voltage (normal/extreme) 420/440kV 420/440kV

    Min Frequency(normal/extreme) 48.5/47.5Hz 48.5/47.5Hz

    Max Frequency(normal/extreme) 50.5/52.5Hz 50.5/52.5Hz

    Min SCR for Pdc > 1000 MW 2.5 2.5

    Min SCR for 500 MW < Pdc < 1000 MW

    3 3

    Mi SCR f Pd < 500 MW 1500 1500

    Page 12 23.08.2011 ET-PS Energy Transmission

    Min SCR for Pdc < 500 MW 1500 1500

  • Salient FeaturesSalient Features

    Rectifier Talcher, OrissaI t K l K t kInverter Kolar, KarnatakaDistance 1400 kmRated Power 2000 MWOperating Voltage 500 kV DCReduced Voltage 400 kV DCOverloadTwo Hour, 50C 1.1 pu per poleTwo Hour, 33C 1.2 pu per poleHalf an hour 50/33C 1 2/1 3 pu per poleHalf an hour, 50/33 C 1.2/1.3 pu per poleFive Seconds 1.47 pu per pole

    Page 13 23.08.2011 ET-PS Energy Transmission

  • Reactive Power of HVDC ConverterReactive Power of HVDC Converter

    600

    400

    500

    Q [MVAr]

    Q rect.

    200

    300

    Q filter

    0

    100delta Q

    +80

    -200

    -100

    0 0 2 0 4 0 6 0 8 1 1 2 1 4

    -80

    Page 14 23.08.2011 ET-PS Energy Transmission

    power in p.u.0 0,2 0,4 0,6 0,8 1 1,2 1,4

  • Reactive PowerReactive Power

    R ti t ll t t t ti l lReactive power controller operates at station level

    Reactive power requirements are met byAC h i filAC harmonic filtersCapacitor banks and reactorsSizing of RP elements is influenced by

    The reactive power exchange capabilities of the ac system at given dc power levelReactive power consumption of converter at given dc

    power level

    Page 15 23.08.2011 ET-PS Energy Transmission

    contd

  • Reactive PowerReactive Power

    Various sub-banks can be connected either in automatic or manual modeTwo closed loop automatic control modes are possibleAC Voltage controlReactive power exchange controlSwitching hierarchy isSwitching hierarchy isAC voltageHarmonic performanceHarmonic performanceReactive power exchange

    contd

    Page 16 23.08.2011 ET-PS Energy Transmission

  • AC FiltersAC Filters

    C l l ti M th dCalculation Method

    Step 1 Calculate AC Harmonics,S l t M i l V l

    Step 2 Calculate AC SystemImpedance (Locus)

    pSelect Maximal Values

    Step 3 Split up Reactive Power,Define Filter Parameters

    Step 4 Check Filter Performance

    Step 5Calculate Filter Performanceand Component Stresses forDifferent Load Conditions

    p

    Page 17 23.08.2011 ET-PS Energy Transmission

  • AC Filter PerformanceAC Filter Performance

    Dn individual Distortion = 100[%]1

    UnU

    Dtot total Distortion = 50 2n=2 n

    D

    TIF Telephone Interference Factor

    THFF Telephone Harmonic Form Factor

    Page 18 23.08.2011 ET-PS Energy Transmission

  • AC Harmonic CurrentsAC Harmonic Currents

    dc current (Id/IdN) dc voltage (Du/UdN)( )

    1.0

    0.5

    0.0

    -0.5

    5 10 15 20

    0.0 -1.05 10 15 20

    t (ms)current [%]

    t (ms)

    100

    1

    10

    1 2 3 4 5 6 7 8 9 10 11 13 23 25 35 37 47 49

    1

    0.1

    0.01

    Page 19 23.08.2011 ET-PS Energy Transmission

    1 2 3 4 5 6 7 8 9 10 11 13 23 25 35 37 47 49order of harmonic

  • Page 20 23.08.2011 ET-PS Energy Transmission

  • Design Aspects - Insulation DesignDesign Aspects Insulation Design

    I n s u l a t i o n C o o r d i n a t i o n

    A i r C l e a r a n c e &F l h D i tF l a s h o v e r D i s t a n c e

    C r e e p a g e D i s t a n c e

    Page 21 23.08.2011 ET-PS Energy Transmission

  • Design Aspects- Insulation DesignDesign Aspects Insulation Design

    Air Clearance / Flashover DistanceAir Clearance / Flashover Distance C l e a r a n c e s / F l a s h D i s t a n c e s i n H V D C S t a t i o n s

    are determined based on impulse overvoltages,normally of the switching impulse type

