90
IESPRACTICEGUIDE WHATWORKSCLEARINGHOUSE Developing Effective Fractions Instruction for Kindergarten Through 8th Grade NCEE2010-4039 U.S.DEPARTMENTOFEDUCATION

Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

IESPRACTICEGUIDE WHATWORKSCLEARINGHOUSE

DevelopingEffectiveFractionsInstructionforKindergartenThrough8thGrade

NCEE2010­4039

DevelopingEffectiveFractionsInstructionDevelopingEffectiveFractionsInstructionforKindergartenThrforKindergartenThrough8thGradeough8thGrade

U.S.DEPARTMENTOFEDUCATION

Page 2: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

ReviewofRecommendations

TheInstituteofEducationSciences(IES)publishespracticeguidesineducationtobringthebestavailableevidenceandexpertisetobearoncurrentchallengesineducation.Authorsofpracticeguidescombinetheirexpertisewiththefindingsofrigorousresearch,whenavailable,todevelopspecificrecommendationsforaddressingthesechallenges.Theauthorsratethestrengthoftheresearchevidencesupportingeachoftheirrecommendations.SeeAppendixAforafulldescriptionofpracticeguides.

Thegoalofthispracticeguideistooffereducatorsspecificevidence-basedrecommendationsthataddressthechallengeofimprovingstudents’understandingoffractionconceptsinkindergartenthrough8thgrade.Theguideprovidespractical,clearinformationoncriticaltopicsrelatedtotheteachingoffractionsandisbasedonthebestavailableevidenceasjudgedbytheauthors.

PracticeguidespublishedbyIESareofferedonourwebsiteatwhatworks.ed.gov/publications/practiceguides.Practiceguidespublishedtodateareshowninthefollowingtable.

Practice Guides Published

Relevant for All Grade

Levels

Relevant for Elementary

School

Relevant for Secondary

School

EncouragingGirlsinMathandScience(September 2007) OrganizingInstructionandStudytoImproveStudentLearning(September 2007) TurningAroundChronicallyLow-PerformingSchools(May 2008) UsingStudentAchievementDatatoSupportInstructionalDecisionMaking(September 2009) AssistingStudentsStrugglingwithReading:ResponsetoIntervention(RtI)andMulti-TierInterventioninthePrimaryGrades(February 2009)

EffectiveLiteracyandEnglishLanguageInstructionforEnglishLearnersintheElementaryGrades(December 2007)

ImprovingReadingComprehensioninKindergartenThrough3rdGrade(September 2010) ReducingBehaviorProblemsintheElementarySchoolClassroom(September 2008) AssistingStudentsStrugglingwithMathematics:ResponsetoIntervention(RtI)forElementaryandMiddleSchools(April 2009)

DevelopingEffectiveFractionsInstructionforKindergartenThrough8thGrade(September 2010) ImprovingAdolescentLiteracy:EffectiveClassroomandInterventionPractices(August 2008) StructuringOut-of-SchoolTimetoImproveAcademicAchievement(July 2009) DropoutPrevention(August 2008) HelpingStudentsNavigatethePathtoCollege:WhatHighSchoolsCanDo(September 2009)

Page 3: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

IESPracticeGuide

Developing Effective Fractions Instruction for Kindergarten Through 8th Grade

September 2010

Panel Robert Siegler (Chair) Carnegie Mellon University

Thomas Carpenter University of WisConsin–Madison

Francis (Skip) Fennell MCdaniel College, WestMinster, Md

David Geary University of MissoUri at ColUMbia

James Lewis University of nebraska–linColn

Yukari Okamoto University of California–santa barbara

Laurie Thompson eleMentary teaCher

Jonathan Wray hoWard CoUnty (Md) PUbliC sChools

Staff Jeffrey Max Moira McCullough Andrew Gothro Sarah Prenovitz MatheMatiCa PoliCy researCh

Project Officer Susan Sanchez institUte of edUCation sCienCes

NCEE2010­4039U.S.DEPARTMENTOFEDUCATION

(i)

Page 4: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

ReviewofRecommendations

ThisreportwaspreparedfortheNationalCenterforEducationEvaluationandRegionalAssistance,InstituteofEducationSciencesunderContractED-07-CO-0062bytheWhatWorksClearinghouse,whichisoperatedbyMathematicaPolicyResearch.

Disclaimer

TheopinionsandpositionsexpressedinthispracticeguidearethoseoftheauthorsanddonotnecessarilyrepresenttheopinionsandpositionsoftheInstituteofEducationSciencesortheU.S.DepartmentofEducation.Thispracticeguideshouldbereviewedandappliedaccordingtothespecificneedsoftheeducatorsandeducationagencyusingit,andwithfullrealizationthatitrep-resentsthejudgmentsofthereviewpanelregardingwhatconstitutessensiblepractice,basedontheresearchthatwasavailableatthetimeofpublication.Thispracticeguideshouldbeusedasatooltoassistindecisionmakingratherthanasa“cookbook.”Anyreferenceswithinthedocumenttospecificeducationproductsareillustrativeanddonotimplyendorsementoftheseproductstotheexclusionofotherproductsthatarenotreferenced.

U.S.DepartmentofEducation

ArneDuncanSecretary

InstituteofEducationSciences

JohnQ.EastonDirector

NationalCenterforEducationEvaluationandRegionalAssistance

RebeccaMaynardCommissioner

September2010

Thisreportisinthepublicdomain.Althoughpermissiontoreprintthispublicationisnotnecessary,thecitationshouldbe:

Siegler,R.,Carpenter,T.,Fennell,F.,Geary,D.,Lewis,J.,Okamoto,Y.,Thompson,L.,&Wray,J.(2010).Developing effective fractions instruction for kindergarten through 8th grade: A practice guide (NCEE#2010-4039).Washington,DC:NationalCenterforEducationEvaluationandRegionalAssistance,InstituteofEducationSciences,U.S.DepartmentofEducation.Retrievedfromwhatworks.ed.gov/publications/practiceguides.

WhatWorksClearinghousePracticeGuidecitationsbeginwiththepanelchair,followedbythenamesofthepanelistslistedinalphabeticalorder.

ThisreportisavailableontheIESWebsiteathttp://ies.ed.gov/nceeandwhatworks.ed.gov/publications/practiceguides.

AlternateFormats

Onrequest,thispublicationcanbemadeavailableinalternateformats,suchasBraille,largeprint,orcomputerdiskette.Formoreinformation,contacttheAlternateFormatCenterat202–260–0852or202-260-0818.

(ii)

Page 5: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

TableofContents

DevelopingEffectiveFractionsInstructionforKindergartenThrough8thGrade

TableofContentsReviewofRecommendations . . . . . . . . . . . . . . . . . . . . . . . . .1

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

InstituteofEducationSciencesLevelsofEvidenceforPracticeGuides . . . . . . .3

IntroductiontotheDevelopingEffectiveFractionsInstructionforKindergartenThrough8thGradePracticeGuide . . . . . . . . . . . . .6

Recommendation1.Buildonstudents’informalunderstandingofsharingandproportionalitytodevelopinitialfractionconcepts . . . . . . . . . . . . 12

Recommendation2.Helpstudentsrecognizethatfractionsarenumbersandthattheyexpandthenumbersystembeyondwholenumbers.Usenumberlinesasacentralrepresentationaltoolinteachingthisandotherfractionconceptsfromtheearlygradesonward . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Recommendation3.Helpstudentsunderstandwhyproceduresforcomputationswithfractionsmakesense. . . . . . . . . . . . . . . . . . . . . . 26

Recommendation4.Developstudents’conceptualunderstandingofstrategiesforsolvingratio,rate,andproportionproblemsbeforeexposingthemtocross-multiplicationasaproceduretousetosolvesuchproblems . . . . . . . . 35

Recommendation5.Professionaldevelopmentprogramsshouldplaceahighpriorityonimprovingteachers’understandingoffractionsandofhowtoteachthem . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

AppendixA.PostscriptfromtheInstituteofEducationSciences. . . . . . . . . . . . 49

AppendixB.AbouttheAuthors . . . . . . . . . . . . . . . . . . . . . . . . 51

AppendixC.DisclosureofPotentialConflictsofInterest. . . . . . . . . . . . . . . 54

AppendixD.RationaleforEvidenceRatings . . . . . . . . . . . . . . . . . . . 55

AppendixE.EvidenceHeuristic . . . . . . . . . . . . . . . . . . . . . . . . 68

Endnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

IndexofKeyMathematicalConcepts . . . . . . . . . . . . . . . . . . . . . 84

(iii)

Page 6: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

TableofContentscontinued

ListofTablesTable1.InstituteofEducationScienceslevelsofevidenceforpracticeguides . . . . . . . .4

Table2.Recommendationsandcorrespondinglevelsofevidence . . . . . . . . . . . 11

TableD.1.StudiesofinterventionsthatusednumberlinestoimproveunderstandingofwholenumbermagnitudethatmetWWCstandards(withorwithoutreservations) . . . . . . . . . . . . . . . . . . . . . . . . . . 58

TableD.2.StudiesofinterventionsthatdevelopedconceptualunderstandingoffractioncomputationthatmetWWCstandards(withorwithoutreservations) . . . . . . . . . . . . . . . . . . . . . . . . . . 61

TableE.1.Evidence heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . 68

ListofFiguresFigure1.Sharingasetofobjectsevenlyamongrecipients . . . . . . . . . . . . . . 14

Figure2.Partitioningbothmultipleandsingleobjects. . . . . . . . . . . . . . . . 15

Figure3.Studentworkforsharingfourpizzasamongeightchildren . . . . . . . . . . 16

Figure4.Findingequivalentfractionsonanumberline . . . . . . . . . . . . . . . 23

Figure5.Usingfractionstripstodemonstrateequivalentfractions. . . . . . . . . . . 24

Figure6.Fractioncirclesforadditionandsubtraction. . . . . . . . . . . . . . . . 28

Figure7.Redefiningtheunitwhenmultiplyingfractions. . . . . . . . . . . . . . . 29

Figure8.Usingribbonstomodeldivisionwithfractions. . . . . . . . . . . . . . . 30

Figure9.Ratiotableforaproportionproblem. . . . . . . . . . . . . . . . . . . 39

Figure10.Ratiotableforexploringproportionalrelations . . . . . . . . . . . . . . 40

ListofExamplesExample1.Measurementactivitieswithfractionstrips . . . . . . . . . . . . . . . 21

Example2.Introducingfractionsonanumberline. . . . . . . . . . . . . . . . . 22

Example3.Strategiesforestimatingwithfractions. . . . . . . . . . . . . . . . . 31

Example4.Problemsencouragingspecificstrategies . . . . . . . . . . . . . . . . 38

Example5.Whycross-multiplicationworks. . . . . . . . . . . . . . . . . . . . 39

(iv)

Page 7: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

ReviewofRecommendations

Recommendation1.Build on students’ informal understanding of sharing and proportionality to develop initial fraction concepts. • Useequal-sharingactivitiestointroducetheconceptoffractions.Usesharingactivitiesthatinvolve

dividingsetsofobjectsaswellassinglewholeobjects.

• Extendequal-sharingactivitiestodevelopstudents’understandingoforderingandequivalenceoffractions.

• Buildonstudents’informalunderstandingtodevelopmoreadvancedunderstandingofproportionalreasoningconcepts.Beginwithactivitiesthatinvolvesimilarproportions,andprogresstoactivitiesthatinvolveorderingdifferentproportions.

Recommendation2.Help students recognize that fractions are numbers and that they expand the number system beyond whole numbers. Use number lines as a central representational tool in teaching this and other fraction concepts from the early grades onward. • Usemeasurementactivitiesandnumberlinestohelpstudentsunderstandthatfractionsarenumbers,

withallthepropertiesthatnumbersshare.

• Provideopportunitiesforstudentstolocateandcomparefractionsonnumberlines.

• Usenumberlinestoimprovestudents’understandingoffractionequivalence,fractiondensity(thecon-ceptthatthereareaninfinitenumberoffractionsbetweenanytwofractions),andnegativefractions.

• Helpstudentsunderstandthatfractionscanberepresentedascommonfractions,decimals,andper-centages,anddevelopstudents’abilitytotranslateamongtheseforms.

Recommendation3.Help students understand why procedures for computations with fractions make sense. • Useareamodels,numberlines,andothervisualrepresentationstoimprovestudents’understanding

offormalcomputationalprocedures.

• Provideopportunitiesforstudentstouseestimationtopredictorjudgethereasonablenessofanswerstoproblemsinvolvingcomputationwithfractions.

• Addresscommonmisconceptionsregardingcomputationalprocedureswithfractions.

• Presentreal-worldcontextswithplausiblenumbersforproblemsthatinvolvecomputingwithfractions.

Recommendation4.Develop students’ conceptual understanding of strategies for solving ratio, rate, and proportion problems before exposing them to cross­multiplication as a procedure to use to solve such problems. • Developstudents’understandingofproportionalrelationsbeforeteachingcomputationalprocedures

thatareconceptuallydifficulttounderstand(e.g.,cross-multiplication).Buildonstudents’developingstrategiesforsolvingratio,rate,andproportionproblems.

• Encouragestudentstousevisualrepresentationstosolveratio,rate,andproportionproblems.

• Provideopportunitiesforstudentstouseanddiscussalternativestrategiesforsolvingratio,rate,andproportionproblems.

Recommendation5.Professional development programs should place a high priority on improving teachers’ understanding of fractions and of how to teach them. • Buildteachers’depthofunderstandingoffractionsandcomputationalproceduresinvolvingfractions.

• Prepareteacherstousevariedpictorialandconcreterepresentationsoffractionsandfractionoperations.

• Developteachers’abilitytoassessstudents’understandingsandmisunderstandingsoffractions.

(1)

Page 8: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Acknowledgments

ThepanelgreatlyappreciatestheeffortsofJeffreyMax,MoiraMcCullough,AndrewGothro,andSarahPrenovitz,stafffromMathematicaPolicyResearchwhoparticipatedinthepanelmeet-

ings,summarizedtheresearchfindings,anddraftedtheguide.JeffreyMaxandMoiraMcCulloughhadprimaryresponsibilityfordraftingandrevisingtheguide.WealsothankShannonMonahan,CassandraPickens,ScottCody,NeilSeftor,KristinHallgren,andAlisonWellingtonforhelpfulfeed-backandreviewsofearlierversionsoftheguide, and Laura Watson-Sarnoski and Joyce Hofstetter for formatting and producing the guide.

RobertSiegler(Chair)ThomasCarpenter

Francis(Skip)FennellDavidGearyJamesLewis

YukariOkamotoLaurieThompson

JonathanWray

(2)

Page 9: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

LevelsofEvidenceforPracticeGuides

InstituteofEducationSciencesLevelsofEvidenceforPracticeGuides

ThissectionprovidesinformationabouttheroleofevidenceinInstituteofEducationSciences’(IES)WhatWorksClearinghouse(WWC)practiceguides.Itdescribeshowpracticeguidepanels

determinethelevelofevidenceforeachrecommendationandexplainsthecriteriaforeachofthethreelevelsofevidence(strongevidence,moderateevidence,andminimalevidence).

Thelevelofevidenceassignedtoeachrecom-mendationinthispracticeguiderepresentsthepanel’sjudgmentofthequalityoftheexistingresearchtosupportaclaimthatwhenthesepracticeswereimplementedinpastresearch,positiveeffectswereobservedonstudentoutcomes.Aftercarefulreviewofthestudiessupportingeachrecommendation,panelistsdeterminethelevelofevidenceforeachrecommendationusingthecriteriainTable1andtheevidenceheuristicdepictedinAppendixE.Thepanelfirstconsiderstherelevanceofindividualstudiestotherecom-mendation,andthendiscussestheentireevidencebase,takingintoconsideration:

• thenumberofstudies

• thequalityofthestudies

•whetherthestudiesrepresenttherangeofparticipantsandsettingsonwhichtherecommendationisfocused

•whetherfindingsfromthestudiescanbeattributedtotherecommendedpractice

•whetherfindingsinthestudiesareconsis-tentlypositive

Aratingofstrong evidencereferstoconsis-tentevidencethattherecommendedstrate-gies,programs,orpracticesimprovestudentoutcomesforawidepopulationofstudents.Inotherwords,thereisstrongcausalandgeneralizableevidence.

Aratingofmoderate evidence referseithertoevidencefromstudiesthatallowstrong

causalconclusionsbutcannotbegeneralizedwithassurancetothepopulationonwhicharecommendationisfocused(perhapsbecausethefindingshavenotbeenwidelyreplicated)ortoevidencefromstudiesthataregener-alizablebuthavesomecausalambiguity.Italsomightbethatthestudiesthatexistdonotspecificallyexaminetheoutcomesofinterestinthepracticeguidealthoughtheymayberelated.

Aratingofminimal evidence suggeststhatthepanelcannotpointtoabodyofresearchthatdemonstratesthepractice’spositiveeffectonstudentachievement.Insomecases,thissimplymeansthattherecommendedpracticeswouldbedifficulttostudyinarigor-ous,experimentalfashion;1inothercases,itmeansthatresearchershavenotyetstudiedthispractice,orthatthereisweakorcon-flictingevidenceofeffectiveness.Aminimalevidenceratingdoesnotindicatethattherecommendationisanylessimportantthanotherrecommendationswithastrongevi-denceormoderateevidencerating.

FollowingWWCguidelines,improvedoutcomesareindicatedbyeitherapositivestatisticallysignificanteffectorapositivesubstantivelyimportanteffectsize.2TheWWCdefinessubstantivelyimportant,orlarge,effectsonoutcomestobethosewitheffectsizesgreaterthan0.25standarddeviations.Inthisguide,thepaneldiscussessubstantivelyimportantfindingsasonesthatcontributetotheevidenceofpractices’effectiveness,evenwhenthoseeffectsarenotstatisticallysignificant.

(3)

Page 10: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

LevelsofEvidenceforPracticeGuidescontinued

Table1.InstituteofEducationScienceslevelsofevidenceforpracticeguides

StrongEvidence

Aratingofstrong evidencemeanshigh-qualitycausalresearchlinksthispracticewithpositiveresultsinschoolsandclassrooms.Theresearchrulesoutothercausesofthepositiveresults,andtheschoolsandclass-roomsaresimilartothosetargetedbythisguide.Strongevidenceisdemonstratedwhenanevidencebasehasthefollowingproperties:

• Highinternalvalidity:theevidencebaseconsistsofhigh-qualitycausaldesignsthatmeetWWCstandardswithorwithoutreservations.3

• Highexternalvalidity:theevidencebaseconsistsofavarietyofstudieswithhighinternalvaliditythatrepre-sentthepopulationonwhichtherecommendationisfocused.4

• Consistentpositiveeffectsonrelevantoutcomeswithoutcontradictoryevidence(i.e.,nostatisticallysignifi-cantnegativeeffects)instudieswithhighinternalvalidity.

• Directrelevancetoscope(i.e.,ecologicalvalidity),includingrelevantcontext(e.g.,classroomvs.laboratory),sample(e.g.,ageandcharacteristics),andoutcomesevaluated.

• Directtestoftherecommendationinthestudiesortherecommendationisamajorcomponentoftheinter-ventionsevaluatedinthestudies.

• Thepanelhasahighdegreeofconfidencethatthispracticeiseffective.

• Intheparticularcaseofrecommendationsonassessments,theevidencebasemeetsThe Standards for Educational and Psychological Testing (AmericanEducationalResearchAssociation,AmericanPsychologicalAssociation,andNationalCouncilonMeasurementinEducation,1999).

ModerateEvidence

Aratingofmoderate evidencemeanshigh-qualitycausalresearchlinksthispracticewithpositiveresultsinschoolsandclassrooms.However,theresearchmaynotadequatelyruleoutothercausesofthepositiveresults,ortheschoolsandclassroomsarenotsimilartothosetargetedbythisguide.Moderateevidenceisdemonstratedwhenanevidencebasehasthefollowingproperties:

• Highinternalvaliditybutmoderateexternalvalidity(i.e.,studiesthatsupportstrongcausalconclusions,butgeneralizationisuncertain)ORstudieswithhighexternalvaliditybutmoderateinternalvalidity(i.e.,studiesthatsupportthegeneralityofarelation,butthecausalityisuncertain).

•TheresearchmayincludestudiesmeetingWWCstandardswithorwithoutreservationswithsmallsamplesizesand/orotherconditionsofimplementationoranalysisthatlimitgeneralizability.

•TheresearchmayincludestudiesthatsupportthegeneralityofarelationbutdonotmeetWWCstan-dards;5however,theyhavenomajorflawsrelatedtointernalvalidityotherthanlackofdemonstratedequivalenceatpretestforquasi-experimentaldesignstudies(QEDs).QEDswithoutequivalencemustincludeapretestcovariateasastatisticalcontrolforselectionbias.ThesestudiesmustbeaccompaniedbyatleastonerelevantstudymeetingWWCstandardswithorwithoutreservations.

• Apreponderanceofpositiveeffectsonrelevantoutcomes.Contradictoryevidence(i.e.,statisticallysignifi-cantnegativeeffects)mustbediscussedbythepanelandconsideredwithregardtorelevancetothescopeoftheguideandintensityoftherecommendationasacomponentoftheinterventionevaluated.Ifoutcomesareoutofthescopeoftheguide,thisalsomustbediscussed.

• Thepaneldeterminedthattheresearchdoesnotrisetothelevelofstrongevidencebutismorecompellingthanaminimallevelofevidence.

• Intheparticularcaseofrecommendationsonassessments,theremustbeevidenceofreliabilitythatmeetsThe Standards for Educational and Psychological Testing,butevidenceofvaliditymaybefromsamplesnotadequatelyrepresentativeofthepopulationonwhichtherecommendationisfocused.

(continued)

(4)

Page 11: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

LevelsofEvidenceforPracticeGuidescontinued

Table1.InstituteofEducationScienceslevelsofevidenceforpracticeguides(continued)

MinimalEvidence

Aratingofminimal evidencemeansthepanelconcludedtherecommendedpracticeshouldbeadopted;how-ever,thepanelcannotpointtoabodyofcausalresearchthatdemonstratestherecommendation’spositiveeffectandthatrisestothelevelofmoderateorstrongevidence.

