19
R. Scott Kemp Princeton University Detection of Clandestine Centrifuge Enrichment American Physical Society panel on Technical Steps to Support Verifiable Nuclear Arsenal Downsizing - 22 April 2009 - Washington DC

Detection of Clandestine Centrifuge Enrichment

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Detection of Clandestine Centrifuge Enrichment

R. Scott Kemp

Princeton University

Detection of Clandestine Centrifuge Enrichment

American Physical Society panel on Technical Steps to Support Verifiable Nuclear Arsenal Downsizing - 22 April 2009 - Washington DC

Page 2: Detection of Clandestine Centrifuge Enrichment

sensitive

insensitive

low

high

low

high

false-alarm rate

detection probabilitydete

ction

sens

itivit

y

Page 3: Detection of Clandestine Centrifuge Enrichment

sensitive

insensitive

low

high

low

high

false-alarm rate

detection probabilitydete

ction

sens

itivit

y

Page 4: Detection of Clandestine Centrifuge Enrichment

sensitive

insensitive

low

high

low

high

political goals may permit a relaxation of constraints

false-alarm rate

detection probabilitydete

ction

sens

itivit

y

Page 5: Detection of Clandestine Centrifuge Enrichment

External Constraints

Ability to verify HEU stockpiles, esp. Navel stocks

Measurement uncertainties in reprocessing plants1% of all Pu throughput ( = 80 kg at Rokkosho ) or 10% of Pu in MOX, whichever is greater

Other uncertainties (e.g., dismantlement)

Page 6: Detection of Clandestine Centrifuge Enrichment

Metric Tons (MT)

HEU Stocks SignificantSource: International Panel on Fissile Materials (IPFM)

Page 7: Detection of Clandestine Centrifuge Enrichment

The Means of DetectionA partial list ?

Optical

Effluent

Electromagnetic

photography

thermal Infrared

HF gas

UO2F2 aerosols

line notching

power waveform distortion

ULF on transmission lines

ULF radio

atomic magnetometer

Page 8: Detection of Clandestine Centrifuge Enrichment
Page 9: Detection of Clandestine Centrifuge Enrichment

Effluents

UF6 + 2 H20 UO2F2 + 4 HF

UO2F2 Aerosol Characteristics

Release Scenario Size Vdep*

Routine 0.01-1 µm ~2 m/day

Massive Spill 1-2 µm ~50 m/day

Source: R.S. Kemp “Initial analysis of the detectability of UO2F2 aerosols produced by UF6 release from uranium conversion plants,” Science & Global Security, 16:3 (2008).

* all calculations assume effective deposition velocity of 86 m/day (0.1 cm/s)

Page 10: Detection of Clandestine Centrifuge Enrichment

Source Terms

Type FacilityEmissions Rate

95% CI[gUF6/tHM-Unat]

Emissionsfor 1 MT HEU/yr

[gUF6/day]

Centrifuge Capenhurst 0.0010 - 0.0023 0.0013n=194

Page 11: Detection of Clandestine Centrifuge Enrichment

Source Terms

Type FacilityEmissions Rate

95% CI[gUF6/tHM-Unat]

Emissionsfor 1 MT HEU/yr

[gUF6/day]

Centrifuge Capenhurst 0.0010 - 0.0023 0.0013n=194

Conversion

Honeywell Metropolis

13.4 - 19.5 11.3

Conversion CamecoPort Hope

3.0 - 4.3 0.13Conversion

ComurhexPierrelatte

0.01 - 0.04 0.0082

n=7

n=20

n=3

Page 12: Detection of Clandestine Centrifuge Enrichment

-104 -102 -98 -96 -94

28

30

32

34

100 km

200 km

300 km

400 km

NOAA HYSPLIT MODELConcentration (mg/m3 UO2F2) averaged between 0m and 100m

Integrated from 1200 18 Jan to 0000 19 Jan 03 (UTC)Continuous UF6 release started at 1200 02 Jan 03 (UTC)

1.0E-06 1.0E-07 1.0E-08 1.0E-09

Sour

ce

32

.41

N 9

9.68

W

from

8m

EDAS METEOROLOGICAL DATA

µ

1x10-8 1x10-9 1x10-10 µg/m31x10-11

0.01 ppb 0.001 ppb city aerosol sampling

0.3 ppb 0.03 ppb rural aerosol sampling

Port Hope Scenario

0.1 ppt

3 ppt

0.01 ppt

0.3 ppt

Page 13: Detection of Clandestine Centrifuge Enrichment

ULF RadioUltra Low Frequency = 300 - 3000 Hz

350 - 1500 Hz

power supply driving frequency

ν =pvp

2φπD

λ = 200 - 850 km

Page 14: Detection of Clandestine Centrifuge Enrichment

ULF RadioUltra Low Frequency = 300 - 3000 Hz

350 - 1500 Hz

power supply driving frequency

ν =pvp

2φπD

near-field dipole magnetic field

λ = 200 - 850 km (r << λ/2π)

Bdipole =µoIob2

1r3

(2 cos θ �̂r + sin θ �̂θ)

Bmax =2µoIob2

1r3

nt nc

Page 15: Detection of Clandestine Centrifuge Enrichment

ULF Radio

A set of generous assumptions

Bmax =4× 10−3

r3Tesla

Io = 1 Ampb2 = 100 cm2

nt = 1000 turnsnc = 2000 machines

near-field dipole magnetic field

Bmax =2µoIob2

1r3

nt nc

Page 16: Detection of Clandestine Centrifuge Enrichment

Atomic Magnetometer

Source: I.M. Savukov, et. al., “Tunable atomic magnetometers for detection of radio-frequency magnetic fields,” Phys. Rev. Let., 95:063004 (2005)

.01

0.1

1

10

100

10 10 10 10 10 103 4 5 6 7 8

Frequency (Hz)

Sens

itivi

ty (1

0-15 T

Hz-1

/2)

Litz Wire

Optimal Coil

RF Atomic Magnetometer

V = 20 cm3

Page 17: Detection of Clandestine Centrifuge Enrichment

ULF Radionear-field dipole magnetic field

Bmax =2µoIob2

1r3

nt nc A set of generous assumptions

Bmax =4× 10−3

r3Tesla

Io = 1 Ampb2 = 100 cm2

nt = 1000 turnsnc = 2000 machines

2× 10−17 =4× 10−3

r3r → 40 km without shielding!

δ ∼ 1 mm

Page 18: Detection of Clandestine Centrifuge Enrichment

Power Line Effects

Source: D.A. Jarc and R.G. Schieman, “Power Line Considerations for Variable Frequency Drives,” Proc. IEEE-IAS 1985 Annual Meeting

Transmission depends on isolation and line impedance

Page 19: Detection of Clandestine Centrifuge Enrichment

The Means of Detection

Optical

Effluent

Electromagnetic

photography

thermal Infrared

HF gas

UO2F2 aerosols

line notching

power waveform distortion

ULF on transmission lines

ULF radio

atomic magnetometer