16
MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego Port = a pair of terminals to a cct One-port cct; measure I(s) and V(s) at same port Driving-point impedance = input impedance = equiv impedance =Z(s) Two-ports Transfer function; measure input at one port, output at another I(s) V(s) + - sC R sL s I s V s Z + + = = 1 1 ) ( ) ( ) ( I 1 (s) V 1 (s) + - V 2 (s) I 2 (s) + - Inputs Outputs

Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

  • Upload
    buicong

  • View
    227

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 188

Designing Circuits – Synthesis - Lego

Port = a pair of terminals to a cct One-port cct; measure I(s) and V(s) at same port

Driving-point impedance = input impedance = equiv impedance =Z(s) Two-ports

Transfer function; measure input at one port, output at another

I(s)

V(s) +

- sCR

sLsIsVsZ

++==

−11

)()()(

I1(s)

V1(s) +

- V2(s)

I2(s) +

-

Inputs Outputs

Page 2: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 189

Transfer functions

Transfer function; measure input at one port, output at another

I1(s)

V1(s) +

- V2(s)

I2(s) +

-

Inputs Outputs

Transfer function =zero - state response transform

input signal transform

(I.e., what the circuit does to your input)

Page 3: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 190

Example 11-2, T&R, 6th ed

TV(s) =

V2(s)

V1(s)

=R

1

R1+1sC

1

=s

s+1R

1C

1

Transfer function? Input impedance?

Z(s) =V

1(s)

I1(s)

= R1+1sC

1

Page 4: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 191

Cascade Connections

We want to apply a chain rule of processing

When can we do this by cascade connection of OpAmp ccts? Cascade means output of ccti is input of ccti+1

This makes the design and analysis much easier

This rule works if stage i+1 does not load stage i Voltage is not changed because of next stage

Either Output impedance of source stage is zero

Or Input impedance of load stage is infinite

Works well if Zout,source<<Zin,load

)(...)()()()( 321 sTsTsTsTsT VkVVVV ××××=

Page 5: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 192

Cascade Connections

Is chain rule valid? + _ R1 V1(s) R2

2

1sC

1

1sC

V2(s) V3(s)

+ + +

Mesh analysis

TVtotal(s)=?T

V 1(s)×T

V 2(s) =

R1C

1s

R1C

1s+1

×1

R2C

2s+1

=R

1C

1s

R1R

2C

1C

2( )s 2 + R1C

1+ R

2C

2( )s+1

I2(s) I1(s)

0)(1)(

)()()(1

22

2111

121111

=!!"

#$$%

&+++−

=−!!"

#$$%

&+

sIsC

RRsIR

sVsIRsIRsC

!"

#$%

&

!!!!

"

#

$$$$

%

&

++−

−+=!!

"

#$$%

&

0)(

1

1

)()( 1

1

212

1

111

2

1 sV

RRsC

R

RRsC

sIsI

( ) ( )

( ) ( ))(

1)(1)(

)(1

)(

1222111

22121

112

23

1221211

22121

1212

2

sVsCRCRCRsCCRR

sCRsIsC

sV

sVsRCRCRCsCCRR

RCCssI

++++==

++++=

No! Why?

Page 6: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 193

Cascade Connections – OpAmp ccts

OpAmps can be used to achieve the chain rule property for cascade connections The input to the next stage needs to be driven by the

OpAmp output Consider standard configurations

Noninverting amplifier No current drawn from V1 – no load

Inverting amplifier

Current provided by V1(s) Need to make sure that stage is

driven by OpAmp output to avoid loading V1(s)

V1(s) + -

V2(s) +

Z2 +

Z1

V1(s) + -

Z1 Z2

V2(s)

+ + I(s)

)()()(

11sZsVsI =

Page 7: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 194

OpAmp Ccts and transfer functions Node B: Node B:

+ _ V1(s) + -

Z1 Z2

V2(s)

+ A B C

)()(

)()()(0)(

0)()()(

)()()(

12

12

22

11

sZsZ

sVsVsTsV

sZsVsV

sZsVsV

VB

BB

−==⇒=

=−

+−

+ _ V1(s)