IntermsofthelevelsofevidenceindicatedinTable1,thepanelreliedonWWCevidencestandardstoassessthequalityofevidencesupportingeducationalprogramsandpractices.WWCevaluatesevidenceforthecausalvalidityofinstructionalprogramsandpracticesaccordingtoWWCstandards.

Informationaboutthesestandardsisavailableathttp://ies.ed.gov/ncee/wwc/pdf/wwc_pro-cedures_v2_standards_handbook.pdf.EligiblestudiesthatmeetWWCevidencestandardsormeetevidencestandardswithreservationsareindicatedbyboldtextintheendnotesandreferencespages.

(5)

Page 12: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Introduction

IntroductiontotheDevelopingEffectiveFractionsInstructionforKindergartenThrough8thGradePracticeGuide

Thissectionprovidesanoverviewoftheimportanceofdevelopingeffectivefractionsinstruc-tionforkindergartenthrough8thgradeandexplainskeyparametersconsideredbythepanel

indevelopingthepracticeguide.Italsosummarizestherecommendationsforreadersandcon-cludeswithadiscussionoftheresearchsupportingthepracticeguide.

U.S.students’mathematicsskillshavefallenshortformanyyears,withtheramificationsofthisinadequateknowledgewidelyrecognized.

The1983reportA Nation at Risk relatedAmerica’ssafetyandprosperitytoitsmathematicalcompetenceandwarnedthatAmericanstudents’mathematicalknowledgewasinsufficienttomeetthechallengesofthemodernworld.Morethan25yearslater,U.S.students’mathematicalachievementcontinuestolagfarbehindthatofstudentsinEastAsiaandmuchofEurope.6OnlyasmallpercentageofU.S.studentspossessthemath-ematicsknowledgeneededtopursuecareersinscience,technology,engineering,ormath-ematics(STEM)fields.7Manyhighschoolgraduateslackthemathematicalcompetenceforawiderangeofwell-payingjobsintoday’seconomy.8Moreover,largegapsinmathemat-icsknowledgeexistamongstudentsfromdif-ferentsocioeconomicbackgroundsandracialandethnicgroupswithintheUnitedStates.9

ThesedisparitieshurtthenationaleconomyandalsolimittensofmillionsofAmericans’occupationalandfinancialopportunities.10

Poorunderstandingoffractionsisacriticalaspectofthisinadequatemathematicsknowl-edge.KnowledgeoffractionsdiffersevenmorebetweenstudentsintheUnitedStatesandstudentsinEastAsiathandoesknowl-edgeofwholenumbers.11Thislearninggapisespeciallyproblematicbecauseunderstandingfractionsisessentialforalgebraandothermoreadvancedareasofmathematics.12

Teachersareawareofstudents’difficultyinlearningaboutfractionsandoftenarefrustratedbyit.Inarecentnationalpoll,AlgebraIteachersratedtheirstudentsas

having“verypoorpreparationinrationalnumbersandoperationsinvolvingfractionsanddecimals.”13Thealgebrateachersrankedpoorunderstandingoffractionsasoneofthetwomostimportantweaknessesinstudents’preparationfortheircourse.

ManyexamplesillustrateAmericanstudents’weakunderstandingoffractions.Onthe2004NationalAssessmentofEducationalProgress(NAEP),50%of8th-graderscouldnotorderthreefractionsfromleasttogreatest.14 Theproblemisnotlimitedtorationalnumberswrittenincommonfractionnotation.Onthe2004NAEP,fewerthan30%of17-year-oldscorrectlytranslated0.029as29/1000.15 Thesamedifficultyisapparentinone-on-onetestingofstudentsincontrolledexperimentalsettings:whenaskedwhichoftwodecimals,0.274and0.83,isgreater,most5th-and6th-graderschoose0.274.16

Theseexamplesandothersledtheauthorsofthisguidetoconcludethefollowing:

AhighpercentageofU.S.studentslackconceptualunderstandingoffractions,evenafterstudyingfractionsforseveralyears;this,inturn,limitsstudents’abilitytosolveproblemswithfractionsandtolearnandapplycomputationalproceduresinvolvingfractions.

Thelackofconceptualunderstandinghasseveralfacets,including

• Notviewingfractionsasnumbersatall,butratherasmeaninglesssymbolsthatneedtobemanipulatedinarbitrarywaystoproduceanswersthatsatisfyateacher.

(6)

Page 13: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Introductioncontinued

• Focusingonnumeratorsanddenominatorsasseparatenumbersratherthanthinkingofthefractionasasinglenumber.Errorssuchasbelievingthat3/8>3/5arisefromcompar-ingthetwodenominatorsandignoringtheessentialrelationbetweeneachfraction’snumeratoranditsdenominator.

• Confusingpropertiesoffractionswiththoseofwholenumbers.Thisisevidentinmanyhighschoolstudents’claimthatjustasthereisnowholenumberbetween5and6,thereisnonumberofanytypebetween5/7and6/7.17

Thispracticeguidepresentsfiverecommen-dationsintendedtohelpeducatorsimprovestudents’understandingof,andproblem-solvingsuccesswith,fractions.Recommen-dationsprogressfromproposalsforhowtobuildrudimentaryunderstandingoffractionsinyoungchildren;toideasforhelpingolderchildrenunderstandthemeaningoffractionsandcomputationsthatinvolvefractions;toproposalsintendedtohelpstudentsapplytheirunderstandingoffractionstosolveprob-lemsinvolvingratios,rates,andproportions.Improvingstudents’learningaboutfractionswillrequireteachers’masteryofthesubjectandtheirabilitytohelpstudentsmasterit;therefore,arecommendationregardingteachereducationalsoisincluded.

Recommendationsinthepracticeguideweredevelopedbyapanelofeightresearchersandpractitionerswhohaveexpertiseindifferentaspectsofthetopic.Panelistsincludeamath-ematicianactiveinissuesrelatedtomath-ematicsteachereducation;threemathematicseducators,oneofwhomhasbeenpresidentoftheNationalCouncilofTeachersofMath-ematics;twopsychologistswhoseresearchfocusesonhowchildrenlearnmathemat-ics;andtwopractitionerswhohavetaughtmathematicsinelementaryandmiddleschoolclassroomsandsupervisedotherelementaryandmiddleschoolmathematicsteachers.Panelmembersworkedcollaborativelytodeveloprecommendationsbasedonthebestavailableresearchevidenceandontheir

combinedexperienceandexpertiseregardingmathematicsteachingandlearning.

Scopeofthepracticeguide

Writingthisguiderequireddecisionsregard-ingtheintendedaudience,whichgradelevelstoexamine,whichskillsandknowledgetoconsider,andwhichtermstouseindescrib-ingtheresearchandrecommendations.Thepanelconsistentlychosetomaketheguideasinclusiveaspossible.

Audienceandgradelevel.Theintendedaudienceiselementaryandmiddleschoolteachers,mathematicssupervisors,teacherleaders,specialists,coaches,principals,par-ents,teachereducators,andothersinterestedinimprovingstudents’mathematicslearning.Gradelevelsemphasizedarekindergartenthrough8thgrade;almostallinstructioninfractionstakesplacewithinthisperiod,andthisisthepopulationstudiedinmostoftheavailableresearch.Theguidefocusesnotonlyoncomputationwithfractions,butalsoonskillsthatreflectunderstandingoffrac-tions,suchasestimatingfractions’positionsonnumberlinesandcomparingthesizesoffractions,becauselackofsuchunderstandingunderliesmanyoftheotherdifficultiesstu-dentshavewithfractions.

Content.Thisdocumentusesthetermfractionsratherthanrational numbers.Thetermfractionsreferstothefullrangeofwaysofexpressingrationalnumbers,includingdecimals,percentages,andnegativefractions.Thepanelmakesrecommendationsonthisfullrangeofrationalnumbersbecausestudents’understandingofthemiscriticaltotheiruseoffractionsincontext.

Theguide’sinclusivenessisfurtherevidentinitsemphasisontheneedforstudentstobeabletoperformcomputa-tionaloperationswithfractions;tounder-standthesecomputationaloperations;andtounderstand,morebroadly,whatfractionsrepresent.

(7)

Page 14: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Introductioncontinued

Tohelpstudentsunderstandthefullrangeoffractions,thepanelsuggestseducatorseffectivelyconveythefollowing:

•Commonfractions,decimals,andpercentsareequivalentwaysofexpressingthesamenumber(42/100=0.42=42%).

•Wholenumbersareasubsetofrationalnumbers.

•Anyfractioncanbeexpressedinaninfinitenumberofequivalentways(3/4=6/8=9/12=0.75=75%,andsoon).

Boththestrengthsstudentsbringtothetaskoflearningaboutfractionsandthechal-lengesthatoftenmakelearningdifficultarecoveredinthisguide.Childrenenterschoolwitharudimentaryunderstandingofshar-ingandproportionality,conceptsonwhichteacherscanbuildtoproducemoreadvancedunderstandingsoffractions.18Thescopeoftheguideincludesdescribingtheseearlydevelopingconceptsandhowmoreadvancedunderstandingcanbebuiltonthem.Theguidealsodescribescommonmisconceptionsaboutfractionsthatinterferewithstudents’learning—forexample,themisconceptionthatmultiplyingtwonumbersmustresultinalargernumber—andhowsuchmisconcep-tionscanbeovercome.

Finally,theguideaddressesnotonlytheneedtoimprovestudents’understandingoffrac-tions,butalsotheneedtoimproveteachers’understandingofthem.FartoomanyU.S.teacherscanapplystandardcomputationalalgorithmstosolveproblemsinvolvingfrac-tionsbutdonotknowwhythosealgorithmsworkorhowtoevaluateandexplainwhyalternativeproceduresthattheirstudentsgeneratearecorrectorincorrect.19 Similarly,manyteacherscanexplainpart-wholeinter-pretationsoffractionsbutnototheressentialinterpretations,suchasconsideringfractionsasmeasuresofquantitiesthatofferprecisionbeyondthatofferedbywholenumbersorviewingfractionsasquotients.

U.S.teachers’understandingoffractionslagsfarbehindthatofteachersinnationsthatproducebetterstudentlearningoffractions,suchasJapanandChina.20Althoughsomeoftheinformationinthisguideisaimedatdeepeningteachers’understandingoffrac-tions,professionaldevelopmentactivitiesthatimproveteachers’understandingoffractionsandcomputationalproceduresthatinvolvefractionsalsoseemessential.

Summaryoftherecommendations

Thispracticeguideincludesfiverecommen-dationsforimprovingstudents’learningoffractions.Thefirstrecommendationisaimedatbuildingthefoundationalknowledgeofyoungstudents,thenextthreetargetolderstudentsastheyadvancethroughtheirelementaryandmiddleschoolyears,andthefinalrecommendationfocusesonincreasingteachers’abilitytohelpstudentsunderstandfractions.Althoughtherecommendationsvaryintheirparticulars,allfivereflecttheperspectivethatconceptualunder­standingoffractionsisessentialforstu-dentstolearnaboutthetopic,torememberwhattheylearned,andtoapplythisknowl-edgetosolveproblemsinvolvingfractions.Educatorsmayprofitablyadoptsomeoftherecommendationswithoutadoptingallofthem,butwebelievethatthegreatestbenefitwillcomefromadoptingalloftherecommen-dationsthatarerelevanttotheirclasses.

• Recommendation1istobuildonstu-dents’informalunderstandingofsharingandproportionalitytodevelopinitialfractionconcepts.Learningisoftenmosteffectivewhenitbuildsonexistingknowl-edge,andfractionsarenoexception.Bythetimechildrenbeginschool,mosthavedevelopedabasicunderstandingofshar-ingthatallowsthemtodividearegionorsetofobjectsequallyamongtwoormorepeople.Thesesharingactivitiescanbeusedtoillustrateconceptssuchashalves,thirds,andfourths,aswellasmoregen-eralconceptsrelevanttofractions,such

(8)

Page 15: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Introductioncontinued

asthatincreasingthenumberofpeopleamongwhomanobjectisdividedresultsinasmallerfractionoftheobjectforeachperson.Similarly,earlyunderstandingofproportionscanhelpkindergartnerscompare,forexample,howone-thirdoftheareasofasquare,rectangle,andcirclediffer.

•Recommendation2istoensurethatstudentsknowthatfractionsarenumbersthatexpandthenumbersystembeyondwholenumbers,andtousenumberlinesasakeyrepresentationaltooltoconveythisandotherfractionconceptsfromtheearlygradesonward.Althoughitseemsobvioustomostadultsthatfractionsarenumbers,manystudentsinmiddleschoolandbeyondcannotidentifywhichoftwofractionsisgreater,indicatingthattheyhavecursoryknowledgeatbest.Numberlinesareparticularlyadvantageousforassessingknowledgeoffractionsandforteachingstudentsaboutthem.Theypro-videacommontoolforrepresentingthesizesofcommonfractions,decimals,andpercents;positiveandnegativefractions;fractionsthatarelessthanoneandgreaterthanone;andequivalentandnonequiva-lentfractions.Numberlinesalsoareanaturalwayofintroducingstudentstotheideaoffractionsasmeasuresofquantity,animportantideathatneedstobegivengreateremphasisinmanyU.S.classrooms.

• Recommendation3istohelpstudentsunderstandwhyproceduresforcomputa-tionswithfractionsmakesense.ManyU.S.students,andeventeachers,cannotexplainwhycommondenominatorsarenecessarytoaddandsubtractfractionsbutnottomultiplyanddividethem.Fewcanexplainthe“invertandmultiplyrule,”orwhydividingbyafractioncanresultinaquotientlargerthanthenumberbeingdivided.Studentssometimeslearncom-putationalproceduresbyrote,buttheyalsooftenquicklyforgetorbecomecon-fusedbytheseroutines;thisiswhattends

tohappenwithfractionsalgorithms.For-gettingandconfusingalgorithmsoccurlessoftenwhenstudentsunderstandhowandwhycomputationalproceduresyieldcorrectanswers.

•Recommendation4involvesfocusingonproblemsinvolvingratios,rates,andproportions.Theseapplicationsoffractionconceptsoftenprovedifficultforstudents.Illustratinghowdiagramsandothervisualrepresentationscanbeusedtosolveratio,rate,andproportionproblemsandteach-ingstudentstousethemareimportantforlearningalgebra.Alsousefulisprovidinginstructiononhowtotranslatestate-mentsinwordproblemsintomathemati-calexpressionsinvolvingratio,rate,andproportion.Thesetopicsincludewaysinwhichstudentsarelikelytousefractionsthroughouttheirlives;itisimportantforthemtounderstandtheconnectionbetweentheseappliedusesoffractionsandtheconceptsandproceduresinvolvingfractionsthattheylearnintheclassroom.

• Recommendation5urgesteachereducationandprofessionaldevelopmentprogramstoemphasizehowtoimprovestudents’understandingoffractionsandtoensurethatteachershavesufficientunderstandingoffractionstoachievethisgoal.Fartoomanyteachershavedifficultyexplaininginterpretationsoffractionsotherthanthepart-wholeinterpreta-tion,whichisusefulinsomecontextsbutnotothers.Althoughmanyteacherscandescribeconventionalalgorithmsforsolvingfractionsproblems,fewcanjus-tifythem,explainwhytheyyieldcorrectanswers,orexplainwhysomenonstan-dardproceduresthatstudentsgenerateyieldcorrectanswersdespitenotlookinglikeaconventionalalgorithm.Greaterunderstandingoffractions,knowledgeofstudents’conceptionsandmisconceptionsaboutfractions,andeffectivepracticesforteachingfractionsarecriticallyimportantforimprovingclassroominstruction.

(9)

Page 16: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Introductioncontinued

Useofresearch

Therecommendationsinthispracticeguidearebasedonnumeroustypesofevidence,includingnationalandinternationalassess-mentsofstudents’mathematicalknowledge,asurveyofteachers’viewsofthegreatestproblemsintheirstudents’preparationforlearningalgebra,mathematicians’analysesofkeyconceptsforunderstandingfractions,descriptivestudiesofsuccessfulandunsuc-cessfulfractionslearners,andcontrolledexperimentalevaluationsofinterventionsdesignedtoimprovelearningoffractions.

Theresearchbasefortheguidewasidenti-fiedthroughacomprehensivesearchforstudiesoverthepast20yearsthatevalu-atedteachingandlearningaboutfractions.Thissearchwasdoneforalargenumberofkeywordsrelatedtofractionsteachingandlearningthatweresuggestedbythepanelmembers;theresultsweresupplementedbyspecificstudiesknowntopanelmembersthatwerenotidentifiedbythedatabasesearch,includingearlierworks.Theprocessyieldedmorethan3,000citations.Ofthese,132mettheWWCcriteriaforreview,and33metthecausalvaliditystandardsoftheWWC.

Insomecases,recommendationsarebasedonsuchrigorousresearch.ButwhenresearchwasrareordidnotmeetWWCstandards,the

recommendationsreflectwhatthisguide’spanelbelievesarebestpractices,basedoninstructionalapproacheshavingbeensuc-cessfullyimplementedincasestudiesorincurriculathathavenotbeenrigorouslyevalu-ated.ThepanelcouldnotfulfillitswishtobaseallrecommendationsonstudiesthatmetWWCstandards,inlargepartbecausefarlessresearchisavailableonfractionsthanondevelopmentofskillsandconceptsregardingwholenumbers.Forexample,the2nd Hand­book of Research on Mathematics Teaching and Learning (NationalCouncilofTeachersofMathematics,2007)includes109citationsofresearchpublishedin2000orlateronwholenumbersbutonlyninecitationsofresearchonfractionspublishedoverthesameperiod.High-qualitystudiestestingtheeffective-nessofspecificinstructionaltechniqueswithfractionswereespeciallyscarce.Agreateramountofhigh-qualityresearchonfractionsisclearlyneeded,especiallystudiesthatcomparetheeffectivenessofalternativewaysofteachingchildrenaboutfractions.

Table2showseachrecommendationandthestrengthoftheevidencethatsupportsitasdeterminedbythepanel.Followingtherec-ommendationsandsuggestionsforcarryingouttherecommendations,AppendixDpres-entsmoreinformationontheresearchevi-dencethatsupportseachrecommendation.

(10)

Page 17: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Introductioncontinued

Table2.Recommendationsandcorrespondinglevelsofevidence

Levels of Evidence

Recommendation Minimal Evidence

Moderate Evidence

Strong Evidence

1. Buildonstudents’informalunderstandingofsharingandproportionalitytodevelopinitialfractionconcepts.

2. Helpstudentsrecognizethatfractionsarenumbersandthattheyexpandthenumbersystembeyondwholenumbers.Usenumberlinesasacentralrepresentationaltoolinteachingthisandotherfractionconceptsfromtheearlygradesonward.

3. Helpstudentsunderstandwhyproceduresforcomputationswithfractionsmakesense.

4. Developstudents’conceptualunderstandingofstrategiesforsolvingratio,rate,andproportionproblemsbeforeexposingthemtocross-multiplicationasaproceduretousetosolvesuchproblems.

5. Professionaldevelopmentprogramsshouldplaceahighpriorityonimprovingteachers’understandingoffractionsandofhowtoteachthem.

(11)

Page 18: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation1

Buildonstudents’informalunderstandingofsharingandproportionalitytodevelopinitialfractionconcepts.Students come to kindergarten with a rudimentary understanding of basic fraction concepts. They can share a set of objects equally among a group of people (i.e., equal sharing)21 and identify equivalent proportions of common shapes (i.e., proportional reasoning).22

By using this early knowledge to introduce fractions, teachers allow students to build on what they already know. This facilitates connections between students’ intuitive knowledge and formal fraction concepts. The panel recommends using sharing activities to develop students’ understanding of ordering and equivalence relations among fractions.

Sharing activities can introduce children to several of the basic interpretations of fractions discussed in the introduction. Sharing can be presented in terms of division—such as by partitioning 12 candies into four equally numerous groups. Sharing also can be presented in terms of ratios; for example, if three cakes are shared by two children, the ratio of the number of cakes to the number of children is 3:2.

Although fractions are typically introduced by 1st or 2nd grade, both the sharing and the proportional reasoning activities described in this recommendation can begin as early as preschool or kindergarten.

Summaryofevidence:MinimalEvidence

Thisrecommendationisbasedonstudiesshowingthatstudentshaveanearlyunder-standingofsharingandproportionality,23

andonstudiesofinstructionthatusesharingscenariostoteachfractionconcepts.24How-ever,noneofthestudiesthatusedsharingscenariostoteachfractionconceptsmetWWCstandards.Despitethelimitedevidence,the

(12)

Page 19: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation1continued

panelbelievesthatstudents’informalknowl-edgeofsharingandproportionalityprovidesafoundationforintroducingandteachingfractionconcepts.

Equalsharing.Childrenhaveanearlyunder-standingofhowtocreateequalshares.Byage4,childrencandistributeequalnumbersofequal-sizeobjectsamongasmallnumberofrecipients,andtheabilitytoequallyshareimproveswithage.25Sharingasetofdiscreteobjects(e.g.,12grapessharedamongthreechildren)tendstobeeasierforyoungchildrenthansharingasingleobject(e.g.,acandybar),butbyage5or6,childrenarereason-ablyskilledatboth.26

Casestudiesshowhowanearlyunderstand-ingofsharingcouldbeusedtoteachfrac-tionstoelementarystudents.27Intwostudies,teachersposedstoryproblemswithsharingscenariostoteachfractionconceptssuchasequivalenceandordering,aswellasfractioncomputation.Thestudiesreportedpositiveeffectsonfractionknowledge,buttheydonotproviderigorousevidenceontheimpactofinstructionbasedonsharingactivities.

Proportionalrelations.Thepanelbelievesthatinstructionalpracticescanbuildonyoungchildren’srudimentaryknowledgeofproportionalitytoteachfractionconcepts.Thisearlyunderstandingofproportionalityhasbeendemonstratedindifferentways.Byage6,childrencanmatchequivalentpropor-tionsrepresentedbydifferentgeometricfiguresandbyeverydayobjectsofdifferentshapes.28One-halfisanimportantlandmarkincomparingproportions;childrenmoreoftensucceedoncomparisonsinwhichoneproportionismorethanhalfandtheotherislessthanhalf,thanoncomparisonsinwhichbothproportionsaremorethanhalforbotharelessthanhalf(e.g.,comparing1/3to3/5 iseasierthancomparing2/3to4/5).29Inaddi-tion,childrencancompleteanalogiesbasedonproportionalrelations—forexample,halfcircleistohalfrectangleasquartercircleistoquarterrectangle.30

Althoughthereisevidencethatdescribesyoungchildren’sknowledgeofproportionality,norigorousstudiesthatmetWWCstandardshaveexaminedwhetherthisearly-developingknowledgecanbeusedtoimproveteachingoffractionconcepts.

