32
Desorption dynamics of Local Anodic Oxidation- oxide nanostructures S. HEUN , 1,2 G. MORI, 1,3 D. ERCOLANI, 1,4 M. LAZZARINO, 1 A. LOCATELLI, 2 and L. SORBA 1,4 1 Laboratorio Nazionale TASC-INFM, I-34012 Trieste, Italy 2 Sincrotrone Trieste S.c.p.a., I-34012 Trieste, Italy 3 Università degli Studi di Trieste, I-34100 Trieste, Italy 4 Università degli Studi di Modena e Reggio Emilia, I-41100 Modena, Italy

Desorption dynamics of - CNR

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Desorption dynamics of - CNR

Desorption dynamics ofLocal Anodic Oxidation-oxide nanostructures

S. HEUN,1,2 G. MORI,1,3 D. ERCOLANI,1,4 M. LAZZARINO,1 A. LOCATELLI,2

and L. SORBA1,4

1 Laboratorio Nazionale TASC-INFM, I-34012 Trieste, Italy2 Sincrotrone Trieste S.c.p.a., I-34012 Trieste, Italy

3 Università degli Studi di Trieste, I-34100 Trieste, Italy4 Università degli Studi di Modena e Reggio Emilia, I-41100 Modena, Italy

Page 2: Desorption dynamics of - CNR

Outline

A brief introduction to spectromicroscopyThe SPELEEM at Elettra

SPELEEM = spectroscopic photoemission and low energy electron microscope

Application example:Local Anodic Oxidation (LAO) by AFM: GaAs oxides

Page 3: Desorption dynamics of - CNR

MotivationWhy XPS?

chemical state informationsurface sensitiveease of quantification(in general) nondestructive

Why spectromicroscopy ?(semicond.) nanostructures: self-organization, lithographydevicesdiffusion, segregationalloying (silicide formation)catalysis, chemical wavessurface magnetism (XMCD)

Page 4: Desorption dynamics of - CNR

Location of TASC and Elettra

Elettra

TASC-INFM

Page 5: Desorption dynamics of - CNR

Elettra Beamlines

exit beamline source

1.1L TWINMIC short id

1.2L Nanospectroscopy id

1.2R FEL (Free-Electron Laser) -

2.2L ESCA Microscopy id

2.2R SuperESCA id

3.2L Spectro Microscopy id

3.2R VUV Photoemission id

4.2 Circularly Polarised Light id

5.2L SAXS (Small Angle X-Ray Scattering) id

5.2R XRD1 (X-ray Diffraction) id

6.1L Material science bm

6.1R SYRMEP (SYnchrotron Radiation for MEdical Physics) bm

6.2R Gas Phase id

7.1 MCX (Powder Diffraction Beamline) bm

7.2 ALOISA (Advanced Line for Overlayer, Interface and Surface Analysis) id

8.1L BEAR (Bending magnet for Emission Absorption and Reflectivity) bm

8.1R LILIT (Lab of Interdisciplinary LIThography) bm

8.2 BACH (Beamline for Advanced DiCHroism) id

9.1 IRSR (Infrared Synchrotron Radiaton Microscopy) bm

9.2 APE (Advanced Photoelectric-effect Experiments) id

10.1L X-ray microfluorescence bm

10.1R DXRL (Deep-etch Lithography) bm

10.2L IUVS (Inelastic Ultra Violet Scattering) id

10.2R BAD Elph id

11.1 XAFS (X-ray Absorption Fine Structure) bm

11.2 XRD2 (X-ray Diffraction) id

1

23

4

5

6

Page 6: Desorption dynamics of - CNR

Scanning vs. direct imaging type

Photon optics is demagnifying the beam:Scanning Instrument

Whole power of XPS in a small spot modeFlexibility for adding different detectorsRough surfaces can be measuredLimited use for fast dynamic processesLower lateral resolution than imaging instruments

Electron optics to magnify irradiated area:Imaging Instrument

High lateral resolution (20 nm)Multi-method instrument (XPEEM/PED)Excellent for monitoring dynamic processesPoorer spectroscopic abilitySensitive to rough surfaces

Monochromaticlight

Sample(scanned)