- +

V2(s) + A

B

C

Z2

Z1

)()()()()()(

0)()(

)()()(

121

1

122

sZsZsZsTsVsV

sZsV

sZsVsV

VB

BB

+=⇒=

=+−

Page 8: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 195

Example 11-4, T&R, 5th ed, p511

Find the transfer function from V1(s) to V2(s)

1 1 1

1 1 1 1 ) (

sC C sR

sC R s Z1 +

= + =

2 2 1 1 ) 1 )( 1 ( ) ( 1 2 + + - =

C sR C sR C sR s T V

R2

R1

V1(s)

+ -

1

1sC

2

1sC

V2(s)

+ +

1 1 ) ( 2 2 2

2 2 2

2 2 + =

+ =

s C R R

sC R sC

R s Z

Page 9: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 196

Circuits as Signal Processors Design a circuit with transfer function R1=R2=100Ω, C1=C2=1µF, C3=100µF, L=70mH, R3=1Ω

( ) ( ) ( )

2 4 8 4 2 5 2

10 10 10 2 10 42 . 1

+

- + =

+ × + × +

s

j s j s s s

s 408 408

VO(s)

R2

R1

VI(s)

+ - 1

1sC

2

1sC

V2(s)

+

+ - +

3

1sC

R3

sL

( ) ( ) ( )

Ls s LC R

C sR C sR C sR s T V

1 1 1 ) (

2 3 3

2 2 1 1 1 2 + -

× + +

- =

Page 10: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 197

Transfer Function Design – OpAmp Stages

First order stages α

+ -

1 Κγ Κ

α

γ

+

+ - =

s

s K s T V ) ( Series RL design

Series RC design

1

+ -

Κ γK1

α1

Page 11: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 198

First-order stages

α

γ

+

+ - =

s

s K s T V ) (

1

+ -

γK1

α1

K1

Parallel RL design

1

+ -

γK1

α1

Κ

Parallel RC design

Page 12: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 199

Design Example 11-20, T&R, 5th ed, p 542

Design two ccts to realize

Unrealistic component values – scaling needed

) 4000 )( 1000 ( 3000 ) (

+ + =

s s s s T V

1000µF + -

1Ω 1Ω

+ - 250µF

1Ω 3Ω

Stage 1 Stage 2

[ ]100010001

1011101

)( 1

3

31 +

−=

"""

#

$

%%%

&

'

+−= −

ss

ssTV [ ][ ]40003400013)(

12 +

−=+−=

ss

ssTV

Page 13: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 200

Design Example 11-19, T&R, 5th ed, p 539

Non-inverting amplifier design

Less OpAmps but more difficult design Three stage: last stage not driven

Unrealistic component values still – scaling needed

1Ω + -

1000µF

1Ω 2Ω

250µF

Stage 1 Voltage Divider

Stage 2 OpAmp

Stage 3 Voltage Divider

) 4000 )( 1000 ( 3000 ) (

+ + =

s s s s T V

Page 14: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 201

Scaled Design Example 11-21, T&R, 5th ed, p 544

More realistic values for components

Need to play games with elements to scale The ratio formulas for TV help permit this scaling

It certainly is possible to demand a design TV which is unrealizable with sensible component values

Like a pole at 10-3 Hz

100nF + -

10ΚΩ 10ΚΩ

+ - 25nF

10ΚΩ 30ΚΩ

Page 15: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 202

Second-order Stage Design

Circuit stages to yield

02ζω=R 1=L KC

−= 20

11

ω

KC 12=2

0ω≤K

+ -

120−

ω

K1Ω Ω

1Η Ω02ζω

F20

1

ω + -

Ω02

1ζω

H20

1

ω

F1HK1

TV(s) =

Ks 2 + 2ςω

0s+ω

0

2

Page 16: Designing Circuits – Synthesis - Legocarmenere.ucsd.edu/jorge/teaching/mae140/w18/lectures/7design.pdf · MAE140 Linear Circuits 188 Designing Circuits – Synthesis - Lego

MAE140 Linear Circuits 203

Circuit Synthesis

Given a stable transfer function TV(s), realize it via a cct using first-order and second-order stages

We are limited to stable transfer functions to keep within the linear range of the OpAmps There is an exception

When the unstable TV(s) is part of a stable feedback system

Come to MAE143B to find out

Transistor cct design is conceptually similar

cbsassssTV++

++= 2

2)( γβα

basssTV ++

=βα)(