Howtocarryouttherecommendation

1. Useequal-sharingactivitiestointroducetheconceptoffractions.Usesharingactivi-tiesthatinvolvedividingsetsofobjectsaswellassinglewholeobjects.

Thepanelrecommendsthatteachersofferaprogressionofsharingactivitiesthatbuildsonstudents’existingstrategiesfordividingobjects.Teachersshouldbeginwithactivitiesthatinvolveequallysharingasetofobjectsamongagroupofrecipientsandprogresstosharingscenariosthatrequirepartitioninganobjectorsetofobjectsintofractionalparts.Inaddition,earlyactivitiesshouldbuildonstudents’halvingstrategy(dividingsomethingintotwoequalsetsorparts)beforehavingstudentspartitionobjectsamonglargernum-bersofrecipients.Studentsshouldbeencour-agedtousecounters(e.g.,beans,tokens),createdrawings,orrelyonotherrepresenta-tionstosolvethesesharingproblems;then

teacherscanintroduceformalfractionnames(e.g.,one­third,one­fourth,thirds,quarters)andhavechildrenlabeltheirdrawingstonamethesharedpartsofanobject(e.g.,1/3 or1/8ofapizza).Foroptimalsuccess,childrenshouldengageinavarietyofsuchlabelingactivities,notjustoneortwo.

Sharingasetofobjects.Teachersshouldinitiallyhavestudentssolveproblemsthatinvolvetwoormorepeoplesharingasetofobjects(seeFigure1).Theproblemsshouldincludesetsofobjectsthatcanbeevenlydividedamongsharers,sotherearenoremainingobjectsthatneedtobepartitionedintofractionalpieces.

(13)

Page 20: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation 1 continuedRecommendation1continued

Intheseearlysharingproblems,teachersshoulddescribethenumberofitemsandthenumberofrecipientssharingthoseitems,andstudentsshoulddeterminehowmanyitemseachpersonreceives.31Teachersmightthenposethesameproblemwithincreasingnumbersofrecipients.32Itisimportanttoemphasizethattheseproblemsrequireshar-ingasetofobjectsequally,sothatstudentsfocusongivingeachpersonthesamenum-berofobjects.

Partitioningasingleobject.Next,teach-ersshouldposesharingproblemsthatresultinstudentsdividingoneormoreobjectsintoequalparts.Thefocusoftheseproblemsshiftsfromaskingstudentshow many thingseachpersonshouldgettoaskingstudentshow muchofanobjecteachpersonshouldget.Forexample,whenonecookieissharedbetweentwochildren,studentshavetothink

abouthowmuchofthecookieeachchildshouldreceive.

Teacherscanbeginwithproblemsthatinvolvemultiplepeoplesharingasingleobject(e.g.,fourpeoplesharinganapple)andprogresstoproblemswithmultiplepeoplesharingasetofobjectsthatmustbedividedintosmallerpartstoshareequally(e.g.,threepeoplesharingfourapples).Problemsthatinvolvesharingoneobjectresultinsharesthatareunit fractions(e.g.,1/3,1/4,1/9),whereasscenarioswithmultiplepeopleandobjectsoftenresultinnon­unit fractions(e.g.,3/4).33

Thisdistinctionbetweenunitandnon-unitfractionsisimportant,becausewhenfrac-tionsarereducedtolowestterms,non-unitfractionsarecomposedofunitfractions(e.g.,3/4=1/4+1/4+1/4),buttheoppositeisnotthecase.Sharingsituationsthatresultinunitfractionsprovideausefulstartingpoint

Figure1.Sharingasetofobjectsevenlyamongrecipients

(14)

Problem

Threechildrenwanttoshare12cookiessothateachchildreceivesthesamenumberofcookies.Howmanycookiesshouldeachchildget?

ExamplesofSolutionStrategies

Studentscansolvethisproblembydrawingthreefigurestorepresentthechildrenandthendrawingcook-iesbyeachfigure,givingonecookietothefirstchild,onetothesecond,andonetothethird,continu-inguntiltheyhavedistributed12cookiestothethreechildren,andthencountingthenumberofcookiesdistributedtoeachchild.Otherstudentsmaysolvetheproblembysimplydealingthecookiesintothreepiles,asiftheyweredealingcards.

Page 21: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation 1 continuedRecommendation 1Recommendation 1Recommendation 1Recommendation 1 continuedcontinuedRecommendation1continued

Figure2.Partitioningbothmultipleandsingleobjects

Problem

Twochildrenwanttosharefiveapplesthatarethesamesizesothatbothhavethesameamounttoeat.Drawapicturetoshowwhateachchildshouldreceive.

ExamplesofSolutionStrategies

Studentsmightsolvethisproblembydrawingfivecirclestorepresentthefiveapplesandtwofigurestorepresentthetwochildren.Studentsthenmightdrawlinesconnectingeachchildtotwoapples.Finally,theymightdrawalinepartitioningthefinalappleintotwoapproximatelyequalpartsanddrawalinefromeachparttothetwochildren.Alterna-tively,asinthepicturetotheright,childrenmightdrawalargecirclerepresentingeachchild,twoappleswithineachcircle,andafifthapplestrad-dlingthecirclesrepresentingthetwochildren.Inyetanotherpossibility,childrenmightdivideeachappleintotwopartsandthenconnectfivehalfapplestotherepresentationofeachfigure.

forintroducingfractionnames,especiallybecausesomechildrenthinkthatallfractionalpartsarecalledone-half.34

Thepanelalsosuggestsstartingwithprob-lemsthatinvolvesharingamongtwo,four,oreightpeople(i.e.,powersoftwo).35Thisallowsstudentstocreateequalpartsbyusingahalvingstrategy—dividinganobjectinhalf,dividingtheresultinghalvesinhalf,andsoon,untilthereareenoughpiecestoshare(seeFigure2).36Eventually,studentsshouldsolvesharingproblemsforwhichthey

cannotuseahalvingstrategy.Partitioningabrownieintothirds,forexample,requiresthatstudentsanticipatehowtoslicethebrowniesothatitresultsinthreeequalparts.Studentsmaybetemptedtouserepeatedhalvingforallsharingproblems,butteachersshouldhelpstudentsdevelopotherstrate-giesforpartitioninganobject.Oneapproachistohavestudentsplacewoodensticksonconcreteshapes,withthesticksrepresentingtheslicesorcutsthatastudentwouldmaketopartitiontheobject.37

2. Extendequal-sharingactivitiestodevelopstudents’understandingoforderingandequivalenceoffractions.

Teacherscanextendthetypesofsharingactivitiesdescribedintheprevioussteptodevelopstudents’understandingoforderingandidentifyingequivalentfractions.Theover-allapproachremainsthesame:teachersposestoryproblemsthatinvolveagroupofpeople

sharingobjects,andstudentscreatedrawingsorotherrepresentationstosolvetheprob-lems.However,teachersusescenariosthatrequirefractioncomparisons oridentificationofequivalentfractionsandfocusondifferentaspectsofstudents’solutions.

(15)

Page 22: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation 1 continuedRecommendation1continued

Sharingactivitiescanbeusedtohelpstudentsunderstandtherelativesizeoffractions.Teacherscanpresentsharingscenarioswithanincreasingnumberofrecipientsandhavestu-dentscomparetherelativesizeofeachresult-ingshare.Forexample,studentscancomparethesizeofpiecesthatresultwhensharingacandybarequallyamongthree,four,five,orsixchildren.38Teachersshouldencouragestu-dentstonoticethatasthenumberofpeoplesharingtheobjectsincreases,thesizeofeachperson’ssharedecreases;theyshouldthenlinkthisideatoformalfractionnamesandencour-agestudentstocomparethefractionalpiecesusingfractionnames(e.g.,1/3ofanobjectisgreaterthan1/4ofit).

Whenusingsharingscenariostodiscussequivalentfractions,teachersshouldconsidertwoapproaches,bothofwhichshouldbeusedwithscenariosinwhichthenumberofsharersandthenumberofpiecestobesharedhaveoneormorecommonfactors(e.g.,fourpizzassharedamongeightchildren):

•Partitionobjectsintolargerorsmallerpieces.Onewaytounderstandequivalentsharesistodiscussalternativewaystoparti-tionandreceivethesameshares.39Studentscanthinkabouthowtosolveasharingsce-nariousingdifferentpartitionstoproduceequalshares.Suchpartitioningmayrequiretrialanderroronthepartofstudentsto

identifywhichgroupingsresultinequalshares.Studentsmightcombinesmallerpiecestomakebiggeronesorpartitionbig-geronesintosmallerpieces.Forexample,tosolvetheproblemofeightchildrensharingfourpizzas,studentsmightpartitionallfourpizzasintoeighthsandthengiveeachchildfourpiecesofsize1/8.Alternatively,studentscoulddivideeachpizzaintofourthsandgiveeachperson2/4,ordivideeachpizzaintohalvesanddistribute1/2toeachchild.Studentsshouldunderstandthatalthoughtherearedifferentwaystopartitionthepizza,eachpartitioningmethodresultsinequivalentshares.

•Partitionthenumberofsharersandthenumberofitems.Anotherwaytohelpstudentsunderstandequivalenceistoparti-tionthenumberofsharersandobjects.40

Forexample,ifstudentsarriveat4/8fortheprobleminthepreviousparagraph,theteachercouldaskhowtheproblemwouldchangeifthegroupsplitintotwotablesandateachtablefourchildrensharedtwopiz-zas.Studentscancomparethenewsolutionof2/4totheiroriginalsolutionof4/8 toshowthatthetwoamountsareequivalent(seeFigure3).Todrivehomethepoint,theeightchildrencouldthensitatfourtables,withtwochildrenateachtablesharingasinglepizza—andreachingthemorefamiliarconceptof1/2.

Figure3.Studentworkforsharingfourpizzasamongeightchildren

(16)

Page 23: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation 1 continuedRecommendation 1Recommendation 1Recommendation 1Recommendation 1 continuedcontinuedRecommendation1continued

Anotherwaytoteachequivalentfractionswithsharingscenariosistoposeamissing-valueprobleminwhichchildrendeterminethenum-berofobjectsneededtocreateanequivalentshare.Forexample,ifsixchildrenshareeightorangesatonetable,howmanyorangesareneededatatableofthreechildrentoensureeachchildreceivesthesameamount?41Theproblemcouldbeextendedtotableswith12children,24children,or9children.Tosolvetheseproblems,studentsmightidentifyhowmuchonechildreceivesinthefirstscenarioandapplythattothesecondscenario.Alter-natively,theycouldusethestrategydescribedaboveandpartitionthesixchildrenandeightorangesattheoriginaltableintotwotables,sothatthenumberofchildrenandorangesatthe

firstnewtableequalthenumberofchildrenandorangesatthesecondnewtable.

Hereisanotherexamplethatallowsstudentstoexploretheconceptofequalpartitioning:if24childrenaregoingoutforsandwiches,and16sandwicheshavebeenordered,whatarethedifferentwaysthechildrencouldsitattablesanddividethesandwichessotheywouldallreceivethesameamount?Optionsmightincludehavingonebigtableof24chil-drenand16sandwiches,havingfourtablesofsixchildrenandfoursandwichesateach,eighttablesofthreechildrenandtwosand-wichesateach,andsoon.

3.Buildonstudents’informalunderstandingtodevelopmoreadvancedunderstandingofproportional-reasoningconcepts.Beginwithactivitiesthatinvolvesimilarpropor-tions,andprogresstoactivitiesthatinvolveorderingdifferentproportions.

Earlyinstructioncanbuildonstudents’infor-malunderstandingtodevelopbasicconceptsrelatedtoproportionalreasoning.Teachersshouldinitiallyposeproblemsthatencour-agestudentstothinkabouttheproportionalrelationsbetweenpairsofobjects,withoutnecessarilyspecifyingexactquantities.Forexample,teacherscouldusethestoryofGoldilocks and the Three Bears todiscusshowthebigbearneedsabigchair,themedium-sizedbearneedsamedium-sizedchair,andthesmallbearneedsasmallchair.42

Thefollowinglistprovidesexamplesofdif-ferentrelationsrelevanttoearlyproportionalreasoningthatcanbeexploredwithstudents:

• Proportionalrelations.Teacherscandis-cussstoriesorscenariosthatpresentbasicproportionalrelationsthatarenotquanti-fied.Forexample,aclasscoulddiscussthenumberofstudentsitwouldtaketobalanceaseesawwithone,two,orthreeadultsononeend.Creatingmoreandlesssaturatedliquidmixtureswithlemonademixorfood

coloringcanfacilitatediscussionscompar-ingthestrengthorconcentrationofdiffer-entmixtures.

• Covariation.Teachersshoulddiscussproblemsthatinvolveonequantityincreasingasanotherquantityincreases.Examplescouldincludetherelationbetweenheightandclothingsizeorbetweenfootlengthandshoesize.43

• Patterns.Simplerepeatingpatternscanbeusefulfordiscussingtheconceptofratio.Forexample,studentscouldcom-pleteapatternsuchasbluestar,bluestar,redsquare,bluestar,bluestar,redsquare,bluestar,bluestar,redsquare,andsoon.44Teacherscanthendiscusshowmanybluestarsthereareforeveryredsquare,havestudentsarrangethestarsandsquarestoshowwhatgetsrepeated,havestudentschangethepat-terntoadifferentratio(e.g.,threebluestarstooneredsquare),orhavestudentsextendthepattern.45

(17)

Page 24: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation 1 continuedRecommendation1continued

Potentialroadblocksandsolutions

Roadblock1.1. Students are unable to draw equal­size parts.

SuggestedApproach.Letstudentsknowthatitisacceptabletodrawpartsthatarenotexactlyequal,aslongastheyrememberthatthepartsshouldbeconsideredequal.

Roadblock1.2.Students do not share all of the items (non­exhaustive sharing) or do not create equal shares.

SuggestedApproach.Althoughchildrenhaveanintuitiveunderstandingofsharingsituations,theysometimesmakemistakesintheirattemptstosolvesharingproblems.Studentsmaynotsharealloftheitems,espe-ciallyifasharingscenariorequirespartition-inganobject.Teachersshouldhelpstudentsunderstandthatsharingscenariosrequiresharingalloftheobjects—possiblyevennotingthateachchildwantstoreceiveasmuchasheorshepossiblycan,sonoobjectsshouldremainunaccountedfor.

Studentsalsomightnotcreateequalsharesbecausetheydonotunderstandthatdeal-ingoutequal-sizeobjectsresultsinanequalamountforeachperson.46Inthiscase,teacherscandiscusshowdealingoutobjectsensuresthateachpersonreceivesanequalamountandcanencouragestudentstoverifythattheydividedtheitemsequally.

Equalsharingisimportantbecauseitlaysafoundationforlaterunderstandingofequiv-alentfractionsandequivalentmagnitudedifferences(e.g.,understandingthatthedif-ferencebetween0and1/2isthesameasthedifferencebetween1and11/2 orbetween73and731/2).

Roadblock1.3. When creating equal shares, students do not distinguish between the num­ber of things shared and the quantity shared.

SuggestedApproach.Youngerstudentsinparticularmayconfuseequalnumbersofshareswithequalamountsshared.47Forexample,ifstudentsareaskedtoprovideequalamountsoffoodfromaplatewithbothbigandsmallpieces,achildmightgiveoutequalnumbersofpiecesoffoodratherthanequalamounts.Thismisunderstandingmaystemfromlimitedexperiencewithsituationsinwhichentitiesofdifferentsizesaredealtoutorshared.

Onewaytoaddressthismisconceptionistousecolorcuestohelpstudentsdistinguishbetweenthequantitybeingsharedandthenumberofitemsbeingshared.48Forexample,inascenarioinwhichbothoftwoidenticaltoydogsaresaidtobehungry,childrencouldbeaskedwhetherthedogswouldhavethesameamounttoeatifonedogreceivedfivelargeredpiecesofpretendfoodandtheotherdogfivesmallgreenpiecesofpretendfood.

(18)

Page 25: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation2

Helpstudentsrecognizethatfractionsarenumbersandthattheyexpandthenumbersystembeyondwholenumbers.Usenumberlinesasacentralrepresentationaltoolinteachingthisandotherfractionconceptsfromtheearlygradesonward.Early fractions instruction generally focuses on the idea that fractions represent parts of a whole (e.g., one­third as the relation of one part to a whole that has three equal parts). Although the part­whole interpretation of fractions is important, too often instruction does not convey another simple but critical idea: fractions are numbers with magnitudes (values) that can be either ordered or considered equivalent.

Many common misconceptions—such as that two fractions should be added by adding the numerators and then adding the denominators—stem from not understanding that fractions are numbers with magnitudes. Not understanding this can even lead to confusion regarding whether fractions are numbers. For example, many students believe that four­thirds is not a number, advancing explanations such as, “You cannot have four parts of an object that is divided into three parts.”49 Further, many students do not understand that fractions provide a unit of measure that allows more precise measurement than whole numbers; these students fail to realize that an infinite range of numbers exists between successive whole numbers or between any two fractions.50 Reliance on part­whole instruction alone also leaves unclear how fractions are related to whole numbers.

(19)

Page 26: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation2continued

An effective way to develop students’ understanding of fractions as numbers with magnitudes is to use number lines. Number lines can clearly illustrate the magnitude of fractions; the relation between whole numbers and fractions; and the relations among fractions, decimals, and percents. They also provide a starting point for building students’ number sense with fractions and provide a way to represent negative fractions visually, which can otherwise be a challenging task. All of these types of understanding are crucial for learning algebra and other more advanced areas of mathematics.

Summaryofevidence:ModerateEvidence

Evidenceforthisrecommendationprimarilycomesfromstudiesdemonstratingtheuseful-nessofnumberlinesfordevelopingnumbersensewithwholenumbers.Thesestudiesusednumberlinerepresentationstoteachpreschoolandearlyelementarystudentsaboutthemagnitudesofwholenumbers.51Anadditionalstudyshowedhownumberlinescanbeusedtoteachdecimalssuccessfully.52AllofthesestudiesmetWWCevidencestandards.Moreover,accuracyinlocatingwholenumbersonnumberlinesisrelatedtomathematicalachievementamongstudentsinkindergartenthrough4thgrade,andaccuracyinlocatingdecimalsonnumberlinesisrelatedtoclass-roommathematicsgradesamong5th-and6th-graders.53Thepanelbelievesthatgiventheapplicabilityofnumberlinestofractionsaswellaswholenumbers,thesefindingsindicatethatnumberlinescanimprovelearningoffrac-tionsinelementaryandmiddleschool.

Numberlineswithwholenumbers.Playingalinearboardgamewithwholenumbersforaboutonehour(four15-minutesessionsoveratwo-weekperiod)improvedunderstandingofnumericalmagnitudesbypreschoolersfromlow-incomebackgrounds.54

Thegameinvolvedmovingamarkeroneortwospacesatatimeacrossahorizontalboardthathadthenumbers1to10listedinorderfromlefttorightinconsecutivesquares.Twoadditionalstudiesshowedthevalueofothernumberlineproceduresforimprovingknowledgeofwholenumbermagnitudes.Estimatingthelocationsof10numbersona0-to-100numberlineimproved1st-graders’abilitytolocatewholenumbersonthenumberline;55andshowing1st-grade

studentstheaddendsandsumsofadditionproblemsonanumberlineincreasedthelikelihoodthatstudentscorrectlyansweredtheproblemslater.

Numberlineswithdecimals.Inanotherstudy,numberlineswereusedtoteachdecimalconceptsto5th-and6th-gradestudents.56Theteachingtechniqueinvolvedprovidingstudentswithpracticelocatingdecimalsonanumberlinedividedintotenthsandwithaprompttonoticethetenthsdigitforeachnumber.Thesestudentswerelatermoreaccurateinlocatingdecimalsonanumberlinethanstudentswhosenumberlineswerenotdividedintotenthsanddidnotreceiveprompts.Forallstudentsinthestudy,abefore-and-aftercomparisonshowedthatconceptualunderstandingoffractionsimprovedafterlocatingdecimalsonanumberline.Thislastfindingissuggestiveevidence,becausethereisnocomparisongroupofstudentswhodidnotuseanumberline.

AnotherstudyexaminedaDutchcurriculumthatusednumberlinesandmeasurementcon-textstoteachfractions.57Studentsinthetreat-mentgrouplocatedandcomparedfractionsonanumberlineandmeasuredobjectsintheclassroomusingastripthatcouldbefoldedtomeasurefractionalparts.AlthoughthisstudydidnotmeetWWCevidencestandards,theauthorsreportedpositiveeffectsonmiddleschoolstudents’numbersensewithfrac-tions.58Twoadditionalstudiesthatwerenoteligibleforreviewfoundmixedresultsofusinganumberlinetoteachfractionconcepts.Bothstudiesnotedchallengesthatstudentsfaceinunderstandingfractionsonnumberlines.59

Forexample,onestudyreportedthatstudentshaddifficultyfindingequivalentfractionson

(20)

Page 27: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation2continued

anumberlinepartitionedintosmallerunits(e.g.,finding1/3onanumberlinedividedintosixths).60

Otherevidencethatisconsistentwiththerec-ommendationincludesastudyshowingtherelationbetweenskillatestimatinglocations

ofdecimalsonanumberlineandmathgradesfor5th-and6th-gradestudents,61

andamathematician’sanalysisindicatingthatlearningtorepresentthefullrangeofnumbersonnumberlinesisfundamentaltounderstandingnumbers.62

Howtocarryouttherecommendation

1. Usemeasurementactivitiesandnumberlinestohelpstudentsunderstandthatfrac-tionsarenumbers,withallthepropertiesthatnumbersshare.

Whenstudentsviewfractionsasnumbers,theyunderstandthatfractions,likewholenumbers,canbeusedtomeasurequantities.Measurementactivitiesprovideanaturalcon-textinthisregard.63Throughsuchactivities,teacherscandeveloptheideathatfractionsallowformoreprecisemeasurementofquan-titiesthandowholenumbers.

