16
Determination of Systematic Error in Dualfluoroscopy for Validation of Cartilage Deformation Nicholas Held Supervisor: Dr. Janet L Ronsky Research Team: Dr. Gregor Kuntze, Dr. Gulshan Sharma, Dr. Jill Beveridge and Emily Bishop

Determination of Systematic Error in Dualfluoroscopy for Validation of Cartilage Deformation

  • Upload
    vinson

  • View
    40

  • Download
    0

Embed Size (px)

DESCRIPTION

Determination of Systematic Error in Dualfluoroscopy for Validation of Cartilage Deformation. Nicholas Held Supervisor: Dr. Janet L Ronsky Research Team: Dr. Gregor Kuntze , Dr. Gulshan Sharma, Dr. Jill Beveridge and Emily Bishop. Significance. Osteoarthritis - PowerPoint PPT Presentation

Citation preview

Page 1: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

Determination of Systematic Error in Dualfluoroscopy for Validation of

Cartilage DeformationNicholas Held

Supervisor: Dr. Janet L RonskyResearch Team: Dr. Gregor Kuntze, Dr. Gulshan

Sharma, Dr. Jill Beveridge and Emily Bishop

Page 2: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

SignificanceOsteoarthritisImaging System limitationsLess than 0.5 mmValidation of the Dual FluoroscopyVerification (for future studies)“Synchronized, bi-planar systems are not currently

available on the market, and cannot be easily set up in clinics” –(Tersi et al., 2013)

“In order to reliably quantify in vivo bone motion, the systematic error of these tracking techniques should be evaluated”-(Miranda et al., 2012)

Page 3: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

Hypothesis0.277 mm detectable difference=(16in/1470 pixels)25.4mm/in=0.02765

“Marker based tracking was shown to effectively track motion to within 0.1 mm” –(Miranda et al., 2012)

Page 4: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

BackgroundOA on the riseOptical Motion CaptureXROMM-X-Ray Reconstruction of Moving

MorphologyUnderstand limitations Steel Balls, Cluster Centroids

Page 5: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

Research PlanGold Standard InstrumentationGrid system30 steps at 0.05mm= 1.5 mmDigitizing the pointsData AnalysisStatistics

Page 6: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation
Page 7: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation
Page 8: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation
Page 9: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation
Page 10: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation
Page 11: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

Data Analysis: Femur Centroid then Euclidean Formula

Page 12: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

ResultsFemur-Noise 0.05 mm 0.1 mm 0.15 mm 0.2 mm 0.25 mm 0.3 mm 0.35 mm

Mean 0.028470657 0.082870391 0.133534702 0.184370324 0.239214944 0.295922452 0.351336901

Std 0.04201983 0.039065182 0.038930316 0.039625816 0.054346801 0.050923824 0.048770845

p-value Ftest 1.16945E-43 4.85209E-44 2.89649E-42 1.07436E-39 1.94484E-41 2.39566E-39 4.05239E-37

p-value Ttest 0.008868042 0.025959327 0.034398835 0.051675639 0.324713261 0.695314716 0.89108015

Mean noise of 0.055 +/- 0.003 mm

Page 13: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

Further WorkXROMM matchingDetermining scintillator imaging error

Page 14: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

Acknowledgements Dr. Janet RonskyThe research team of Dr. Gulshan Sharma,

Dr. Gregor Knutze, Dr. Jill Beveridge and Emily Bishop

NARETI Exchange Program

Page 15: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

References… Questions? Miranda, D. L., Schwartz, J. B., Loomis, A.C., Brainerd, E. L., Fleming, B, C., and Crisco, J. J.

2011. Static and Dynamic Error of a Biplanar Videoradiography System Using Marker-Based and Markerless Tracking Techniques. Journal of Biomechanical Engineering, ASME vol: 133; 121002-1 – 121002-8.

Grood, E. S., and Suntay, W. J., 1983. A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee. Journal of Biomechanical Engineering, ASME vol: 105; 136-144.

Miranda, D. L., Rainbow, M. J., Crisco, J. J., and Fleming, B. C. 2012. Kinematic Differences between Optical Motion Capture and Biplanar Videoradiography during a Jump-cut Maneuver. Journal of Biomechanics (2012), http://dx.doi.org/10.1016/j.jbiomech.2012.09.023

Taylor, T.L., Taylor, E.T., Taylor, A.W., and Casey, C.E., 2009. Aging, Physical Activity, and Arthritis, Living a Quality Lifestyle with Osteoarthritis through Active Living. Manitoba. http://www.uwo.ca/actage/pdf/Round%20Table%20Osteoarthritis%20Research%20Paper%20June%202009.pdf

Brainerd, E. L., Baier, D. B., Gatesy, S. M., Hedrick, T. L., Metzger, K. A., Gilbert, S.L., and Crisco, J. J., 2010, “X-Ray Recontruction of Moving Morphology (XROMM): Precision, Accuracy and Applications in Comparative Biomechanics Research,” J. Exp. Zool. A Ecol. Genet. Physiol., 313(5), pp. 262-279.

Ameye, L. G., and Chee, W.S., 2006, Osteoarthritis and Nutrition. “From Nutraceuticals to Functional Foods: A Systematic Review of the Scientific Evidence.” Arthritis Research and Therapy 2006, 8:R127. http://arthritis-research.com/content/8/4/R127

Andriacchi, T.P., Alexander, E.J., Toney, M.K., Dyrby, C., Sum, J., 1998. A point cluster method for in vivo motion analysis: applied to a study of kneekinematics. Journal of Biomechanical Engineering 120, 743-749.

Page 16: Determination of Systematic Error in  Dualfluoroscopy  for Validation of Cartilage Deformation

References Cont. Tashman, S., and Anderst, W., 2003. In-vivo measurement of dynamic joint motion using high

speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng. 2003;125(2):238–245. [PubMed]  

Tashman S, Kolowich P, Collon D, Anderson K, Anderst W. Dynamic function of the ACL-reconstructed knee during running. Clin. Orthop. Relat. Res. 2007;454:66–73.  [PubMed]

Torry MR, Myers C, Pennington WW, Shelburne KB, Krong JP, Giphart JE, Steadman JR, Woo SLY. Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study. Knee Surg Sports Traumatol Arthrosc. 2010

Deneweth JM, Bey MJ, McLean SG, Lock TR, Kolowich PA, and Tashman S. 2010. Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. Am J Sports Med. 2010;38(9):1820–1828. [PubMed]

 Li G, Defrate LE, Rubash HE, Gill TJ. In vivo kinematics of the ACL during weight-bearing knee flexion. J. Orthop. Res. 2005;23(2):340–344. [PubMed]

 Li G, DeFrate LE, Sun H, Gill TJ. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med. 2004;32(6):1415–1420. [PubMed]

You BM, Siy P, Anderst W, Tashman S. In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging.2001;20(6):514–525. [PubMed]

Li G, Van de Velde SK, Bingham JT. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech. 2008;41(7):1616–1622. [PubMed]

 Bey MJ, Zauel R, Brock SK, Tashman S. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng.2006;128(4):604–609. [PMC free article] [PubMed]