    E l e c t r o d e S h a p e s o f t h e E q u i p m e n t

    are important; favorable electrode shapes (especially indoors) allow to reduce clearances / flash distances, compared to commonly used design based on a rod-planeconfiguration

    Page 22 23.08.2011 ET-PS Energy Transmission

    configuration

  • Design Aspects - Insulation DesignDesign Aspects Insulation Design

    Creepage DistanceCreepage Distance Indoors (Valve Hall)

    l d d i tclean and dry environment

    typical values: 1.2 ~ 1.4 cm/kV

    O u t d o o r s

    decisive influences:degree of pollutionmaterial / surface of equipmentdecisive influences:

    Typical values for largedi t

    material / surface of equipmentdiameter of equipment

    4 cm/kV (normal pollution) 5 cm/kV (heavier pollution)

    Page 23 23.08.2011 ET-PS Energy Transmission

    diameters: 5 cm/kV (heavier pollution)up to 6 cm/kV (Bushings, porcelain)

  • Insulation Co-ordination with ZnO-ArrestersArresters

    Arrester Protection Level and Energy CapabilityArrester Protection Level and Energy Capability

    Step 1 Define Arrester Rating for Maximum

    Step 2

    Calculate Protection Levels forSwitching Surges (Lightning)Dynamic Overvoltages

    Step 1Continuous Operating Voltage (MCOV)

    Check Energy CapabilityIf Energy Capability exceeded,

    Dynamic Overvoltages Fault Conditions

    Step 3 increase MCOV or increase Number of Parallel Columns and repeat Calculation

    Page 24 23.08.2011 ET-PS Energy Transmission

  • Page 25 23.08.2011 ET-PS Energy Transmission

  • Page 26 23.08.2011 ET-PS Energy Transmission

  • Insulation Co-ordination with ZnO-ArrestersInsulation Co-ordination with ZnO-Arresters

    Arrester Arrangement

    AC-Bus Arrester

    Valve Unit Arrester

    Valve Group Arrester

    DC Line Arrester

    Neutral Bus Arrester

    Filter Arrester

    Page 27 23.08.2011 ET-PS Energy Transmission

  • Arrester ArrangementArrester Arrangement

    AC-Filter Bus

    C1 1ArrB1

    8 9

    ArrD

    Lsmooth

    DC Line

    C1 13

    L1AC-Bus 2

    B1

    ArrB2

    7

    6 Arr

    D

    F FL14Fachv

    L2

    ArrA

    ArrB2

    Arr

    6

    5

    C Fdc Fdc

    FacIv

    C2ArrB2

    10 11

    ArrE1

    ArrE2

    neutral

    AC-Filter

    Page 28 23.08.2011 ET-PS Energy Transmission

  • Page 29 23.08.2011 ET-PS Energy Transmission

  • Page 30 23.08.2011 ET-PS Energy Transmission

  • Page 31 23.08.2011 ET-PS Energy Transmission

  • Energy Unavailability

    Energy unavailability is a measure of the energy which could not have been transmitted due to (scheduled & forced)not have been transmitted due to (scheduled & forced) outages.

    E U il bilit % (EU) EOH/PH 100Energy Unavailability % (EU) = EOH/PH x 100

    Forced Energy Unavailability % (FEU) = EFOH/PH x 100

    Scheduled Energy Unavailability % (SEU) = ESOH/PH x 100

    Page 32 23.08.2011 ET-PS Energy Transmission

  • Energy AvailabilityEnergy Availability

    A measure of the energy which could have been transmitted except for limitations of capacity due to outages, arising from any cause, either forced or scheduled.

    Energy Availability % (EA) = (100 - EU)

    Page 33 23.08.2011 ET-PS Energy Transmission

  • ReliabilityReliability

    Reliability is expressed in terms of the number of forced outages of curtailment occurrences of poles and Bipole per unit of time, usually one year.

    EOF is the equivalent outage frequency which shall be calculated as follows:

    EOF = number of one pole outages x 1+ number of other pole outages x 1+ number of bipole outages x 2

    Page 34 23.08.2011 ET-PS Energy Transmission

  • Normally specified ValuesNormally specified Values

    Energy Availability: 97%

    FEU: 0.7 %

    Reliability: Not more than 10 forced outages

    Page 35 23.08.2011 ET-PS Energy Transmission

  • Outage StatisticsOutage Statistics

    Page 36 23.08.2011 ET-PS Energy Transmission

  • HVDC Station Losses

    Losses calculated as per IEC-61803

    No load losses and load losses are guaranteed

    Page 37 23.08.2011 ET-PS Energy Transmission

  • THANK YOU

    Page 38 23.08.2011 ET-PS Energy Transmission