Teacherscanpresentsituationsinwhichfrac-tionsareusedtosolveproblemsthatcannotbesolvedwithwholenumbers.Forexample,theycanaskstudentshowtodescribetheamountofsugarinacookierecipethatneedsmorethan1cupbutlessthan2cups.

Teacherscanthenshowstudentsthevariousmeasurementlinesonameasuringcupandconveytheimportanceoffractionsindescrib-ingquantities.Teachersshouldemphasizethatfractionsprovideamorepreciseunitofmeasurethanwholenumbersandallowstudentstodescribequantitiesthatwholenumberscannotrepresent.Fractionstrips(alsoknownasfractionstripdrawings,stripdiagrams,barstripdiagrams,andtapedia-grams)arelengthmodelsthatallowstudentstomeasureobjectsusingfractionalpartsandreinforcetheideathatfractionscanbeusedtorepresentquantities(seeExample1).

Example1.Measurementactivitieswithfractionstrips

Teacherscanusefractionstripsasthebasisformea-surementactivitiestoreinforcetheconceptthatfrac-tionsarenumbersthatrepresentquantities.64

Tostart,studentscantakeastripofcardstockorconstructionpaperthatrepresentstheinitialunitofmeasure(i.e.,awhole)andusethatstriptomeasureobjectsintheclassroom(desk,chalkboard,book,etc.).Whenthelengthofanobjectisnotequaltoawholenumberofstrips,teacherscanprovidestudentswithstripsthatrepresentfractionalamountsoftheoriginalstrip.Forexample,astudentmightusethreewholestripsandahalfstriptomeasureadesk.

Teachersshouldemphasizethatfractionstripsrepre-sentdifferentunitsofmeasureandshouldhavestu-dentsmeasurethesameobjectfirstusingonlywholestripsandthenusingafractionalstrip.Teachersshoulddiscusshowthelengthoftheobjectremainsthesamebuthowdifferentunitsofmeasureallowforbetterprecisionindescribingit.Studentsshouldrealizethatthesizeofthesubsequentlypresentedfractionstripsisdefinedbythesizeoftheoriginalstrip(i.e.,ahalfstripisequaltoone-halfthelengthoftheoriginalstrip).

1/2 1/4

Usingfractionstripstomeasureanobject

(21)

Page 28: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

2.Provideopportunitiesforstudentstolocateandcomparefractionsonnumberlines.

Teachersshouldprovideopportunitiesforstudentstolocateandcomparefractionsonnumberlines.Theseactivitiesshouldincludefractionsinavarietyofforms,includingproperfractions(2/3),improperfractions(5/3),mixednumbers(12/3),wholenumbers(4/2),decimals(0.40),andpercents(70%).

Teacherscaninitiallyhavestudentslocateandcomparefractionsonnumberlineswiththefractionsalreadymarked(e.g.,anum-berlinewithmarksindicatingtenths).Pre-segmentednumberlinesavoidthedifficultystudentshaveinaccuratelypartitioningthenumberline.Thesenumberlinesalsoareusefulforlocatingandcomparingfractionswhoselocationsareindicated(e.g.,3/8and5/8 onanumberlinewitheighthsmarked)andfractionswhosedenominatorisafactoroftheunitfractionsshownonthenumberline(e.g.,1/4and3/4onalinewitheighthsmarked),aswellasfractionswithotherdenominators(e.g.,1/7,3/5).Forexample,studentsmightcomparethelocationsof7/8and3/4onanum-berlinemarkedwitheighths.Theseactivitiesshouldincludeopportunitiesforstudentstolocatewholenumbersonthenumberlineandcomparetheirlocationstothoseoffractions,includingonesequivalenttowholenumbers(e.g.,locating1and8/8).

Numberlinesalsocanbeusedtocomparefractionsofvaryingsizestowholenumbersgreaterthanone(locating10/3 onanumberlinewith0attheleftend,5attherightend,and1,2,3,and4markedinbetween).Exam-ple2providesastrategythatcanbeusedtointroducestudentstotheideaoflocatingfractionsonanumberline.

Comparingfractionswithdifferentdenomina-torsonapre-segmentednumberlinecanbecomplicatedforyoungstudents—forexample,comparing3/8and1/3onanumberlinedividedintoeighths.Tohelpstudentsunderstandsuchproblems,teacherscanlabelnumberlineswithonefractional-unitsequenceabovethenumberlineandadifferentfractional-unitsequence

Example2.Introducingfractionsonanumberline

Thefollowingexampledescribesonewaytointroducetheideaoflocatingfractionsonanumberline,emphasizingthatfractionsarenumberswithquantities.

Toillustratethelocationof3/5ona0-to-5numberline,theteachermightfirstmarkandlabelthelocationof1andthendividethespacebetweeneachwholenumberintofiveequal-sizeparts.Afterthis,theteachermightaddthelabels0/5,1/5,2/5,3/5,4/5,and5/5inthe0–1partofthenumberlineandhighlightthelocationof3/5.65Displayingwholenumbersasfractions(e.g.,5/5)allowsteacherstodiscusswhatitmeanstodescribewholenumbersintermsoffractionsandtoclarifythatwholenumbersarefractionstoo.

belowthenumberline.Forexample,whenaskingstudentstocompare1/3and3/8,teachersmightlabeleighthsabovethenumberlineandthirdsbelowit.Suchnumberlinesallowstu-dentswhoarerelativelyearlyintheprocessoflearningaboutfractionstolocateandcomparefractionswithdifferentdenominatorsandtothinkabouttherelativesizeofthefractions.66

Teachersalsoshouldprovidestudentswithopportunitiestolocateandcomparefractionsonnumberlinesthatareminimallylabeled—forexample,oneswiththelabels0,1/2,1,11/2,and2.Thisapproachisalmostaneces-sityforfractionswithlargedenominators(e.g.,dividinganumberlineinto28thsisdif-ficult)andencouragesstudentstothinkaboutthelocationoffractionsrelativetothelabeledlandmarks.67Forexample,teacherscanhavestudentslocate6/7onanumberlinemarkedwith0,1/2,and1.

Forawhole-classactivity,teacherscandrawanumberlineontheboardandhavestudentsmarkestimatesofwheredifferentfractions

(22)

The following example describes one way to introduce the idea of locating fractions on a number line, emphasizing that fractions are numbers with quantities.

To illustrate the location of 3/5 on a 0-to-5 number line, the teacher might first mark and label the location of 1 and then divide the space between each whole number into five equal-size parts. After this, the teacher might add the labels 0/5, 1/5, 2/5, 3/5, 4/5, and 5/5 in the 0–1 part of the number line and highlight the location of 3/5.65 Displaying whole numbers as fractions (e.g., 5/5) allows teachers to discuss what it means to describe whole numbers in terms of fractions and to clarify that whole numbers are fractions too.

Recommendation 2 continued

Page 29: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation2continued

fall.Asthenumberlinefillsup,teacherscanguideadiscussionaboutfractionsyettobeplaced,highlightingtheneedtopreservethecorrectorder.Insertingdecimalsandpercent-agesonthatsamenumberlinecanteachadditionalvaluablelessons.

Finally,teachersshouldencouragestudentstothinkaboutthedistancebetweentwofractions:Forexample,studentscouldcompare1/12and1/4andconsiderwhether1/12iscloserto1/4 or0.Similarly,0.3or0.45couldbecomparedtolocationsmarked0,1/2,and1,or0,0.5,and1.

3.Usenumberlinestoimprovestudents’understandingoffractionequivalence,frac-tiondensity(theconceptthatthereareaninfinitenumberoffractionsbetweenanytwofractions),andnegativefractions.

Inadditiontobeingusefulforcomparingposi-tivefractionmagnitudes,numberlinesalsocanbevaluableforteachingequivalentfractions,negativefractions,andfractiondensity.Numberlinesare,ofcourse,nottheonlywaytoteachtheseconcepts,butthepanelbelievestheyarehelpfulforimprovingstudents’understanding.

Numberlinescanbeusedtoillustratethatequivalentfractionsdescribethesamemagni-tude.Forexample,askingstudentstolocate2/5 and4/10 onasinglenumberlinecanhelpthemunderstandtheequivalenceofthesenumbers.Teacherscanmarkfifthsabovethelineandtenthsbelowit(orviceversa)tohelpstudentswiththistask.Althoughviewingequivalentfractionsasthesamepointonanumberlinecanbechallengingforstudents,68thepanelbelievesthattheabilitytodosoiscriticalforthoroughunderstandingoffractions.

AdiscussionofequivalentfractionsshouldbuildonpointsmadeinStep1aboutfractionsonthenumberline.Forexample,teacherscandividea0-to-1numberlineintohalvesandquartersandshowthat1/2and2/4occupythesame,orequivalent,pointonthenumberline(seeFigure4).Studentscanusearulertoiden-tifyequivalentfractionsonthestackednumberlinesshowninFigure4,identifyingfractionsthatoccupythesamelocationoneachnum-berline.Fractionstripsalsocanbeusedtoreinforcetheconceptofequivalentfractionsbyallowingstudentstomeasurethedistancebetweentwopointsusingdifferent-sizedfrac-tionstrips(seeFigure5).

Numberlinesalsocanbeusedtohelpstu-dentsunderstandthataninfinitenumberoffractionsexistbetweenanytwootherfrac-tions.Thisisonewayinwhichfractionsdiffer

Figure4.Findingequivalentfractionsonanumberline

UseofnumberlinestoteachequivalenceoffractionsinaJapanesecurriculum

Source:AdaptedfromShoseki(2010).

(23)

Page 30: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation2continued

Figure5.Usingfractionstripstodemonstrateequivalentfractions

0 2

1/2 1/2 1/2 1/2

1/2 1/2+ 1/2+ 1/2+ 4/2=

1/4 1/4 1/4 1/4 8/4+ + +1/4 1/4 1/4 1/4+ + + + =

8/44/2= =2

1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4

fromwholenumbersandcanbeadifficultconceptforstudentstograsp.69Teacherscanhelpstudentsunderstandthisconceptbyaskingthemtomakesuccessivepartitionsonthenumberline,creatingsmallerandsmallerunitfractions.70Forexample,studentscandividewholenumbersegmentsinhalftocreatehalves,andthendivideeachhalfintohalvestocreatefourths,thendivideeachfourthintohalvestocreateeighths,andsoon(thisactivityalsocanbedonewiththirds,ninths,twenty-sevenths,etc.).Suchdivisionsshowstudentsthattheyalwayscanpartitionanumberlineusingsmallerunitfractions.71

Thesamecanbedonewithdecimalsandpercents—suchasbyshowingthat0.13,0.15,and0.17areamongtheinfinitenumbersthatfallbetween0.1and0.2,andthat2%fallsbetween0%and10%.

Thepanelfurtherrecommendsthatteachersusenumberlineswhenintroducingnegativefractions.Teachingnegativefractionsinapart-wholecontextcanbedifficult,becausetheideaofanegativepartofawholeisnon-intuitive.Butthenumberlineprovidesastraightforwardvisualrepresentationoffractionslessthanzero,aswellasfractionsgreaterthanzero.

Byprovidingnumberlinesthatincludemarksandlabelsforzero,forseveralpositivefrac-tions,andforseveralnegativefractionswiththesameabsolutevaluesasthepositivefrac-tions,teacherscanhelpconveythesymmetryaboutzeroofpositiveandnegativefractions.Andbyplacingpositiveandnegativefractionsintostories—possiblyaboutlocationsaboveandbelowsealeveloraboutmoneygainedorlost—teacherscanillustrateadditionandsubtractionofbothtypesoffractions.

4.Helpstudentsunderstandthatfractionscanberepresentedascommonfractions,deci-mals,andpercentages,anddevelopstudents’abilitytotranslateamongtheseforms.

Studentsneedabroadviewoffractionsasnumbers.Thatincludesunderstandingthatfractionscanberepresentedasdecimalsandpercentsaswellascommonfractions.Teachersshouldclearlyconveythatcommonfractions,decimals,andpercentsarejustdif-ferentwaysofrepresentingthesamenumber.

Numberlinesprovideausefultoolforhelpingstudentsunderstandthatfractions,decimals,andpercentsaredifferentwaysofdescrib-ingthesamenumber.Byusinganumberline

withcommonfractionslistedaboveitanddecimalsorpercentagesbelowit,teacherscanhelpstudentslocateandcomparefrac-tions,decimals,andpercentsonthesamenumberline.Forexample,teacherscanpro-videstudentswithanumberlinemarkedwith0and1,andstudentscanbeaskedtolocate3/4,0.75,and75%onit.Inaddition,whenstu-dentsusedivisiontotranslateafractionintoadecimal,theycanplotboththefractionandthedecimalonthesamenumberline.

(24)

Page 31: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation2continued

Potentialroadblocksandsolutions

Roadblock2.1.Students try to partition the number line into fourths by drawing four hash marks rather than three, or they treat the whole number line as the unit.72

SuggestedApproach.Whenusinganumberlinewithfractions,studentsmustbetaughttorepresentfourthsasfourequal-sizesegmentsbetweentwowholenumbers.Teachersshoulddemonstratethatinsertingthreeequallyspacedhashmarksbetween,say,0and1dividesthespaceintofourequalsegments,orfourths.Thisrulecanbegeneralizedsothatstudentsknowthatdividingthenumberlineinto1/nunitsrequiresdrawingn –1hashmarksbetweentwowholenumbers.

Roadblock2.2. When students locate frac­tions on the number line, they treat the numbers in the fraction as whole numbers (e.g.,placing 3/4between 3 and 4).

SuggestedApproach.Thismistakereflectsacommonmisconceptioninwhichstudentsapplytheirwholenumberknowledgetofractions—viewingthenumbersthatmakeupafractionasseparatewholenumbers.Themisconceptioncanbeaddressedbypresentingstudentswithcontrastingcases:forexample,havingthemlocate3and4ona0-to-4numberline,thenidentifying3/4asafractionbetween0and1,andfinallydiscuss-ingwhyeachfractiongoeswhereitisplaced.

Roadblock2.3. Students have difficulty understanding that two equivalent fractions are the same point on a number line.

SuggestedApproach.Studentsoftenhavetroubleinternalizinghowpartitionsthatlocateonefraction(e.g.,eighthspartitionsforlocat-ing4/8)alsocanhelplocateanequivalent

fraction(e.g.,1/2).Onewaytoaddressthislackofunderstandingistoshowstudentsonesetofnumericallabelsabovethenumberlineandanothersetoflabelsbelowit.Thus,halvescouldbemarkedjustabovethelineandeighthsjustbelowit,andteacherscouldpointouttheequivalentpositionsof1/2and4/8,of1and8/8,of11/2and12/8,andsoon.Anotherapproachisforstudentstocreateanumberlineshowing1/2andanothernumberlineshowing4/8andthencomparethetwo.Teach-erscanlineupthetwonumberlinesandleadadiscussionaboutequivalentfractions.

Roadblock2.4. The curriculum materials used by my school district focus on part­whole representations and do not use the number line as a key representational tool for fraction concepts and operations.

SuggestedApproach.Althoughitisimpor-tantforstudentstounderstandthatfractionsrepresentpartsofawhole,thepanelnotesthatthisisonlyoneuseoffractionsandthereforerecommendstheuseofnumberlinesandmeasurementcontextstodevelopacomprehensiveunderstandingoffractions.Manipulativesthatoftenareusedtorepresentpart-wholeinterpretations,suchasfractioncirclesandfractionstrips,alsocanbeusedtoconveymeasurementinterpretations,butconsiderablecareneedstobetakentoavoidstudentssimplycountingpartsofthefractionstriporcirclethatcorrespondtothenumera-torandtothedenominatorwithoutunder-standinghowthenumeratoranddenominatortogetherindicateasinglequantity.Usingnumberlinesthatareunmarkedbetweentheendpointscanavoidsuchcountingwithoutunderstanding.Sometextbooksusenumberlinesextensivelyforteachingfractions;teach-ersshouldexaminethosebooksforideasabouthowtousenumberlinestoconveytheideathatfractionsaremeasuresofquantity.

(25)

Page 32: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3

Helpstudentsunderstandwhyproceduresforcomputationswithfractionsmakesense.Students are most proficient at applying computational procedures when they understand why those procedures make sense. Although conceptual understanding is foundational for the correct use of procedures, students often are taught computational procedures with fractions without an adequate explanation of how or why the procedures work.

Teachers should take the time to provide such explanations and to emphasize how fraction computation procedures transform the fractions in meaningful ways. In other words, they should focus on both conceptual understanding and procedural fluency and should emphasize the connections between them. The panel recommends several practices for developing understanding of computational procedures, including use of visual representations and estimation to reinforce conceptual understanding. Addressing students’ misconceptions and setting problems in real­world contexts also can contribute to improved understanding.

Summaryofevidence:ModerateEvidence

Thepanelbasedthisrecommendationinlargepartonthreewell-designedstudiesthatdemonstratedtheeffectivenessofteachingconceptualunderstandingwhendevelopingstudents’computationalskillwithfractions.73

Thesestudiesfocusedondecimalsandwererelativelysmallinscale;however,thepanelbelievesthattheirresults,togetherwithextensiveevidenceshowingthatmeaningful

informationisrememberedmuchbetterthanmeaninglessinformation,providepersuasiveevidenceforthisrecommendation.74 Addi-tionalsupportfortherecommendationcomesfromfourstudiesthatshowedapositiverela-tionbetweenconceptualandcomputationalknowledgeoffractions.75

Thestudiesthatcontributedtotheevidencebaseforthisrecommendationusedcomputer-basedinterventionstoexaminethelink

(26)

Page 33: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

betweenconceptualknowledgeandcomputa-tionalskillwithdecimals.Sixth-gradestudentscompletedthreelessonsondecimalplacevalue(i.e.,conceptualknowledge)andthreelessonsonadditionandsubtractionofdecimals(i.e.,proceduralknowledge).76Iteratingbetweenthetwotypesoflessonsimprovedstudents’proceduralknowledge,comparedwithteach-ingalloftheconceptuallessonsbeforeanyoftheproceduralones.Inanotherstudy,5th-and6th-gradestudentspracticedlocatingdecimalsonanumberlineusingacomputer-basedgame.Dividingthenumberlineintotenthsandencouragingstudentstonoticethetenthsdigitimproved5th-and6th-gradestudents’abilitytolocatedecimalsonanumberline(comparedtonotprovidingtheprompts).77

Researchalsoshowsapositiverelationshipbetweenstudents’conceptualandproceduralknowledgeoffractions.Thatis,childrenwhohaveabove-averageconceptualknowledgealsotendtohaveabove-averageknowledgeofcomputationalprocedures.Studiesof4th-and5th-gradersandof7th-and8th-gradersindi-catedthatconceptualknowledgewaspositivelyrelatedtocomputationalproficiencyaftercon-trollingforpriormathachievement,arithmeticfluency,workingmemory,andreadingability.78

Inaddition,conceptualknowledgeofdecimalspredictedstudents’abilitytolocatedecimalsonanumberline.79Whilethesestudiesshowacorrelationbetweenconceptualandproceduralknowledge,theydidnotexaminetheeffective-nessofinterventionsthatdevelopconceptualknowledgetoimproveproceduralknowledge.

Thepanelalsoidentifiedevidencethatspe-cificallyaddressedtwoofthefourstepsforimplementingthisrecommendation.

Useofrepresentations.Evidenceidenti-fiedbythepanelsupportstherecommended

practiceofusingvisualrepresentationsandmanipulativesduringinstructiononfractioncomputation(Step1).Twowell-designedstud-iesfoundthattheuseofmanipulativesandpictorialrepresentationshadapositiveeffectoncomputationalskillwithfractions.80Oneofthesestudiesfocusedonfractioncircles(setsofcircles,inwhichthefirstisawholecircle,thesecondisdividedinhalf,thethirdisdividedinthirds,etc.).81Theotherstudyhadstudentsuseavarietyofmanipulativesforlearningcomputationalprocedureswithfrac-tions,includingfractionsquaresandfractionstrips.82AthirdstudyexaminedtheRationalNumberProjectcurriculum,whichempha-sizestheuseofmanipulativesasoneofmanycomponents.83Theauthorsofthestudyreportedthatthecurriculumhadapositiveeffectonfractioncomputationabilities.How-ever,manipulativeswereonlyonecomponentofthismultifacetedcurriculum,andthestudyprovidedinsufficientinformationfortheWWCtocompleteareview,sotheconclusionsthatcanbedrawnfromthestudyregardingtheroleofmanipulativesarelimited.

Real­worldcontexts.Thepanelidentifiedevidencerelatedtotheuseofreal-worldcon-textsforimprovingskillatexecutingcompu-tationalprocedureswithfractions(Step4).84

Inoneofthestudies,personalizingproblemsfor5th-and6th-gradestudentsimprovedtheirabilitytosolvedivisionproblemswithfractions.85Theotherstudyfoundthatpos-ingproblemsineverydaycontextsimproved11- and12-year-oldstudents’abilitytoorderandcomparedecimals.86Additionalstudiesarguedfortheuseofreal-worldcontextsforteachingproceduresforcomputingwithfrac-tionsbutdidnotproviderigorousevidencethatsuchinstructioncausesimprovementinfractioncomputation.87

(27)

Page 34: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

Howtocarryouttherecommendation

1. Useareamodels,numberlines,andothervisualrepresentationstoimprovestu-dents’understandingofformalcomputationalprocedures.

Teachersshouldusevisualrepresentationsandmanipulatives,includingnumberlinesandareamodels,thathelpstudentsgaininsightintobasicconceptsunderlyingcom-putationalproceduresandthereasonswhytheseprocedureswork.Forexample,whenteachingadditionorsubtractionoffractionswithunlikedenominators,teachersshouldusearepresentationthathelpsstudentsseetheneedforcommondenominators.

Thereareseveralwaysteacherscanuserepresentationstoilluminatekeyunderlyingconcepts:

•Findacommondenominatorwhenaddingandsubtractingfractions.Acommonmistakestudentsmakewhenfacedwithfractionsthathaveunlikedenominatorsistoaddbothnumeratorsanddenominators.88Certainrepresenta-tionscanprovidevisualcuestohelpstudentsseetheneedforcommon

denominators.Forexample,teacherscandemonstratethatwhenaddingpiecescorrespondingtofractionsofobjects(e.g.,adding1/2ofacircleand1/3ofacircle),convertingboth1/2and1/3tosixthspro-videsacommondenominatorthatappliestobothfractionsandallowsthemtobeadded(Figure6).Discusswithstudentswhymultiplyingdenominatorsalwaysindicatesacommondenominatorthatcanbeusedtoexpressbothoriginalfractions.