Photo-emissiondetector

Detector hv

Object plane

Object lensBackfocal planeStigmator

Intermediate imageIntermediatelens

Projectivelens

Image planeMCPScreen CCD camera

Sample

Intermediate image

e-

Page 7: Desorption dynamics of - CNR

Outline

A brief introduction to spectromicroscopyThe SPELEEM at Elettra

SPELEEM = spectroscopic photoemission and low energy electron microscope

Application example:Local Anodic Oxidation (LAO) by AFM: GaAs oxides

Page 8: Desorption dynamics of - CNR

The SPELEEM at ElettraSpectroscopic photoemission and low energy electron microscope

Page 9: Desorption dynamics of - CNR

The SPELEEM at ELETTRA

Page 10: Desorption dynamics of - CNR

The energy filter

R = 100 mmPass Energy = 900 V

Page 11: Desorption dynamics of - CNR

XPEEM: Spectroscopic Microscopy

Images from a Field Effect Transistor (FET) at different binding energies.Photon energy 131.3 eV.

Page 12: Desorption dynamics of - CNR

XPEEM: Core Level Spectroscopy

Page 13: Desorption dynamics of - CNR

Imaging of Dispersive Plane

W{110} clean surfaceW 4f core level hv = 98 eVResolution 210 meV

(1) Riffe et al., PRL 63 (1989) 1976.(2) Webelements

SCLS (eV)

W7/2-W5/2 BE diff. (eV)

Gauss. Broad. (eV)

Alpha S

Gamma S (eV)

Alpha B

Gamma B (eV)

parameter

0.3040.321

2.142.2 (2)

0.210.04

Fixed0.063

Fixed0.084

Fixed0.035

Fixed0.06

Our fitRef. (1)

Page 14: Desorption dynamics of - CNR

Imaging of Dispersive Plane

W{110} clean surfaceW 4f core level hv = 98 eVResolution 210 meV

(1) Riffe et al., PRL 63 (1989) 1976.(2) Webelements

SCLS (eV)

W7/2-W5/2 BE diff. (eV)

Gauss. Broad. (eV)

Alpha S

Gamma S (eV)

Alpha B

Gamma B (eV)

parameter

0.3040.321

2.142.2 (2)

0.210.04

Fixed0.063

Fixed0.084

Fixed0.035

Fixed0.06

Our fitRef. (1)

Page 15: Desorption dynamics of - CNR

Lateral resolution

C 1s image (hv= 350 eV, KE = 62 eV)

Lateral resolution: 32 nm

inte

nsity

(a.u

.)100806040200

distance (pixel)

lateral resolution:0.7 * (4 pixel /435 pixel ) * 5000 (nm)= 32 nm acquisition time: 1min

Page 16: Desorption dynamics of - CNR

Outline

A brief introduction to spectromicroscopyThe SPELEEM at Elettra

SPELEEM = spectroscopic photoemission and low energy electron microscope

Application example:Local Anodic Oxidation (LAO) by AFM: GaAs oxides

Page 17: Desorption dynamics of - CNR

Motivation

Lithography for fabrication of state-of-the-art semiconductor nanostructuresBasic research and quantum device applicationsApproaches:

Traditional lithographyProximal probes (STM or AFM)

H.C. Manoharan, C.P. Lutz, D.M. Eigler: Nature 403 (2000) 512

Page 18: Desorption dynamics of - CNR

Local Anodic Oxidation (LAO)

Water electrolysis H2O → H+ + OH-.OH- groups migrate towards the sample.Oxide penetration induced by the intense local electric field.

Versatile tool at relatively low costHigh lateral resolution but small area

Page 19: Desorption dynamics of - CNR

Z

Z

Z

Z

GaAs AlGaAs GaAs

LAO on GaAs/AlGaAsBefore oxidation:

After oxidation:

Page 20: Desorption dynamics of - CNR

Quantum Point Contact

x

Y

Electronflow

Vgate

-1 0 1 2 30

1

2

3

30 K1.4 K

Cond

ucta

nce

(2e2 /h

)

IPG voltage(V)

G. Mori et al, JVST B 22 (2004) 570.

Page 21: Desorption dynamics of - CNR

Setup for Lithography on GaAs

Thermomicroscope Microcope CP-Resource

Plexiglass hood

N2 +H2O

water bottle

AFM

voltage sourceAFM

camera Hygrometer

Page 22: Desorption dynamics of - CNR

Why Spectroscopic Microscopy?

Lack of information on the oxidation process and on the chemical nature of the oxides.Lack of reliable microscopic techniques able to perform chemical analysis on such small structures.