•Redefinetheunitwhenmultiplyingfractions.Multiplyingtwofractionsrequiresfindingafractionofafraction.Forexample,whenmultiplying1/4by2/3,studentscouldstartwith2/3oftheoriginal(usuallyunmentioned)unitandfind1/4 ofthisfractionalamount.Pictorialorconcreterepresentationscanhelpstudentsvisual-izethisprocesstoimprovetheirunder-standingofthemultiplicationprocedure.Forexample,studentscanshadeinwith

Figure6.Fractioncirclesforadditionandsubtraction

1/6

1/6

1/6

1/2 1/2

1/3

1/6

1/6

5/6

+

+

=

=

1/3

1/6

1/61/6

1/6

1/6

Adding1/2+1/3usingfractioncircles

Source:AdaptedfromCramerandWyberg(2009).

(28)

Page 35: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

Figure7.Redefiningtheunitwhenmultiplyingfractions

Loriisicingacake.Sheknowsthat1cupoficingwillcover2/3ofacake.Howmuchcakecanshecoverwith1/4cupoficing?

verticallines2/3 ofasquarecakedrawnonpaperandthenshadeinwithhorizontallines1/4 ofthecake’sshadedarea,resultinginaproductrepresentedbythecross-hatchedarea(Figure7).89Thisapproachillustrateshowtoredefinetheunit—initiallytreatingthefullcakeasthewhole,andthentreatingtheverticallyshadedportionofthecakeasthewhole.

• Divideanumberintofractionalparts.Dividingfractionsisconceptuallysimilartodividingwholenumbers,inthatstudentscanthinkabouthowmanytimesthedivi-sorgoesintothedividend.Forexample,1/2÷1/4canberepresentedintermsof“Howmany1/4sarein1/2?”

Teacherscanuserepresentationssuchasribbonsoranumberlinetohelpstudentsmodelthedivisionprocessforfractions.Studentsusingribbonscancuttworib-bonsofequalsizeandthenseparateoneintofourthsandoneintohalves.Toshowthedivisionproblem1/2÷1/4,studentscan

findouthowmanyfourthsofaribbonfitontoone-halfofaribbon,whenthewholeribbonwasthesamelengthinbothcases(seeFigure8).90Similarly,ateachercandrawanumberlinewithbothfourthsandhalveslabeledtoshowstudentsthattherearetwo1/4segmentsin1/2.Teacherscanhelpstudentsdeepentheirunderstand-ingofthedivisionprocessbypresentingproblemsinwhichthedivisor,dividend,orbotharegreaterthanone,andprob-lemsinwhichthequotientisnotaninte-ger,suchas13/4dividedby1/2.

Teachersshouldconsidertheadvantagesanddisadvantagesofdifferentrepresentationsforteachingproceduresforcomputingwithfractions.Akeyissueiswhethertherepre-sentationadequatelyreflectsthecomputationprocessbeingtaught,allowingstudentstomakelinksbetweenthetwo.

Teachersalsoshouldthinkaboutwhetherarepresentationcanbeusedwithdifferenttypesoffractions—properfractions(5/8),

(29)

Page 36: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

Figure8.Usingribbonstomodeldivisionwithfractions

¼ ¼ ¼ ¼

½ ½

¼ ¼

½

Step 1. Divide a ribbon into fourths.

Step 2. Divide a ribbon of the same length into halves.

Step 3. Find out how many fourths of a ribbon can fit into one-half of the ribbon.

Two fourths fit into one-half of the ribbon.

So, ½÷ ¼= 2.

Students use ribbons to solve ½÷ ¼

mixednumbers(13/8),improperfractions(11/8),andnegativenumbers(–1/2).Forexam-ple,areamodelsmayreadilyillustrateaddi-tionoffractionswithpositivenumbersbutdonotaseasilylendthemselvestoexplainingadditionoffractionswithnegativenumbers.Incontrast,numberlinescanbeusedtoexplainboth.

Representationsthatstudentshaveusedtolearnothermathematicalconcepts,especially

otherfractionconcepts,maybeparticularlyuseful.Forexample,manystudentslearntorepresentdecimalsusingbase-10blocksor100grids(10by10squares,witheachsquarerepresenting1/100andthewholesquarerepre-senting1).Familiaritywiththisrepresentationalsomighthelpstudentsunderstandaddingandsubtractingdecimalandcommonfrac-tions.Forexample,100gridscanbeusedtoillustratethatadding2.34+1.69isthesameasadding234/100+169/100.

2. Provideopportunitiesforstudentstouseestimationtopredictorjudgethereason-ablenessofanswerstoproblemsinvolvingcomputationwithfractions.

Whenteachingproceduresforcomputingwithfractions,teachersshouldprovideopportunitiesforstudentstoestimatethesolutionstoproblems.Estimationrequiresstudentstousereasoningskillsandthusleadsthemtofocusonthemeaningofproce-duresforcomputingwithfractions.91 Teach-erscanaskstudentstoprovideaninitialestimateandtoexplaintheirthinkingbefore

havingthemcomputetheanswer.92Students,inturn,canusetheestimatestojudgethereasonablenessoftheiranswers.

Toimproveestimationskills,teacherscandiscusswhetherandwhystudents’solutionstospecificproblemsarereasonable;theyalsocanaskstudentstoexplainthestrate-giestheyusedtoarriveattheirestimatesand

(30)

Page 37: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

comparetheirinitialestimatestothesolutionstheyreachedbyapplyingacomputationalalgorithm.Consideranexample:astudentmightestimatethatthesolutionof1/2+1/5 ismorethan1/2butlessthan3/4,since1/5 issmallerthan1/4.Ifthestudentthenincorrectlyaddsthenumeratorsanddenominatorstoproducethesum2/7,theteachercannotethatthisanswercannotberightbecause2/7islessthan1/2.93Fromthere,theteachercanguidethestudenttoidentify,understand,andcor-recttheproceduralerror.

Estimationislikelytobemostusefulwithprob-lemsinwhichasolutioncannotbecomputedquicklyoreasily.Thereisnopointaskingstu-dentstoestimatetheanswertoaproblemthatcanbesolvedquicklyandaccuratelybymentalcomputation,suchas7/9–5/9.

Teachingstudentseffectiveestimationstrate-gies(Example3)canmaximizethevalueofestimationfordeepeningunderstandingofcomputationsinvolvingfractions.

Example3.Strategiesforestimatingwithfractions

Strengtheningestimationskillscandevelopstudents’understandingofcomputationalprocedures.

Benchmarks.Onewaytoestimateisthroughbenchmarks—numbersthatserveasreferencepointsforesti-matingthevalueofafraction.94Thenumbers0,1/2,and1areusefulbenchmarksbecausestudentsgenerallyfeelcomfortablewiththem.Studentscanconsiderwhetherafractionisclosestto0,1/2,or1.Forexample,whenadding7/8 and3/7,studentsmayreasonthat7/8 iscloseto1,and3/7 iscloseto1/2,sotheanswerwillbecloseto11/2.95Further,ifdividing5by5/6,studentsmightreasonthat5/6iscloseto1,and5dividedby1is5,sothesolutionmustbealittlemorethan5.96

RelativeSizeofUnitFractions.Ausefulapproachtoestimatingisforstudentstoconsiderthesizeofunitfractions.Todothis,studentsmustfirstunderstandthatthesizeofafractionalpartdecreasesasthedenominatorincreases.97Forexample,toestimatetheanswerto9/10+1/8,beginningstudentscanbeencour-agedtoreasonthat9/10 isalmost1,that1/8iscloseto1/10,andthatthereforetheanswerwillbeabout1.Moreadvancedstudentscanbeencouragedtoreasonthat9/10 isonly1/10 awayfrom1,that1/8 isslightlylargerthan1/10,andthereforethesolutionwillbeslightlymorethan1.Theprinciplecanandshouldbegeneral-izedbeyondunitfractionsonceitisunderstoodinthatcontext.Keydimensionsforgeneralizationincludeestimatingresultsofoperationsinvolvingnon-unitfractions(e.g.,3/4÷2/3),improperfractions(7/3÷3/4),anddecimals(0.8÷0.33).

PlacementofDecimalPoint.Acommonerrorwhenmultiplyingdecimals,suchas0.8×0.9or2.3×8.7,istomisplacethedecimal.Encouragingstudentstoestimatetheanswerfirstcanreducesuchconfusion.Forexample,realizingthat0.8and0.9arebothlessthan1butfairlyclosetoitcanhelpstudentsrealizethatanswerssuchas0.072and7.2mustbeincorrect.

3. Addresscommonmisconceptionsregardingcomputationalprocedureswithfractions.

Misconceptionsaboutfractionsofteninterferewithunderstandingcomputationalprocedures.Thepanelbelievesthatitiscriticaltoidentifystudentswhoareoperatingwithsuchmiscon-ceptions,todiscussthemisconceptionswiththem,andtomakecleartothestudentswhythemisconceptionsleadtoincorrectanswersandwhycorrectproceduresleadtocorrectanswers.

Teacherscanpresentthesemisconceptionsindiscussionsabouthowandwhysomestu-dents’computationproceduresyieldcorrectanswers,whereasothers’donot.Thegroupwilllikelyfindthatmanycomputationalerrorsresultfromstudentsmisapplyingrulesthatareappropriatewithwholenumbersorwithothercomputationaloperationswithfractions.

(31)

Page 38: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

Somecommonmisconceptionsaredescribednext,togetherwithrecommendationsforaddressingthem.

•Believingthatfractions’numeratorsanddenominatorscanbetreatedasseparatewholenumbers.Acommonmistakethatstudentsmakeistoaddorsubtractthenumeratorsanddenomina-torsoftwofractions(e.g.,2/4+5/4=7/8 or3/5–1/2=2/3).98Studentswhoerrinthiswayaremisapplyingtheirknowledgeofwholenumberadditionandsubtractiontofrac-tionproblemsandfailingtorecognizethatdenominatorsdefinethesizeofthefrac-tionalpartandthatnumeratorsrepresentthenumberofthispart.Thefactthatthisapproachisappropriateformultiplicationoffractionsisanothersourceofsupportforthemisconception.

Presentingmeaningfulproblemscanbeusefulforovercomingthismisconception.Forexample,ateachermightpresenttheproblem,“Ifyouhave3/4ofanorangeandgive1/3ofittoafriend,whatfractionoftheoriginalorangedoyouhaveleft?”Subtract-ingthenumeratorsanddenominatorsseparatelywouldresultinananswerof2/1 or2.Studentsshouldimmediatelyrecog-nizetheimpossibilityofstartingwith3/4 ofanorange,givingsomeofitaway,andend-ingupwith2oranges.Suchexamplescanmotivatestudentstothinkdeeplyaboutwhytreatingnumeratorsanddenominatorsasseparatewholenumbersisinappropriateandcanleadthemtobemorereceptivetodiscussionsofappropriateprocedures.

•Failingtofindacommondenominatorwhenaddingorsubtractingfractionswithunlikedenominators.Studentsoftenfailtoconvertfractionstoequivalentformswithacommondenominatorbeforeaddingorsubtractingthem,andinsteadjustinsertthelargerdenominatorinthefractionsintheproblemasthedenomina-torintheanswer(e.g.,4/5+4/10=8/10).99

Thiserroroccurswhenstudentsdonotunderstandthatdifferentdenominatorsreflectdifferent-sizedunitfractionsandthat

addingandsubtractingfractionsrequiresacommonunitfraction(i.e.,denominator).Thesameunderlyingmisconceptioncanleadstudentstomakethecloselyrelatederrorofchangingthedenominatorofafractionwithoutmakingthecorrespondingchangetothenumerator—forexample,byconvertingtheproblem2/3+2/6into2/6+2/6.Visualrepresentationsthatshowequivalentfractions—suchasanumberlineorfractionstrip—againcanillustratetheneedforbothcommondenominatorsandappropriatechangesinnumerators.

•Believingthatonlywholenumbersneedtobemanipulatedincomputa­tionswithfractionsgreaterthanone.Whenaddingorsubtractingmixednumbers,studentsmayignorethefractionalpartsandworkonlywiththewholenumbers(e.g.,53/5–21/7=3).100 Thesestudentsareeitherignoringthepartoftheproblemtheydonotunderstand,misunderstandingthemeaningofmixednumbers,orassumingthatsuchproblemssimplyhavenosolution.101

Arelatedmisconceptionisthinkingthatwholenumbershavethesamedenomina-torasafractionintheproblem.102 Thismisconceptionmightleadstudentstotranslatetheproblem4–3/8into4/8–3/8 andfindananswerof1/8.Whenpresentedwithamixednumber,studentswithsuchamisconceptionmightaddthewholenumbertothenumerator,asin31/3 ×6/7 =(3/3+1/3)×6/7=4/3 ×6/7=24/21.Helpingstudentsunderstandtherelationbetweenmixednumbersandimproperfractions,andhowtotranslateeachintotheother,iscrucialforworkingwithfractions.

•Treatingthedenominatorthesameinfractionadditionandmultiplica­tionproblems.Studentsoftenleavethedenominatorunchangedonfractionmultiplicationproblemsthathaveequaldenominators(e.g.,2/3 ×1/3=2/3).103Thismayoccurbecausestudentsusuallyencountermorefractionadditionproblemsthanfractionmultiplicationproblems;thismightleadthemtogeneralizeincorrectly

(32)

Page 39: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

tomultiplicationthecorrectprocedurefordealingwithequaldenominatorsonaddi-tionproblems.Teacherscanaddressthismisconceptionbyexplainingtheconceptualbasisoffractionmultiplicationusingunitfractions(e.g.,1/2 ×1/2=halfofahalf=1/4).Inparticular,teacherscanshowthattheproblem1/2 ×1/2isactuallyaskingwhat1/2of1/2 is,whichimpliesthattheproductmustbesmallerthaneitherfractionbeingmultiplied.

•Failingtounderstandtheinvert­and­multiplyprocedureforsolvingfrac­tiondivisionproblems.Studentsoftenmisapplytheinvert-and-multiplyproce-durefordividingbyafractionbecausetheylackconceptualunderstandingoftheprocedure.Onecommonerrorisnotinvertingeitherfraction;forexample,astudentmaysolvetheproblem2/3÷4/5 bymultiplyingthefractionswithoutinverting4/5(e.g.,writingthat2/3÷4/5=8/15).104 Othercommonmisapplicationsoftheinvert-and-multiplyruleareinvertingthewrongfraction(e.g.,2/3÷4/5=3/2 ×4/5)orinvert-ingbothfractions(2/3÷4/5=3/2 ×5/4).Sucherrorsgenerallyreflectalackofconcep-tualunderstandingofwhytheinvert-and-multiplyprocedureproducesthecorrect

quotient.Theinvert-and-multiplyproce-duretranslatesamulti-stepcalculationintoamoreefficientprocedure.

Thepanelsuggeststhatteachershelpstudentsunderstandthemulti-stepcalcu-lationthatisthebasisfortheinvert-and-multiplyprocedure.Teacherscanbeginbynotingthatmultiplyinganynumberbyitsreciprocalproducesaproductof1,andthatdividinganynumberby1leavesthenumberunchanged.Thenteacherscanshowstudentsthatmultiplyingbothfractionsbythereciprocalofthedivisorisequivalenttousingtheinvert-and-multiplyprocedure.Fortheproblem2/3÷4/5=(notethatwereferto2/3asthedividendand4/5 asthedivisor):

•multiplyingboththedividend(2/3)anddivisor(4/5)bythereciprocalofthedivisoryields(2/3 ×5/4)÷(4/5 ×5/4).

•multiplyingtheoriginaldivisor(4/5)byitsreciprocal(5/4)producesadivisorof1,whichresultsin2/3 ×5/4 ÷1,whichyields2/3 ×5/4.

• thus,theinvertandmultiplyprocedure,multiplying2/3 ×5/4,providesthesolution.

4. Presentreal-worldcontextswithplausiblenumbersforproblemsthatinvolvecom-putingwithfractions.

Presentingproblemswithplausiblenumberssetinreal-worldcontextscanawakenstu-dents’intuitiveproblem-solvingabilitiesforcomputingwithfractions.105Thecontextsshouldprovidemeaningtothefractionquan-titiesinvolvedinaproblemandthecomputa-tionalprocedureusedtosolveit.Real-worldmeasuringcontexts,suchasrulers,ribbons,andmeasuringtapes,canbeuseful,ascanfood—bothdiscreteitems(e.g.,cartonsofeggs,boxesofchocolates)andcontinuousones(e.g.,pizzas,candybars).106 Studentsthemselvescanbeahelpfulsourceofideasforrelevantcontexts,allowingteacherstotailorproblemsarounddetailsthatarefamil-iarandmeaningfultothestudents.107 School

events,suchasfieldtripsorclassparties,trackandfielddays,andongoingactivitiesinothersubjects,alsocanserveasengagingcontextsforproblems.

Teacherscanhelpstudentsmakeconnec-tionsbetweenareal-worldproblemandthefractionnotationusedtorepresentit.Insomecases,studentsmaysolveaproblemframedinaneverydaycontextbutbeunabletosolvethesameproblemusingformalnotation.108 Forinstance,theymightknowthattwohalvesequalawholebutanswerthewrittenproblem1/2+1/2 with2/4.Teach-ersshouldhelpstudentsseetheconnectionbetweenthestoryproblemandthefraction

(33)

Page 40: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation3continued

notationandencouragethemtoapplytheirintuitiveknowledgeinbothsituations.Whiletryingtomakeconnections,teacherscan

directstudentsbacktothereal-worldstoryproblemiftheirstudentsneedtoeaseintounderstandingtheformalnotation.109

Potentialroadblocksandsolutions

Roadblock3.1.Students make computational errors (e.g., adding fractions without finding a common denominator) when using certain pictorial and concrete object representations to solve problems that involve computation with fractions.

SuggestedApproach.Teachersshouldcare-fullychooserepresentationsthatmapstraight-forwardlytothefractioncomputationbeingtaught.Forexample,whenteachingfractionaddition,arepresentationshoulddemonstratetheneedforaddingsimilarunitsandthusleadstudentstofindacommondenominator.Useofsomerepresentationscanactuallyreinforcemisconceptions.Inonestudy,theuseofdotpaperforaddingfractionsledstudentstomoreoftenusetheincorrectstrategyofadd-ingnumeratorswithoutfindingacommondenominator.110 Representationsthathold

unitsconstant,suchasameasuringtapewithmarkedunits,canhelpstudentsseetheneedforcommonunitfractions.

Roadblock3.2. When encouraged to esti­mate a solution, students still focus on solving the problem via a computational algorithm rather than estimating it.

SuggestedApproach.Estimationshouldbepresentedasatoolforanticipatingthesizeandassessingthereasonablenessofananswer.Teachersshouldfocusonthereason-ingneededtoestimateasolutionandshouldemphasizethatestimationisapreliminarysteptosolvingaproblem,notashortcuttoobtaininganexactanswer.Teacherswhoposeproblemsthatcannotbesolvedquicklywithmentalcomputation(e.g.,problemssuchas5/9+3/7ratherthan5/8+3/8)willlikelyavoidthisroadblock.

(34)

Page 41: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation4

Developstudents’conceptualunderstandingofstrategiesforsolvingratio,rate,andproportionproblemsbeforeexposingthemtocross­multiplicationasaproceduretousetosolvesuchproblems.Proportional reasoning is a critical skill for students to develop in preparation for more advanced topics in mathematics.111

When students “think proportionally,” they understand the multiplicative relation between two quantities.112 For example, understanding the multiplicative relation in the equation Y = 2Xmeans understanding that Yis twice as large as X (and not that X is twice as large as Y, which is what many students think). Contexts that require understanding of multiplicative relations include problems that involve ratios (i.e., the relation between two quantities, such as the ratio of boys to girls in a classroom), rates (i.e., the relation between two quantities measured in different units, such as distance per unit of time), and proportions (i.e., two equivalent ratios). Proportional reasoning often is needed in everyday contexts, such as adjusting recipes to the number of diners or buying material for home improvement projects; thus proportional reasoning problems provide opportunities to illustrate the value of learning about fractions.

The panel recommends that teachers develop students’ proportional reasoning prior to teaching the cross­multiplication algorithm, using a progression of problems that builds on their informal reasoning strategies. Visual representations are particularly useful for teaching these concepts and for helping students solve problems. After teaching the cross­multiplication algorithm, teachers should return to the informal reasoning strategies, demonstrate that they and the algorithm lead to the same answers on problems for which the informal reasoning strategies are applicable, discuss why they do so, and also discuss problems that can be solved by the cross­multiplication algorithm that cannot easily be solved by the informal strategies.

A caution for teachers: Evidence from many types of problem­solving studies, including ones involving ratio, rate, and proportion, indicates that students often learn a strategy to solve a problem in one context but cannot apply the same strategy in other contexts.113 Stated another way, students often do not recognize that problems with different cover stories are the same problem mathematically.114 To address this issue, teachers should point to connections among problems with different cover stories and illustrate how the same strategies can solve them.

(35)

Page 42: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation4continued

Summaryofevidence:MinimalEvidence

Evidencefortherecommendationcomesfromconsensusdocumentsthatemphasizetheimportanceofproportionalreasoningformathematicslearning,aswellasthepanel’sexpertopinion.115 Additionally,thepanelseparatelyreviewedevidencerelevanttoparticularactionstepswithintherecom-mendation.Theseactionstepsaresupportedbycasestudiesdemonstratingthevarietyofstrategiesstudentsusetosolveratio,rate,andproportionproblems;arigorousstudyofmanipulatives;andtwowell-designedstudiesthattaughtstrategiesforsolvingwordproblems.

Buildingondevelopingstrategies.Threesmallcasestudiesprovidedevidencethatstudentsuseavarietyofstrategiestosolveproportionalreasoningproblems(Step1).116

Somestudentsinitiallyappliedabuildupstrategy(e.g.,tosolve2:3=x:12,theyadded2:3fourtimesuntiltheyreached8:12,andthensaidx=8),whereasothersappliedastrategythatfocusedonthemultiplicativerelationbetweentworatios(e.g.,tosolve2:3=x:12,theyidentifiedtherelationbetweenthedenominators[3×4=12]andappliedthisrelationtodeterminethemiss-ingnumerator[2×4=8],thensaidx=8).However,thesestudiesdidnotexaminewhetherbasinginstructiononthesestrategiesimprovedstudents’proportionalreasoning.Thepanelbelievesthatstudents’proportionalreasoningcanbestrengthenedthroughpresentingaprogressionofproblemsthatencouragesuseofthesestrategiesandthatprovidesabasisforrealizingthatthecross-multiplicationprocedurecansolvesome,butnotall,typesofproblemsmoreefficientlythanotherstrategies.

Usingrepresentations.Theevidencesup-portingtheuseofmanipulativesandpicto-rialrepresentationstoteachproportionality

conceptsislimited(Step2).However,onestudythatmetWWCstandardsfoundthattheuseofamanipulativeimproved4th-graders’abilitytovisualizeandcomparetworatios,whichimprovedtheirabilitytosolvemixtureproblems,comparedtostudentswhohadnoexposuretotheseproblemsorthemanipula-tive.117InanotherstudythatmetWWCstan-dards,studentsimprovedtheirabilitytosolvemissingvalueproportionproblemsbyrepre-sentinginformationfromtheseproblemsinadatatablethathighlightedthemultiplicativerelationshipsbetweenquantities.118Athirdwell-designedstudyfoundapositiveimpactonstudentlearningofcollaborativelycon-structingpictorialrepresentationsrelativetousingteacher-generatedrepresentations.119

Thesestudiesindicatethatmanipulativesandpictorialrepresentationscanbeeffectiveteachingtools;however,theprinciplesthatdeterminewhentheyareandarenothelpfulremainpoorlyunderstood.

Teachingproblem­solvingstrategies.Thepanelalsoidentifiedlimitedevidencesupportingtherecommendationtoteachstrategiesforsolvingwordproblemsinvolv-ingratiosandproportions(Step3).Theinterventionsexaminedinthesestudiestaughtmiddleschoolstudentsafour-stepstrategyforsolvingratioandproportionwordproblems.120Thisstrategydevelopedstudents’understandingofcommonproblemstructures,directedstudentstouseadia-gramtoidentifykeyinformationneededtosolveaproblem,andencouragedstudentstocomparedifferentsolutionstrategies.Oneofthesestudiesfocusedonstudentswithlearningdisabilities,whiletheothersampledstudentswithadiversemixofabilitylev-els.121 Bothstudiesfoundapositiveeffectontheaccuracyofstudents’solutionstoratioandproportionproblems.

(36)

Page 43: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation4continued

Howtocarryouttherecommendation

1.Developstudents’understandingofproportionalrelationsbeforeteachingcomputa-tionalproceduresthatareconceptuallydifficulttounderstand(e.g.,cross-multiplication).Buildonstudents’developingstrategiesforsolvingratio,rate,andproportionproblems.

Opportunitiesforstudentstosolveratio,rate,andproportionproblemsshouldbeprovidedpriortoteachingthecross-multiplicationalgorithm.122 Teacherscanuseaprogressionofproblemsthatbuildsonstudents’develop-ingstrategiesforproportionalreasoning.123 Inparticular,teacherscaninitiallyposeproblemsthatallowsolutionsviathebuildupandunitratiostrategiesandprogresstoproblemsthatareeasiertosolvethroughcrossmultiplication.Encouragingstudentstoapplytheirownstrate-gies,discussingwithstudentsvariedstrate-gies’strengthsandweaknesses,andhelpingstudentsunderstandwhyaproblem’ssolutioniscorrectareadvisable.124 Ifstudentsdonotgeneratethesestrategiesontheirown,teach-ersshouldintroducethestrategiesaswaysofsolvingratio,rate,andproportionproblems.

Teacherscaninitiallyposestoryproblemsthatallowstudentstouseabuildupstrategy,inwhichtheyrepeatedlyaddthenumberswithinoneratiotosolvetheproblem(seeExample4).125Problemsthatfacilitatetheuseofthebuildupstrategyshouldhaveaninte-gralrelationbetweenthecomponentnum-bersinthetworatios—arelationinwhichthenumbersinoneratiocanbegeneratedbyrepeatedlyaddingnumbersintheotherratio,allowingstudentstobuilduptotheunknownnumber.Forexample,theratios2:3and10:15haveanintegralrelation,becauserepeatedlyadding2sand3stothefirstratioleadsto10:15.Thus,initialproblemsshouldinvolveratiosforwhichstudentscaneasilyapplyabuildupstrategy,suchas,“Johnisbakingbreadforsomefriends.Heuses2cupsofflourforevery3friends.Ifhewantstomakebreadfor15friends,howmanycupsofflourshouldheuse?”

Next,teacherscanpresentsimilarproblems,butwithlargernumbers,thatdemonstrate

tostudentshowtime-consumingitcanbetoadduprepeatedlytotheunknownvalue.Studentswillseetheadvantageofmultiply-inganddividingratherthandependinguponrepeatedaddition.Forexample,inthebakingbreadproblem,Johncouldbebakingbreadforall54studentsinthe5thgrade.

Teacherscanthenpresentproblemsthatcannotbesolvedimmediatelyeitherthroughrepeatedadditionorthroughmultiplyingordividingagivennumberbyasingleinte-ger(seeExample4).Theseareproblemsthatinvolveratioswithoutanintegralrela-tion,suchasx/6=3/9.Suchproblemscanbesolvedbytheunitratiostrategy,whichinvolvesreducingtheknownratio(3/9)toaformwithanumeratorof1andthendeter-miningthemultiplicativerelationbetweenthenewunitratioandtheratiowiththeunknownelement(x/6).Themultiplicativerelationbetweenthedenominatorsintheunitratioandtheunknownratiocanthenbeusedtosolveforthemissingelement.Forexample,x/6=3/9couldbesolvedbyexpressing3/9as1/3,identifying2/2asthenumberthatcouldbeusedtomultiply1/3 andobtainadenominatorof6withoutchangingthevalueof1/3,multiplying1/3 by2/2toobtain2/6,andanswering“x=2.”126

Thesametypeofreasoningcanbeusedtosolveproblemsforwhichtheanswerisnotawholenumber;forexample,“Susanismakingdinnerfor6peopleandwantstousearecipethatserves8people.Therecipefor8callsfor2cupsofcream.Howmuchcreamwillsheneedtoserve6?”Thiscontextpresentstheproblemas2:8asx:6.Studentscouldsolvethisproblembyreasoningthatsince2cupsofcreamserve8people,1cupofcreamwouldserve4people,and11/2 cupsofcreamwouldserve6.

(37)

Page 44: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation4continued

Problemssuchasthoseinthelastparagraphcanbeusedtohelpstudentsrecognizetheadvantagesofastrategythatcansolveproblemsregardlessoftheparticularnum-bers.Cross-multiplicationcanbeintroducedassuchanapproach.Problemsthatdonotinvolveintegralrelationsandcannoteasilybereducedtounitfractionswillhelpstudentsseetheadvantagesofcross-multiplication,whichisessentiallyaproceduretocreateequivalentratios.Itsusecanbeillustratedwithproblemssuchasthosepresentedinthepreviousparagraphthatweresolvedwithaunitstrategy.Forexample,studentscouldbeencouragedtosolvethelastproblem

withthecross-multiplicationstrategy:writingxtheequation2/8= /6andcross-multiplyingto

findthemissingvalue.Afterstudentsarriveatthesameanswerof11/2,teacherscanleadstudentsinadiscussionofwhytheunitratioandcross-multiplicationproceduresyieldthesameanswer(seeExample5).Studentsshouldpracticebothwithproblemsthataresolvedeasilythroughinformalreasoningandmentalmathematicsandwithproblemsthataresolvedeasilyusingcross-multiplicationbutnotthroughthebuilduporunitratiostrategies.Teacherscanencouragestudentstodiscusshowtoanticipatewhichapproachwillbeeasiest.

Example4.Problemsencouragingspecificstrategies

Ratio,rate,andproportionproblemscanbesolvedusingmanystrategies,withsomeproblemsencouraginguseofparticularstrategies.Illustratedbelowarethreecommonlyusedstrategiesandtypesofproblemsonwhicheachstrategyisparticularlyadvantageous.

BuildupStrategy

Sampleproblem.IfStevecanpurchase3baseballcardsfor$2,howmanybaseballcardscanhepurchasewith$10?

Solutionapproach.Studentscanbuilduptotheunknownquantitybystartingwith3cardsfor$2,andrepeat-edlyadding3morecardsand$2,thusobtaining6cardsfor$4,9cardsfor$6,12cardsfor$8,andfinally15cardsfor$10.

UnitRatioStrategy

Sampleproblem.Yukaribought6balloonsfor$24.Howmuchwillitcosttobuy5balloons?

Solutionapproach.Studentsmightfigureoutthatif6balloonscosts$24,then1ballooncosts$4.Thisstrat-egycanlaterbegeneralizedtooneinwhicheliminatingallcommonfactorsfromthenumeratoranddenomina-toroftheknownfractiondoesnotresultinaunitfraction(e.g.,aproblemsuchas6/15=x/10,inwhichreducing6/15resultsin2/5).

Cross­Multiplication

Sampleproblem.Luisusuallywalksthe1.5milestohisschoolin25minutes.However,todayoneofthestreetsonhisusualpathisbeingrepaired,soheneedstotakea1.7-mileroute.Ifhewalksathisusualspeed,howmuchtimewillittakehimtogettohisschool?

Solutionapproach.Thisproblemcanbesolvedintwostages.First,becauseLuisiswalkingathis“usualspeed,”studentsknowthat1.5/25=1.7/x.Then,theequationmaybemosteasilysolvedusingcross-multiplication.Multiplying25and1.7anddividingtheproductby1.5yieldstheanswerof281/3minutes,or28minutesand20seconds.ItwouldtakeLuis28minutesand20secondstoreachschoolusingtheroutehetooktoday.

(38)

Page 45: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation4continued

Example5.Whycross­multiplicationworks

Teacherscanexplainwhythecross-multiplicationprocedureworksbystartingwithtwoequalfractions,suchas4/6 =6/9.Thegoalistoshowthatwhentwoequalfractionsareconvertedintofractionswiththesamedenominator,theirnumeratorsalsoareequivalent.Thefollowingstepshelpdemonstratewhytheprocedureworks.

Step1. Startwithtwoequalfractions,forexample:4/6=6/9.Step2. Findacommondenominatorusingeachofthetwodenominators.

a. First,multiply4/6by9/9,whichisthesameasmultiplying4/6by1.

b. Next,multiply6/9by6/6,whichisthesameasmultiplying6/9by1.

Step3. Calculatetheresult:(4×9)=

(6×6)(6×9) (9×6)

Step4. Checkthatthedenominatorsareequal.Iftwoequalfractionshavethesamedenominator,thenthenumeratorsofthetwoequalfractionsmustbeequalaswell,so4×9=6×6.

Notethatinthisproblem,4×9=6×6isaninstanceof(a×d=b×c).

Asaresult,studentscanseethattheoriginalproportion,4/6=6/9,canbesolvedusingcross-multiplication,4×9=6×6,asaproceduretocreateequivalentratiosefficiently.

2. Encouragestudentstousevisualrepresentationstosolveratio,rate,andproportionproblems.

Thepanelrecommendsthatteachersencour-agetheuseofvisualrepresentationsforratio,rate,andproportionproblems.Teach-ersshouldcarefullyselectrepresentationsthatarelikelytoelicitinsightintoaparticularaspectofratio,rate,andproportionconcepts.Forexample,aratiotablecanbeusedtorep-resenttherelationsinaproportionproblem(seeFigure9).Toidentifytheamountofflourneededfor32peoplewhenarecipecallsfor1cupofflourtoserve8,studentscanusearatiotabletorepeatedlyadd1cupofflourper8peopletofindthecorrectamountfor32people(i.e.,theycanusethebuildupstrategy).Alternatively,studentscanusetheratiotabletoseethatmultiplyingtheratioby4/4(i.e.,4timestherecipe)providestheamountofflourneededfor32people.Thisvisualrepresentationprovidesaspecificrefer-entthatteacherscanpointtoastheydiscusswithstudentswhymultiplicationleadstothesamesolutionasthebuildupstrategy.

Figure9.Ratiotableforaproportionproblem

CupsofFlour

1 2 3 4

NumberofPeopleServed

8 16 24 32

Inadditiontousingtheratiotableasatoolforsolvingproblems,teacherscanuseittoexploredifferentaspectsofproportionalrelations,suchasthemultiplicativerelationswithinandbetweenratios.IntheratiotableinFigure10,thenumberofcupsofflourneededisalways2.5timesthenumberofpeople;thus,theratiobetweenthemisalways2.5:1.

AsdiscussedinRecommendation3,teachersshouldnotalwaysproviderepresentationstostudents;theysometimesshouldencourage

(39)

Page 46: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation4continued

themtocreatetheirownrepresentations—inthiscase,representationsofratios,rates,andproportions.127Priortoformalinstructioninratios,studentstendtousetabularorothersystematicformsofrecordkeeping,128 whichcanhelpthemunderstandthefunctionalrelationbetweenrowsorcolumnsorthenumbersinaratio.129 Teachersshouldhelpstudentsextendtheseandotherrepresen-tationstoabroadrangeofratio,rate,andproportionproblems.

Figure10.Ratiotableforexploringproportionalrelations

CupsofFlour

5 7.5 10 12.5

NumberofPeopleServed

2 3 4 5

3. Provideopportunitiesforstudentstouseanddiscussalternativestrategiesforsolvingratio,rate,andproportionproblems.

Thegoalistodevelopstudents’abilitytoidentifyproblemswithacommonunderlyingstructureandtosolveproblemsthataresetinavarietyofcontexts.130 Instructionmightfocusonthemeaningfulfeaturesofdifferentproblemtypes,includingratioandpropor-tionproblems,sothatstudentscantransfertheirlearningtonewsituations.Forexample,studentsmightfirstlearntosolverecipeproblems,suchas,“Arecipecallsfor3eggstomake20cupcakes.Ifyouwanttomake80cupcakes,howmanyeggsdoyouneed?”Hav-inglearnedtosolvesuchproblems,studentsmightthenbeaskedtosolvesimilarproblemswithdifferentcontexts,suchas:“Building3dog-housesrequires42boards;howmanyboardsareneededtobuild9doghouses?”131

Teachersalsoshouldhelpstudentsidentifykeyinformationneededtosolveaproblem.Oncestudentscanidentifythekeyinforma-tioninaproblem,theycanbetaughttousediagramstorepresentthatinformation.132

Suchdiagramsshouldnotsimplyrepresentthestoryproblemindiagramform;theyalsoshouldidentifytheinformationneededtosolvetheproblemandtherelationbetweendifferentquantitiesintheproblem.Teachersshouldencouragestudentstousedifferentdiagramsandstrategiestoarriveatsolutionsandshouldprovideopportunitiesforstudentstocompareanddiscusstheirdiagramsandstrategies.133

Thepanelsuggestsusingreal-lifecontextsbasedonstudents’experiences.Afewexam-plesareprovidedhere:134

•Unitprice.Teacherscanposeproblemsbasedontheunitpriceofanobject,suchascomparingthevalueoftwoitems(e.g.,a16-ouncecanofsodafor$0.89anda12-ouncecanofsodafor$0.62)anddeter-mininghowmuchacertainamountofanitemcostsgiventhecostperunitandthenumberofunitspurchased.Thecontextofunit-priceproblemscanbebuyingorsellingproduceatagrocerystore,cansofpaintatahardwarestore,oranyotherpurchasingsituation.

•Scaling.Studentscansolveproblemsrelatedtotheenlargementorreductionofaphoto,drawing,orgeometricshape(e.g.,doublethewidthanddoublethelengthofaphototocreateanewphotowhoseareaisfourtimesthatoftheoriginal).Anotherexampleofscalingisusingamaplegendtofindtheactualdistancebetweentwocities,basedontheirdistanceonthemap.

• Recipes.Recipesandcookingprovideusefulsettingsforratioandproportionproblems,forexample,“Ifarecipecallsfor1eggand3cupsofmilk,andthecookwantstomakeasmuchaspossibleusingall8eggsshehas,howmuchmilkisneeded,assumingthattheratioofeggsto

(40)

Page 47: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation4continued

milkintheoriginalrecipeismaintained?”Studentsalsocanrevisearecipetomakemoreorlessofthefinalamount,insitua-tionsthatcallforchangingthenumberofservingsoramountsofingredientsusingequivalentratios.

•Mixture.Problemsrelatedtothemixtureoftwoormoreliquidsprovideanothercontextforposingratioandproportionproblems.Studentscancomparetheconcentrationofamixture(e.g.,comparetherelativeamountofoneliquidtotheamountofanotherliquidinamixture)ordeterminehowtomaintaintheoriginalratiobetweenliquidsinamixtureiftheamountofoneoftheliquidschanges.

• Time/speed/distance.Studentscanbetoldthetime,speed,anddistancethatonecartraveledandthevaluesofanytwoofthesevariablesforasecondcarandthenbeaskedforthevalueofthethirdvariableforthesecondcar.Forexample,theycouldbetoldthatcarAtraveledfor2hoursatarateof45milesperhour,soittraveled90miles.ThentheycouldbetoldthatcarBtraveledatthesamespeedbuttraveledonly60milesandbeaskedtodeterminetheamountoftimethatcarBtraveled.

Potentialroadblocksandsolutions

Roadblock4.1.Many students misapply the cross­multiplication strategy.

SuggestedApproach.CarefullypresentingseveralexamplesofthetypeshowninExam-ple5canhelpstudentsunderstandthelogicbehindthecross-multiplicationprocedureandwhytheratioswithintheproblemneedtobeinthecorrectformfortheproceduretowork.Makingsurethatstudentsunderstandthelogicofeachstepinthedemonstrationtakestime,butitcanpreventmanyfutureerrorsandmisunderstandings.

Roadblock4.2.Some students rely nearly exclusively on the cross­multiplication strategy for solving ratio, rate, and proportion prob­lems, failing to recognize that there often are more efficient ways to solve these problems.

SuggestedApproach.Teachersshouldprovidestudentsopportunitiestouseavarietyofstrategiesforsolvingratio,rate,andpropor-tionproblemsandinitiallypresentproblemsthatareeasiesttosolvewithstrategiesotherthancross-multiplication.Forexample,teach-erscanpresentproblemsinwhichtherelation

withinthegivenratioisintegral(e.g.,5/15)andtherelationbetweenthecorrespondingnum-bersacrossthetworatiosisnot(e.g.,5/15=6/x).Thesetypesofproblemsmayencouragestu-dentstousepriorknowledgeofmultiplicativerelationsbetweennumeratoranddenominatorwithintheratiowherebothareknown.Requir-ingstudentstosolveproblemsmentally(with-outpencilandpaper)alsocanincreasetheuseofstrategiesotherthancross-multiplicationandbuildnumbersensewithfractions.

Roadblock4.3. Students do not generalize strategies across different ratio, rate, and proportion contexts.

SuggestedApproach.Inadditiontoprovid-ingstudentswithproblemsacrossavarietyofcontextsandteachingavarietyofrate,ratio,andproportionproblem-solvingstrategies,teachersshouldstrivetolinknewproblemswithprevi-ouslysolvedones.Teacherscanregularlyhavestudentsjudgewhenthesamesolutionstrategycouldbeusedfordifferenttypesofproblems.Forexample,teacherscandemonstratehowinforma-tionintwotypesofproblems,suchasrecipesandmixtureproblems,canbeorganizedinthesamewayandthencomparesolutionproceduresforthetwotypesofproblemssidebyside.

(41)

Page 48: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation5

Professionaldevelopmentprogramsshouldplaceahighpriorityonimprovingteachers’understandingoffractionsandofhowtoteachthem.Teachers play a critical role in helping students understand fraction concepts. Teaching for understanding requires that teachers themselves have a thorough understanding of fraction concepts and operations—including deep knowledge of why computation procedures work. Appropriate use of representations for teaching fractions, a key aspect of the panel’s recommendations, requires that teachers understand a range of representations and how to use them to illustrate particular points.

An awareness of common misconceptions and of inappropriate strategies students use to solve fractions problems also is crucial for effective instruction in this area. The panel believes that preservice teacher education and professional development programs must develop teachers’ abilities in each of these areas, especially given considerable evidence that many U.S. teachers lack deep understanding of fraction concepts.135

Summaryofevidence:MinimalEvidence

Despitethelimitedevidencerelatedtothisrecommendation,thepanelbelievesteach-ersmustdeveloptheirknowledgeoffrac-tionsandofhowtoteachthem.Researchershaveconsistentlyfoundthatteacherslackadeepconceptualunderstandingof

fractions,136andthatteachers’mathematicalcontentknowledgeispositivelycorrelatedwithstudents’mathematicsachievement.137

Takentogether,thesefindingssuggestagreatneedforprofessionaldevelopmentinfractionconcepts.Regardless,theevidenceratingassignedbythepanelrecognizesthelimitedamountofrigorousevidenceonthe

(42)

Page 49: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation5continued

effectsofprofessionaldevelopmentactivi-tiesrelatedtofractions.

Inonewell-designedstudy,teacherswhoreceivedtrainingonfractionconcepts,onstudents’understandingoffractions,onstu-dents’motivationforlearningmath,andonhowtoassessstudents’knowledgeoffrac-tionsimprovedstudents’conceptualunder-standingoffractionsandtheirabilitytocomputewithfractions.138 However,anotherwell-designedstudyfoundnoimpactonstudentachievementinfractions,decimals,percentages,andproportions,despiteoffer-ing7th-gradeteachersupto68hoursofprofessionaldevelopmentonrationalnum-bersthroughasummerinstituteandone-dayseminars.139 TwootherstudiesthatmetWWCstandardsprovidedtrainingonhowstudentsdevelopknowledgeandskillsrelatedtospecificmathconcepts.Oneofthesestud-iesfocusedonwholenumberadditionandsubtractionandfoundimprovementsin

students’wholenumbercomputationandsolutionstowordproblems.Thesecondstudyprovidedteachertrainingonstudents’algebraicreasoningandreportedapositiveimpactonstudentlearning.