Understand the composition of the AFM-grown oxides (electrical and chemical properties, effect of oxidation parameters).Improve the fabrication of devices with LAO.

Page 23: Desorption dynamics of - CNR

GaAs Oxide: Photon Exposure

AFM after: height 13nm

AFM before: height 18nm

Images taken with secondary electronsPhoton energy: 125 eVKinetic energy: 4 eVField of view: 10 µmOne image every 2 sec

Page 24: Desorption dynamics of - CNR

GaAs Oxide: Desorption

Writing speed 0.5 µm/sHumidity 50 %

Photon energy 130 eVPhoton flux 1017 ph cm-2sec-1

Before photon exposure After hours of exposure

12V

1μm12V14V

16V

14V10V

hv

Page 25: Desorption dynamics of - CNR

Height reduction vs. exposure time

We observe a linear relation between exposure time and height reduction.A dependence on other oxidation parameters (bias, writing speed) could not be detected.

hv = 130 eV = 9.5 nm

Page 26: Desorption dynamics of - CNR

Spectra From AFM GaAs Oxide

Sample S03BHole (3,2)Writing voltage 15 VStructure height 3 nmImage taken with secondary electrons:

Photon energy: 130 eVKinetic energy: 0.3 eVField of view: 10 µm

Time resolved spectroscopy with SPELEEM using Dispersive Plane (hv = 130 eV)

Page 27: Desorption dynamics of - CNR

Spectra From AFM GaAs Oxide

Time resolved spectroscopy with SPELEEM using Dispersive Plane (hv = 130 eV)

2500

2000

1500

1000

Inte

nsity

(a.

u.)

12 10 8 6 4 2Relative Binding Energy (eV)

Exposure Time 3 min 5 min 7 min 13 min 20 min 28 min 43 min 63 min

As 3dhv = 130 eV

1000

800

600

400

200

Inte

nsity

(a.

u.)

12 10 8 6 4 2Relative Binding Energy (eV)

Exposure Time 4 min 6 min 10 min 17 min 25 min 54 min 74 min

Ga 3dhv = 130 eV

As oxide GaAsO 2s

Ga oxides+ GaAs

The As-oxide signal disappeares with time.The Ga-oxide signal remains unchanged (early stage of exposure).

Page 28: Desorption dynamics of - CNR

Spectra From AFM GaAs Oxide

The AFM-oxide is mainly composed of Ga2O. After 3 hours exposure, only traces of As-oxides observed in As 3d.Absolute ratio As : Ga = 1 : 5

4000

3500

3000

2500

2000

Inte

nsity

(a.

u.)

888684828078Kinetic energy (eV)

As 3dhv = 130 eV

GaAs

AsO

20x103

15

10

5

0

Inte

nsity

(a.

u.)

110108106104102100Kinetic Energy (eV)

Ga 3dhv = 130 eV

GaAs

Ga2O

Ga2O3

O 2s

after160 min.

after115 min.

Page 29: Desorption dynamics of - CNR

A possible model for the desorptionOur Observations:

The AFM-grown oxide exposed to 130 eV photons desorbs linearly with exposure time.The AFM-oxide is mainly composed of Ga2O with traces of As-oxide.The shape of the Ga peak does not change with exposure time (early stage of desorption).The As-oxides desorb completely after 3 hours of exposure.Not even traces of As-oxides detected in scanning Auger microscopy.

GaAs

Ga2O

Ga2O + As-oxides

Page 30: Desorption dynamics of - CNR

Thermal stabilityRT 300C 400C 450C

500C 550C 600C

Each annealing step:10 minutes

in N2 atmosphere

Page 31: Desorption dynamics of - CNR

The Knotek-Feibelman mechanism

The valence electrons are mainly localized at O atoms.This Auger decay leads to a final state with two vacancies in valence band weakening the bond between Ga and O.

Valence electrons

E

3d

GaInitial state

Valence electrons

E

3d

Ga

Valence electrons

E

3d

Ga

Valence electrons

E

3d

GaFinal state

Page 32: Desorption dynamics of - CNR

Summary

The AFM-oxide is mainly composed of Ga2O with traces of As-oxide at the surface.Photon assisted partial desorption of the AFM-grown oxide was observed.All As oxides and the oxygen-rich Ga oxides are desorbed.We proposed a simple model for the dynamics of the desorption.