Researchindicatesthatmanyelementaryschoolteachershavelimitedknowledgeoffractionconceptsandprocedures.140 Inter-viewswithU.S.elementaryschoolteachersshowedthatahighpercentageofthemwereunabletoexplaincomputationalproceduresforfractions.141 Anotherstudyfoundthatsomeelementaryschoolteachershaddiffi-cultyorderingfractions,addingfractions,andsolvingratioproblems.142Manyoftheteach-erswhosolvedproblemscorrectlycouldnotexplaintheirownproblem-solvingprocess.Thepanelviewsthislimitedknowledgeoffractionsasproblematic,givenevidencethatteachers’mathematicalcontentknowledgeisrelatedtostudents’learning.143

Howtocarryouttherecommendation

1. Buildteachers’depthofunderstandingoffractionsandcomputationalproceduresinvolvingfractions.

Toprovideeffectivefractionsinstruction,teachersneedadeepunderstandingoffrac-tionconceptsandoperations.Inparticular,teachersneedtounderstandthereasoningbehindcomputationsthatinvolvefractionssotheycanclearlyandcoherentlyexplaintostu-dentswhytheprocedureswork,notjustthesequenceofstepstotake.Withoutaconcep-tualunderstandingoffractioncomputation,teachersarenotlikelytohelpstudentsmakesenseoffractionoperations.144 Therefore,teacherpreparationandprofessionaldevelop-mentactivitiesmustsupportadeeperlevelofunderstandingoffractions.145

Teachersshouldhaveopportunitiestogainbetterunderstandingoffractionsalgorithmsbysolvingproblemsandexploringthemeaningofalgorithms.146 Oneapproachistoposeproblemsthatprovokedeep

discussionsofthealgorithms,possiblyusingadvancedversionsofexamplesfromteachers’lessons.147Forexample,teachersmightsolveaprobleminwhichtheyhavetoequallydistributefractionalpartsofcakeamonganumberofpeople(e.g.,3cakesdis-tributedamong8people),whereasstudentsmightbeaskedtodistributeawholenumberofcookies(e.g.,18cookiesamong6people).Particularlyusefulareproblemsoractivitiesthatleadteacherstoquestionwhyanalgo-rithmworksortoexaminewhattheydoanddonotunderstandaboutanalgorithm.148

Althoughteacherscanaddresstheseprob-lemsontheirownorinsmallgroups,mak-ingtimefordiscussioniscrucial.

Havingteachersestimateanswerstofractionsproblemsanddiscussthereasoningthatledtotheestimatesalsocanbeuseful.All

(43)

Page 50: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation5continued

activitiesshouldeventuallylinkbacktotheclassroom,withopportunitiesforteacherstodiscusshowtheywouldrespondtostudents’questionsaboutwhyestimationisvaluableandthelogicthatseparateseffectiveandlesseffectiveestimationprocedures.

Professionaldevelopmentshouldnotfocusexclusivelyonfractiontopicscoveredattheteacher’sgradelevel.Teachersmustunder-standfractionconceptscoveredintheentireelementaryandmiddleschoolcurriculaandshouldknowhowtheseconceptsfitwithin

thebroadermathcurriculum.Awarenessoffractionconceptstaughtinearliergradesensuresthatteacherscanbuildonwhatstu-dentsalreadyknow;italsocanhelpteachersidentifyandaddresscommonmisconceptionsthatstudentsmighthavedeveloped.Under-standingfractionconceptsandothermoreadvancedmathematicsthatwillbecoveredinlatergradeshelpsteacherssetgoalsandthinkabouthowtheirteachingcanprovidefoundationsforideasthatstudentswillencounterinthefuture.

2. Prepareteacherstousevariedpictorialandconcreterepresentationsoffractionsandfractionoperations.

Touseconcreteandpictorialrepresentationseffectively,teachersmustunderstandhowtheserepresentationslinktofractionconceptsandhowtheycanbeusedtoimprovestudentlearning.Teachereducationandprofessionaldevelopmentactivitiesshouldprepareteach-erstousesuchrepresentationsforteachingfractionsandshouldhelpteachersunder-standhowtherepresentationsrelatetotheconceptsbeingtaught.

Teachersmightlearn,forexample,thatdiagramsofsharingscenarioscanhelphigh-lightthelinkbetweenfractionsanddivision(i.e.,thequotientinterpretationoffractions)byallowingstudentstorepresentfractionswithequalshares(e.g.,2largebrowniessharedamong5children).Numberlinescanfocusstudentsonmeasurementinterpreta-tionsoffractions,withfractionsrepresent-ingadistancebetweentwonumbers.Area

models—particularlyrectangularones,butmodelsusingothershapesaswell—canbeusedtodepictpart-wholerepresentationsoffractions.

Developmentactivitiesshouldprovideoppor-tunitiesforteacherstointegraterepresenta-tionsintofractionslessons.149Inaddition,teachersneedtounderstanddifficultiesthatmightarisewhentheyuseapictorialorconcreterepresentationtoteachfractions.Forexample,studentsmayviewtheentirenum-berline,ratherthanthedistancebetweentwonumbers,astheunitwhenlocatingfractions(e.g.,theymightinterpretthetaskoflocat-ing3/4ona0-to-5numberlineaslocatingthepoint75%ofthewayacrossthenumberline).Professionaldevelopmentactivitiesneedtohelpteachersanticipatemisconceptionsandlearningproblemsthatarelikelytoarise,andidentifywaysofaddressingthem.

3. Developteachers’abilitytoassessstudents’understandingsandmisunderstandingsoffractions.

Professionaldevelopmentactivitieswithteachersshouldemphasizehowstudentsdevelopanunderstandingoffractionsandtheobstaclesstudentsfaceinlearningaboutthem.150Informationfromresearchonthedevelopmentoffractionlearningshouldbeprovidedinthesediscussions.151

Onemethodthatisusefulformeetingthisgoalistoprovideteacherswithopportuni-tiestoanalyzeandcritiquestudentthinkingaboutfractions.Thiscanbedonebyexam-iningstudents’writtenworkorwatchingvideoclipsofstudentssolvingproblemsthataredesignedtoprovideinsightinto

(44)

Page 51: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation5continued

students’thinking.152Forexample,teacherscanbeaskedtoanalyzesourcesofstudents’difficultyonproblemssuchas,“Paigehad3boxesofcereal.Eachboxwas2/3full.Ifthecerealinthe3boxeswerepouredintoemptyboxes,howmanyboxeswoulditfill?Userectangulardrawingsoranumberlinetodisplayyourreasoning.”Teacherscanbeaskedtovideo-recordstudents’performanceonsuchproblemsbeforeaprofessionaldevelopmentsession;thenteacherscanbringstudents’workorvideoclipstothesessionandusethemasabasisfordiscussion.

Teachersshouldknowthetypesofmistakesstudentsmostoftenmakewhenworkingwithfractionsandalsoshouldunderstandtheunderlyingmisconceptionsthatcausethem.Analyzingstudents’workisausefulwaytoidentifyproblemareasandtogaininsightintostudents’thoughtprocesses.Tobemosteffective,teachersmustknowhowtodesignproblemsthatdiagnosethesourceoferrors.Forexample,teachersmightstructureadecimal-orderingproblemtoassesswhetherstudentsunderstandplacevalue(e.g.,order-ingthefollowingdecimalsfromsmallesttolargest:0.2,0.12,0.056).

Preserviceandin-serviceactivitiesshouldhelpteachersunderstandresearchonchil-dren’sknowledgeoffractions;theresearchpresentedshouldbechosentoinformteach-ers’assessmentactivitiesandinstruction.Forexample,researchhasshownthatstudentsoftenhavedifficultywithfractionnamesandwithunderstandingthevalueoffractions.153

Whetherstudentsinagivenclassroomarehavingsuchdifficultycanbeassessedbyaskingthemtostatefractionsthatlabelthelocationsofhatchmarksonanumberlinewithendpointsof0and1.Suchanassess-mentmightindicatethatstudentsrefertoavarietyoflocationsas1/2,orthattheyviewfractionswithlargerdenominatorsaslargerthanfractionswithsmallerdenominators(e.g.,theymightthinkthat1/8>1/3).Suchapatternmightleadtoanengagingandproductivediscussionofhowthesystemfornamingfractionsworksandwhythatnamingproceduremakessense.Moregener-ally,developmentactivitiesshouldprovideopportunitiesforteacherstopracticewritingorselectingproblemsthataccuratelyassessstudents’understandingandtouseassess-mentresultstodesignusefullessons.

Potentialroadblocksandsolutions

Roadblock5.1. Administrators or profes­sional development personnel might argue that the topic of fractions is just one of many that elementary and middle school teachers must be prepared to teach and that their dis­trict, program, or school cannot devote more time or resources to it.

SuggestedApproach.Thepanelrecog-nizesthattimeandresourcesforprovidingprofessionaldevelopmentarelimited.How-ever,aconvincingargumentcanbemadefordevotingsometimeandresourcestothistopic:(1)fractionsareacriticalfoundationformoreadvancedmathematics,(2)manyteacherslacksufficientunderstandingoffractiontoteachthetopiceffectively,and

(3)U.S.studentslagfurtherbehindthoseinothercountriesinsolvingproblemswithfractionsthaninsolvingproblemswithwholenumbers.154Thepanelbelievestheneediscriticalforelementaryandmiddleschoolteacherstoreceiveprofessionaldevel-opmentrelatedtotheircontentknowledgeoffractionsandtotheteachingoffractions,includingdecimals,percentages,ratios,rates,andproportions.Thepanelsuggeststhatschoolanddistrictleadersconsiderfractionsahighpriorityforprofessionaldevelopment.

Roadblock5.2. Some teachers have difficulty with whole number topics, such as multiplica­tion and division, that are related to the teach­ing of fractions.

(45)

Page 52: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Recommendation5continued

SuggestedApproach.Adeepunderstand-ingofwholenumbermultiplicationanddivision,includingwhyandhowcommoncomputationalalgorithmswork,isessen-tialforteachingfractionseffectively.Whenselectingordesigningprofessionaldevelop-mentactivitiesrelatedtofractions,educationleadersshouldconsiderwhetherreviewingthesekeywholenumbertopicsisaneces-saryprerequisiteforteachersintheparticu-larschoolordistrict.

Roadblock5.3.Some teachers do not think additional professional development involving fractions is necessary.

SuggestedApproach.Althoughmostteach-ersareabletocomputewithfractions,manydonothaveastrongconceptualbackgroundregardingfractionsoranunderstandingofthelogicunderlyingcomputationalalgo-rithmsusedforsolvingfractionproblems.Byfirstdeterminingifteachersknowwhyandhowcommoncomputationalalgorithms(e.g.,invertandmultiply)workandwhycertainstepswithinalgorithmsarenecessary(e.g.,establishingcommondenominatorsforaddi-tionandsubtraction),educationleaderscandecidewhetherprofessionaldevelopmentinvolvingfractionsisanimportantneedintheirschoolsordistricts.

(46)

Page 53: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

GlossaryGlossaryGlossary

CCommonfraction–Afractionwrittenintheforma /b,wherebotha andb areintegersandbdoesnotequalzero(e.g.,3/4,6/5,–(1/8)).Covariation–Ameasureofhowmuchtwoquantitieschangetogether.Forexample,theextenttowhichonequantityincreasesasanotherquantityincreases.

DDenominator–Foranyfractiona /b,thedenominatoristhenumberbelowthehashline.Thedenominatorrepresentsthedivisorofadivisionproblem,orthenumberofpartsintowhichawholeamountisdivided(e.g.,forthefraction2/3,thedenominator3referstoawholedividedintothreeparts).

EEqualsharing–Theactivityofcompletelydistributinganobjectorsetofobjectsequallyamongagroupofpeople.

Equivalentfractions–Fractionsthatrepresentthesamenumericalvalue;equalfractions.Forexample,2/4and4/8arebothequalto1/2;therefore2/4,4/8,and1/2areequivalentfractions.

FFractiondensity–Theconceptthatbetweenanytwofractionsthereisanotherfraction.Forexample,thefraction1/4 isbetween0and1/2;thefraction1/8 isbetween0and1/4;andthefraction1/16isbetween0and1/8.Oneconsequenceofthisfactisthatbetweenanytwofractionsthereareaninfinitenumberoffractions.

IImproperfraction–Afractionwithanumeratorthatisgreaterthanorequaltothedenominator.Examplesofimproperfractionsinclude5/5,9/8,and14/9.

MMixednumber–Afractionwrittenasawholenumberandafractionlessthanone.Examplesofmixednumbersinclude12/3,43/8,and–25/6.Multiplicativerelation–Arelationbetweentwoquantitiesinwhichonequantitycanbemultipliedbyafactortoobtainasecondquantity.

NNumerator–Foranycommonfractiona /b,thenumeratoristhenumberabovethehashline.Thenumeratorrepresentsthedividendofadivisionproblemorthenumberoffractionalpartsrepresentedbyafraction(e.g.,forthefraction2/3,thenumerator2representsthenumberofthirds).

(47)

Page 54: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Glossarycontinued GlossaryGlossarycontinued continued

PPercent–Anynumberexpressedasafractionorratioof100(i.e.,withadenominatorof100).Forexample,75%isequivalentto0.75or75/100.Proportion–Anexpressionoftwoequivalentratiosorfractions.Aproportionisanequationwrittenintheforma /b=c /d,thusindicatingthatthetworatiosareequivalent.

Proportionalreasoning–Theliteratureconsistsofseveraldifferentdefinitionsofproportionalreasoning.Onabasiclevel,thetermmeansunderstandingandworkingwiththeunderlyingrelationsinproportions.155

Othersdescribeproportionalreasoningastheabilitytocompareonerelativeamounttoanother,156ortheabilitytounderstandmultiplicativerelationsorreasonaboutmultiplicativesituations.157

QQuotient–Thesolutiontoadivisionproblem.Forexample,3isthequotientforthefollowingdivisionproblem:12÷4=3.

RRationalnumber–Anynumberthatcanbeexpressedintheforma /b wherea andbarebothintegersandb doesnotequalzero.Rationalnumberscantakemanydifferentforms,includingcommonfractions,ratios,decimals,andpercents.

Rate–Therelationbetweentwoquantitiesmeasuredindifferentunits.Forexample,distanceperunitoftime.

Ratio–Therelationbetweentwoquantities.Forexample,theratio2:3mightrepresenttherelation-shipofthenumberofboystogirlsinaclassroom,ortwoboysforeverythreegirlsintheclass.

UUnitfraction–Afractionwithanumeratorofone(e.g.,1/3,1/11).Unitratio–Aratiowithadenominatorofone(e.g.,5:1,9:1).

WWholenumbers–Thesetofnumbersstartingwithzeroandincreasingbyone(i.e.,0,1,2,3…).

(48)

Page 55: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixA

PostscriptfromtheInstituteofEducationSciences

Whatisapracticeguide?TheInstituteofEducationSciences(IES)publishespracticeguidestosharerigorousevidenceandexpertguidanceonaddressingeducation-relatedchallengesnotsolvedwithasingleprogram,policy,orpractice.Eachpracticeguide’spanelofexpertsdevelopsrecommendationsforacoherentapproachtoamultifacetedproblem.Eachrecommendationisexplicitlyconnectedtosupportingevidence.Usingstandardsforrigorousresearch,thesupportingevidenceisratedtoreflecthowwelltheresearchdemonstratesthattherecommendedpracticesareeffective.Strongevidencemeanspositivefindingsaredemonstratedinmultiplewell-designed,well-executedstudies,leavinglittleornodoubtthatthepositiveeffectsarecausedbytherecommendedpractice.Moderateevi-dencemeansthatwell-designedstudiesshowpositiveimpacts,butsomequestionsremainaboutwhetherthefindingscanbegeneralizedorwhetherthestudiesdefinitivelyshowthatthepracticeiseffective.Minimalevidencemeansdatamaysuggestarelationshipbetweentherecommendedpracticeandpositiveoutcomes,butresearchhasnotdemonstratedthatthepracticeisthecauseofpositiveoutcomes.(SeeTable1formoredetailsonlevelsofevidence.)

Howarepracticeguidesdeveloped?

Toproduceapracticeguide,IESfirstselectsatopic.TopicselectionisinformedbyinquiresandrequeststotheWhatWorksClearinghouseHelpDesk,formalsurveysofpractitioners,andalimitedliteraturesearchofthetopic’sresearchbase.Next,IESrecruitsapanelchairwhohasanationalreputationandexpertiseinthetopic.Thechair,workingwithIES,thenselectspaneliststoco-authortheguide.Panelistsareselectedbasedontheirexpertiseinthetopicareaandthebeliefthattheycanworktogethertodeveloprelevant,evidence-basedrecommendations.IESrec-ommendsthatthepanelincludeatleastonepractitionerwithrelevantexperience.

Thepanelreceivesageneraltemplatefordevelopingapracticeguide,aswellasexamplesofpublishedpracticeguides.Panel-istsidentifythemostimportantresearchwithrespecttotheirrecommendationsandaugmentthisliteraturewithasearchofrecentpublicationstoensurethatsupportingevidenceiscurrent.Thesearchisdesignedtofindallstudiesassessingtheeffectivenessofaparticularprogramorpractice.ThesestudiesarethenreviewedagainsttheWhatWorksClearinghouse(WWC)standardsbycertifiedreviewerswhorateeacheffective-nessstudy.WWCstaffassistthepanelistsin

compilingandsummarizingtheresearchandinproducingthepracticeguide.

IESpracticeguidesarethensubjectedtorigorousexternalpeerreview.ThisreviewisdoneindependentlyoftheIESstaffthatsupportedthedevelopmentoftheguide.Acriticaltaskofthepeerreviewersofapracticeguideistodeterminewhethertheevidencecitedinsupportofparticularrecommenda-tionsisup-to-dateandthatstudiesofsimilarorbetterqualitythatpointinadifferentdirec-tionhavenotbeenoverlooked.Peerreviewersalsoevaluatewhetherthelevelofevidencecategoryassignedtoeachrecommendationisappropriate.Afterthereview,apracticeguideisrevisedtomeetanyconcernsofthereview-ersandtogaintheapprovalofthestandardsandreviewstaffatIES.

AfinalnoteaboutIESpracticeguides

Inpolicyandotherarenas,expertpanelstypicallytrytobuildaconsensus,forgingstatementsthatallitsmembersendorse.Butpracticeguidesdomorethanfindcom-monground;theycreatealistofactionablerecommendations.Whenresearchclearlyshowswhichpracticesareeffective,thepanelistsusethisevidencetoguidetheirrecommendations.However,insomecases,researchdoesnotprovideaclearindication

((4949))

Page 56: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixAcontinued

ofwhatworks,andpanelists’interpretationoftheexisting(butincomplete)evidenceplaysanimportantroleinguidingtherecom-mendations.Asaresult,itispossiblethattwoteamsofrecognizedexpertsworkingindependentlytoproduceapracticeguideonthesametopicwouldcometoverydiffer-entconclusions.Thosewhousetheguidesshouldrecognizethattherecommendationsrepresent,ineffect,theadviceofconsultants.However,theadvicemightbebetterthan

whataschoolordistrictcouldobtainonitsown.Practiceguideauthorsarenationallyrecognizedexpertswhocollectivelyendorsetherecommendations,justifytheirchoiceswithsupportingevidence,andfacerigorousindependentpeerreviewoftheirconclusions.Schoolsanddistrictswouldlikelynotfindsuchacomprehensiveapproachwhenseek-ingtheadviceofindividualconsultants.

InstituteofEducationSciences

((5500))

Page 57: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixB

AbouttheAuthors

Panel

RobertSiegler,Ph.D.,istheTeresaHeinzProfessorofCognitivePsychologyatCarn-egieMellonUniversity.Hiscurrentresearchfocusesonthedevelopmentofestimationskillsandhowchildren’sbasicunderstandingofnumbersinfluencestheirestimationandoverallmathachievement.Thegeneralover-lappingwavestheoryofcognitivedevelop-ment,describedbySieglerinhis1996bookEmerging Minds,hasprovenusefulforunder-standingtheacquisitionofavarietyofmathskillsandconcepts.HisotherbooksincludeHow Children Discover New Strategies,How Children Develop,andChildren’s Thinking.SieglerwastheTischDistinguishedVisit-ingProfessoratTeachersCollege,ColumbiaUniversity,for2009/10andwasamemberofthePresident’sNationalMathematicsAdvisoryPanelfrom2006to2008.HereceivedtheBrothertonFellowshipfromtheUniversityofMelbournein2006andtheAmericanPsycho-logicalAssociation’sDistinguishedScientificContributionAwardin2005.

ThomasCarpenter,Ph.D.,isemeritusprofessorofcurriculumandinstructionattheUniversityofWisconsin–MadisonanddirectoroftheDiversityinMathematicsEducationCenterforLearningandTeach-ing.Hisresearchinvestigateshowchildren’smathematicalthinkingdevelops,howteach-ersusespecificknowledgeaboutchildren’smathematicalthinkingininstruction,andhowchildren’sthinkingcanbeusedasabasisforprofessionaldevelopment.Dr.CarpenterisaformereditoroftheJournal for Research in Mathematics Education.AlongwithEliza-bethFennema,MeganFranke,andothers,hedevelopedtheCognitivelyGuidedInstruc-tionresearchandprofessionaldevelopmentproject.Heiscurrentlyfocusedonissuesofequityandsocialjusticeinmathematicsteachingandlearning.

Francis(Skip)Fennell,Ph.D.,isaprofessorofeducationatMcDanielCollegeandproject

directoroftheElementaryMathematicsSpe-cialistsandTeacherLeadersProject.Dr.Fennelliswidelypublishedinprofessionaljournalsandtextbooksrelatedtoelementaryandmiddlegrademathematicseducation,andheservedontheNationalMathematicsAdvisoryPanel,chairingtheConceptualKnowledgeandSkillsTaskGroup.In2008,hecompletedatwo-yearpresidencyoftheNationalCouncilofTeachersofMathematics.HeservedasoneofthewritersofthePrinciples and Standards for School MathematicsandtheCurriculum Focal Points,bothfortheNationalCouncilofTeach-ersofMathematics.Dr.Fennelliscurrentlyprincipalinvestigatoronaprojectaimedatdesigningagraduatecurriculumforelemen-tarymathematicsteacherleaders,creatingaclearinghouseofexistingmaterials,anddevelopingsupportmaterialsforelementarymathematicsspecialistsandteacherleaders.

DavidGeary,Ph.D.,isacognitive-develop-mentalpsychologist,aswellasaCurators’ProfessorandThomasJeffersonProfessorinthedepartmentofpsychologicalsciencesattheUniversityofMissouri.Hehasbeenstudy-ingdevelopmentalandindividualdifferencesinbasicmathematicalcompetenciesformorethan20yearsandiscurrentlydirectingalongitudinalstudyofchildren’smathematicaldevelopmentandlearningdisorders.Gearyistheauthorofthreebooks,includingChildren’s Mathematical Development,andtheco-authorofafourth.Inaddition,heservedontheNationalMathematicsAdvisoryPanelandwasoneoftheprimarycontributorstothe1999MathematicsFrameworkforCaliforniaPublicSchoolsforkindergartenthroughgrade12.DistinctionsreceivedincludetheChancellor’sAwardforOutstandingResearchandCreativeActivityintheSocialandBehavioralSciencesandaMERITawardfromtheNationalInsti-tutesofHealth.

W.James(Jim)Lewis,Ph.D.,istheAaronDouglasProfessorofMathematicsattheUniversityofNebraska–Lincoln(UNL),aswellasdirectoroftheschool’sCenterforSci-ence,Mathematics,andComputerEducation.Dr.Lewisisprincipalinvestigatorfortwo

((5151))

Page 58: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixBcontinued

NationalScienceFoundationMathSciencePartnerships,NebraskaMATHandtheMathintheMiddleInstitutePartnership.HewaschairoftheConferenceBoardoftheMathematicalSciencescommitteethatproducedThe Math­ematical Education of Teachersandco-chairoftheNationalResearchCouncilcommitteethatproducedthereportEducating Teachers of Science, Mathematics, and Technology: New Practices for the New Millennium.Dr.Lewiswasalsoco-principalinvestigatorforMathMatters,aNationalScienceFoundationgranttorevisethemathematicseducationoffutureelementaryschoolteachersatUNL.

YukariOkamoto,Ph.D.,isaprofessorinthedepartmentofeducationattheUniversityofCalifornia–SantaBarbara.Herworkfocusesoncognitivedevelopment,theteachingandlearningofmathematicsandscience,andcross-culturalstudies.Sheisparticularlyinterestedinchildren’sacquisitionofmath-ematical,scientific,andspatialconceptsandparticipatedinthevideostudiesofmathemat-icsandscienceteachingaspartoftheThirdInternationalMathematicsandScienceStudy(TIMSS).Dr.Okamoto’srecentpublicationsincludeFourth­Graders’ Linking of Rational Number Representation: A Mixed Method Approach and Comparing U.S. and Japanese Elementary School Teachers’ Facility for Link­ing Rational Number Representations.

LaurieThompson,M.A.,has10yearsofexperienceasanelementaryteacherandmathresourceteacher.Herexperience

includesteaching1st,3rd,4th,and5thgradesinCarrollCounty,Maryland;LoudonCountyPublicSchools,Virginia;andKatyIndependentSchoolDistrict,Texas.AsanelementarymathresourceteacherinLoudonCounty,Ms.Thompsonworkedwithelemen-tarymathteacherstoteam-teachlessons,organizeguidedinstructionalcenters,andconductsmall-groupinstruction.Inthisrole,shealsodevelopedandevaluatedmathematicslessonsandmaterialsforkindergartenthrough5th-gradeclassrooms.Shehasservedasamentorandteamleaderfornewteachersandparticipatedinprofessionallearningcommunities.

JonathanWray,M.A.,istheinstructionalfacilitatorforsecondarymathematicscur-ricularprogramsintheHowardCounty(Maryland)PublicSchoolSystem.Herecentlycompletedatwo-yeartermaspresidentoftheMarylandCouncilofTeachersofMath-ematics(MCTM).Mr.WraywasselectedastheMCTMOutstandingTeacherMentorin2002andashisdistrict’sOutstandingTech-nologyLeaderinEducationbytheMarylandSocietyforEducationalTechnologyin2004.HeservesontheeditorialpanelofTeaching Children Mathematics,apeer-reviewedjournalproducedbytheNationalCouncilofTeachersofMathematics.Mr.Wrayalsohasservedasaclassroomteacherforprimaryandintermedi-ategrades,agifted/talentedresourceteacher,anelementarymathematicsresourceteacher,acurriculumandassessmentdeveloper,andaneducationalconsultant.

StaffJeffreyMaxisaresearcheratMathematicaPolicyResearchwithexperienceconductingevaluationsintheeducationarea.Hiscur-rentworkfocusesonteacherqualityissues,includingmeasuresofteachereffective-ness,thedistributionofteacherquality,andteacher-compensationreform.Mr.MaxalsocontributestotheWhatWorksClearinghouse,previouslyworkingonthepracticeguidethataddressesaccesstohighereducation.His

priorexperienceincludesteachingkindergar-teninaNewOrleanspublicschool.

MoiraMcCulloughisaresearchanalystatMathematicaPolicyResearchandhasexperi-encewitheducationevaluationsandresearch.Ms.McCulloughhasworkedextensivelyfortheWhatWorksClearinghouse.Sheisacerti-fiedreviewerofstudiesacrossseveralareasandcoordinatedtheelementaryschoolmathtopicarea.Shecontributedtothepractice

((5252))

Page 59: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixBcontinued

guideaddressingaccesstohighereducationandtoresearchperspectivessynthesizingexpertrecommendationstostatesandschooldistrictsforuseoffundsfromtheAmericanRecoveryandReinvestmentAct.Shealsohasexperiencewithmeasuresofteachereffec-tivenessinmathematics.

AndrewGothroisaresearchanalystatMath-ematicaPolicyResearch.Hehasexperienceprovidingresearchsupportandconductingquantitativedataanalysisontopicsrangingfromchilddevelopmenttoantipovertypro-grams.Mr.Gothrosupportedthepanelonthisprojectbyidentifyingandorganizingrelevant

research,synthesizingfindingsfromreviewedstudies,andcraftinglanguageforanaudienceofeducationpractitioners.

SarahPrenovitzisaresearchassistant/programmeratMathematicaPolicyResearch.Shehasexperienceprovidingresearchsupportandconductingdataanalysisforstudiesofteacherincentiveprogramsandprofessionaldevelopmentprograms,aswellasprogramstosupportandencourageemploymentforpersonswithdisabilities.Shealsohasdevel-opedcompanionmaterialstoaccompanyacurriculumforHeadStartstaffonusingcontin-uousassessmenttoshapeclassroompractice.

((5353))

Page 60: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixC

DisclosureofPotentialConflictsofInterest

Practiceguidepanelsarecomposedofindividualswhoarenationallyrecognizedexpertsonthetopicsaboutwhichtheyaremakingrecommendations.IESexpectstheexpertstobeinvolvedpro-fessionallyinavarietyofmattersthatrelatetotheirworkasapanel.Panelmembersareaskedtodisclosetheseprofessionalactivitiesandinstitutedeliberativeprocessesthatencouragecriticalexam-inationoftheirviewsastheyrelatetothecontentofthepracticeguide.Thepotentialinfluenceofthepanelmembers’professionalactivitiesisfurthermutedbytherequirementthattheygroundtheirrecommendationsinevidencethatisdocumentedinthepracticeguide.Inaddition,beforeallpracticeguidesarepublished,theyundergoanindependentexternalpeerreviewfocusingonwhethertheevidencerelatedtotherecommendationsintheguidehasbeenpresentedappropriately.

Theprofessionalactivitiesreportedbyeachpanelmemberthatappeartobemostcloselyassoci-atedwiththepanelrecommendationsarenotedbelow.

JimLewisreceivesroyaltiesasanauthorofMath Vantage,amathematicscurriculumformiddleschoolstudents.Thisprogramisnotmentionedintheguide.

((5454))

Page 61: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixD

RationaleforEvidenceRatingsa

Thepanelconductedaninitialsearchforresearchfrom1989to2009onpracticesforimprovingstu-dents’learningoffractions.Thesearchfocusedonstudiesofinterventionsforteachingfractionstostudentsinkindergartenthrough8thgradethatdidnotexclusivelyfocusonstudentswithdiagnosedlearningdisabilities;studiesexaminedstudentsinboththeUnitedStatesandothercountries.

Panelistsidentifiedmorethan3,000studiesthroughthisinitialsearch,including125withcausaldesignsreviewedaccordingtoWhatWorksClearinghouse(WWC)standards.Twenty-sixofthestud-iesmetevidencestandardswithorwithoutreservations.Giventhelimitedresearchonpracticesforimprovingstudents’fractionknowledge,thepanelexpandeditssearchbeyondfractionstoidentifystudiesrelevantfornumberlines(Recommendation2)andprofessionaldevelopment(Recommendation5).Thisledpanelmemberstoanadditionalsevenstudiesthatmetstandardswithorwithoutreserva-tions.ThepanelalsoexaminedstudiesthatdidnothavedesignseligibleforaWWCreviewbutwererel-evanttotherecommendations,includingcorrelationalstudies,casestudies,andteachingexperiments.

Recommendation1.Buildonstudents’informalunderstand­ingofsharingandproportionalitytodevelopinitialfractionconcepts.

Levelofevidence:MinimalEvidence

Thepanelassignedaratingofminimal evi­dencetothisrecommendation.Therecom-mendationisbasedonsevenstudiesshowingthatstudentshaveanearlyunderstandingofsharingandproportionality158andtwostud-iesofinstructionthatusedsharingscenariostoteachfractionconcepts.159 However,noneofthestudiesinthislattergroupmetWWCstandards.Despitethislimitedevidence,thepanelbelievesthatstudents’informalknowl-edgeofsharingandproportionalityprovidesafoundationforteachingfractionconcepts.

Thepanelseparatelyexaminedtheresearchonsharingactivitiesandproportionalrela-tionsforthisrecommendation.

Sharingactivities.Childrenhavetheabilitytocreateequalsharesatanearlyage.Childrenasyoungasage5cancompletebasicsharingtasksthatinvolveevenlydistributingasetof12or24objectsamongtwotofourrecipi-ents.160Inonestudy,most5-year-oldchildrencoulddothisevenwhenusingdifferent-size

units(i.e.,equallydistributingsingle,double,andtripleblocks).Theabilitytocreateequalsharesimproveswithage,with6-year-oldchildrenperformingbetterthan4-and5-year-olds.161Sharingcontinuousobjectsismoredifficultforyoungchildrenthansharingasetofobjects:childreninonestudyhadmoredif-ficultysharingaropeamongthreerecipientsthansharingasetofcrackers.162

Children’sunderstandingofhowtosharedoesnotnecessarilyextendtounderlyingfractionconcepts.Manystudentsdonotunderstandthatsharingthesamesetofobjectswithmorepeopleresultsinsmallersharesforeachperson.163Onestudythatpotentiallymetstandardsshowedanimprovedunderstandingofthisconceptamongkindergartenstudentswhoweregivenresultsfromsharingscenarioswithdifferentnumbersofsharers(i.e.,differ-entdenominators).164Thisstudydemonstratedthepotentialforusingsharingactivitiesasthebasisforteachingearlyfractionconcepts.However,areviewofthestudycouldnotbecompletedbecauseinsufficientinforma-tionwasprovidedonthenumberofschoolsassignedtoeachcondition.

Twocasestudiesshowedhowanearlyunderstandingofsharingcouldbeusedtoteachfractionstoelementarystudents.165

aEligiblestudiesthatmeetWWCevidencestandardsormeetevidencestandardswithreservationsareindicatedbyboldtextintheendnotesandreferencespages.

((5555))

Page 62: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

Inbothstudies,ateacherposedvariousstoryproblemsbasedonsharingscenariostoteachfractionconceptssuchasequivalenceandordering,aswellasfractioncomputa-tion.Forexample,studentssolvedproblemsaboutpeoplesharingvaryingamountsoffoodortheuseofseatingarrangementstoshareasetofobjectsindifferentways.Theinstructioninbothstudiesincludedstoryproblemsbasedonrealisticsituations,opportunitiesforstudentstousetheirowndrawingsandstrategiestoobtainsolutions,andwhole-classdiscussions.

OneofthesestudiesexaminedaDutchcur-riculumfor4th-gradestudentsbutdidnotmeetstandardsbecauseonlyoneclassroomwasassignedtothetreatment.166 Theotherstudypresentedafive-weekinstructionalunitto171st-gradestudentsbutlackedacontrolgroup,soitdidnothaveareviewabledesign.However,bothstudiesreportedpositiveresultswithusingsharingscenariostoteachfractionconcepts.167

Proportionalrelations.Youngchildrenhaveanearlyunderstandingofproportionalrela-tions.Threestudiespresentedproportionswithgeometricfiguresoreverydayobjectsandhadstudentsidentifyorcreateamatch-ingproportion.168Forexample,inonestudy,theexperimenterpretendedtoeataportionofapizzaandhadchildrenpretendtoeatthesameproportionfromaboxofchocolates.169

Inanotherstudy,studentsmatchedpropor-tionsrepresentedbyboxesfilledwithblueandwhitebricks.170Byage6,childrenmatchedequivalentproportionsinallofthesestudies.

One-halfplaysanimportantroleinchildren’searlyproportionalreasoningabilities.Childrenperformedbetterwhenchoosingbetweenoptionsthatcrossedthehalfpoint(i.e.,onefigurewasmorethanone-halffilled,andtheotherwaslessthanone-halffilled)thanbetweentwoproportionsthatwerebothmorethanorlessthanone-halffilled.171 Chil-drentendedtohavemoredifficultymatchingproportionsrepresentedbydiscreteobjectsthanbycontinuousobjects.172

Children’searlyunderstandingofproportionalrelationsalsoisreflectedintheirabilitytosolvebasicanalogies.Analogiesaresimilartopropor-tionsinthatstudentsmustidentifyarelationinthefirstsetofitemsandthenapplythisrelationtoasecondsetofitems.Onestudyfoundthatchildrenages6and7performedabovechanceonanalogiesbasedonsimplepatternsorpro-portionalequivalence.173Forexample,studentscouldcompletetheanalogy,“Halfcircleistohalfrectangleasquartercircleistoquarterrectangle.”Onestudyfoundthatchildrencouldmaptherelativesizesofitemswithinathree-itemsettotherelativesizesofitemswithinanothersetofthreeobjects.174Forexample,whentheexperimenterselectedthelargestofthreedifferent-sizecups,childrencouldpickthecorrespondingcupfromtheirsetofthreecups.

Thepaneldidnotidentifystudiesmeetingstandardsthatexaminedtheeffectofusingthisearlyknowledgetoteachfractioncon-cepts.However,onestudythatpotentiallymetstandardsexaminedawaytoimprovestudents’abilitytomatchequivalentpropor-tions.175Theauthorprovided6-to8-year-oldchildrenwithfeedbackandexplanationsabouthowtousethehalfboundarytoidentifyequivalentproportions.Thisstrategyfocusedchildrenonthepart-partrelationbetweenshadedandunshadedareasusedtorepresentproportions;theauthorreportedpositiveeffectsonchildren’sabilitytoidentifywhichoftwoglasseswasmorefull—and,therefore,onwhetherstudentscoulddifferentiatebetweenabsoluteandrelativeamountsofwater.

Recommendation2.Helpstudentsrecognizethatfractionsarenumbersandthattheyexpandthenumbersystembeyondwholenumbers.Usenumberlinesasacentralrepresentationaltoolinteachingthisandotherfractionconceptsfromtheearlygradesonward.

Levelofevidence:ModerateEvidence

Thepanelratesthisrecommendationasbeingsupportedbymoderate evidence,basedon

((5656))

Page 63: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

threestudiesthatmetWWCstandardsandusednumberlinestoteachstudentsaboutthemagnitudesofwholenumbers;176onestudythatmetWWCstandardsandshowedthatinstructionwithnumberlinesimprovedstu-dents’understandingofdecimalfractions;177

andfourstudiesthatshowedstrongcorrela-tionsbetweennumberlineestimateswithwholenumbersandperformanceonarith-meticandmathematicalachievementtests.178

Anotherstudydemonstratedthatapropertyofnumberlineestimatesthathasbeendocumentedextensivelywithwholenumbersalsoispresentwithfractions(specifically,logarithmictolineartransitionsinpatterns).Thissuggeststhatrepresentationsofnumeri-calmagnitudesinfluenceunderstandingoffractionsaswellasofwholenumbers.179 Thepanelbelievesthatgiventheclearapplicabilityofnumberlinestofractionsaswellaswholenumbers,thesefindingsindicatethatnumberlinescanimprovefractionlearningforelemen-taryandmiddleschoolstudents.

Theevidencetosupportthisrecommenda-tionincludesstudiesthatexaminedtheuseofnumberlinesandotherlinearrepresentationstoteachwholenumberandfractionconcepts.

Numberlinesforwholenumberconcepts.(seeTableD.1.)Threestudiesthatmetstan-dardsfoundthatbrieflyplayingalinearboardgamewithnumbersimprovedpreschoolstudents’understandingofwholenumbermagnitude.180 Inthestudies,studentsfromlow-incomebackgroundsplayedanumericboardgame20to30timesoverthecourseoffourtofivesessionslasting15to20minuteseach.Thegameinvolvedmovingamarkeroneortwospacesatatimeacrossahorizontalboardthathadthenumbers1to10listedinorderfromlefttorightinconsecutivesquares.Studentsusedaspinnertodeterminewhethertomakeoneortwomovesandthensaidoutloudthenumbertheyhadspunandthenumbersonthesquaresastheymoved.Theexperimenterplayedthegamewitheachchildandhelpedeachcorrectlynamenum-bers.Controlstudentsintwoofthestudiesplayedthesamegamebutwithcolorsrather

thannumbers,181andcontrolstudentsintheotherstudycompletedcountingandnumber-identificationtasks.182

Thelinearboardgame,whichthepanelviewsasaproxyfornumberlines,hadapositiveeffectonstudents’abilitytocomparethesizeofwholenumbers.Authorsofthethreestudiesreportedsignificanteffectsizesof0.75,0.99,and1.17onaccuracyincompar-ingwholenumbers(from0to10).183 Thelinearboardgamealsoimprovedparticipatingstudents’abilitytolocatewholenumbersonanumberlineaccurately.Thesestudiesmeasuretheaccuracyofstudents’numberlineesti-matesusingameasurecalledpercentabso-luteerror,whichisthedifferencebetweenastudent’sestimateandtheactualnumberdividedbythescaleofthenumberline.Twoofthestudiesfoundeffectsizesforpercentabsoluteerrorof0.63(authorreported)and0.86(WWCcalculated).184Oneofthestudiesalsoreportedthatplayingthegamesignifi-cantlyimprovedstudents’abilitytolearntheanswerstoadditionproblemsonwhichtheyreceivedfeedback.185

ResearchsupportingtheuseofnumberlineswithwholenumbersincludestwoadditionalstudiesthatmetWWCstandards.Oneofthestudieshadstudentsplace10evenlyspacednumbersonanumberlinebeforelocatingnumbersona0-to-100numberline.186 Theauthorsreportthatthisapproachledtoasubstantivelyimportantbutnotsignificantincreaseintheaccuracyofstudents’numberlineestimates,whereasstudentsinthecontrolgroup,wholocatedonenumberatatime,didnotimprove.187(TheWWCdefinessubstan-tivelyimportant,orlarge,effectsonoutcomestobethosewitheffectsizesgreaterthan0.25standarddeviations.188)

Thesecondsupportingstudyusedanumberlinetoimprove1st-gradestudents’perfor-manceonadditionproblemsforwhichtheyhadbeentrained.189 Treatmentgroupstudentsviewedtheaddendsandsumsoffouraddi-tionproblemsonanumberline;controlgroupstudentsreceivedfeedbackontheproblems

((5757))

Page 64: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

TableD.1.StudiesofinterventionsthatusednumberlinestoimproveunderstandingofwholenumbermagnitudethatmetWWCstandards(withorwithoutreservations)

Citation GradeLevel AnalysisSampleSize Intervention Comparison

SieglerandRamani Preschool 36students Studentsplayalinear Studentsplayalinear(2008) boardgamewith boardgamewithcolors.

numbers.

RamaniandSiegler Preschool 112students Studentsplayalinear Studentsplayalinear(2008) boardgamewith boardgamewithcolors.

numbers.

SieglerandRamani Preschool 88students Studentsplayalinear Studentsparticipatein(2009) boardgamewith countingandnumber-

numbers.190 identificationtasks.

SieglerandBooth 1stand2nd191 55students Studentsplace10evenly Studentsusenumber(2004) spacednumbersona lineswithoutlocating

numberline. evenlyspacednumbersfirst.

BoothandSiegler(2008)

1st 52students Studentsreceiveanumberlineshowingaddendsandsums

Studentssolvetrainedadditionproblemswith-outanumberline.

fortrainedadditionproblems.192

butdidnotuseanumberline.Theauthorsreportedthattreatmentgroupstudentsweremorelikelythancontrolgroupstudentstoanswerthesameadditionproblemscorrectlylater.Inaddition,thestudynotedthatthenumberlineexperienceledtoimprovedqual-ityoferrorsontheadditionproblems(errorsthatwereclosertothecorrectanswer).

Thepanelalsoidentifiedevidenceshowingarelationbetweenstudents’accuracyinlocat-ingwholenumbersonanumberlineandgeneralmathachievement.193Thesestudiesshowapositivesignificantrelationbetweenthelinearityofnumberlineestimatesandgeneralmathachievementforstudentsinkindergartenthrough4thgrade,withcorrela-tionsrangingfrom0.39to0.69.Theaccuracyofnumberlineestimates(i.e.,howcloseanumberistoitsactualposition)waspositivelyrelatedtogeneralmathachievement,withonestudyfindingasignificantrelationrang-ingfrom0.37to0.66);194 anadditionalstudyfoundpositivebutnon-significantrelationsfor1st-and2nd-gradersinoneexperimentandsignificantpositiverelationsfor2nd-and4th-gradersinanotherexperiment.195

Numberlinesforteachingfractioncon­cepts.OnestudythatmetWWCstandards

examinedtheuseofnumberlinesforcom-paringthemagnitudeofdecimals.196 Sixty-onestudentsin5thand6thgradesplayedacomputergameinwhichtheylocatedadecimal’spositionona0-to-1numberline.Studentsinthetreatmentandcontrolgroupscompleted15problemsduringsessionslast-ingabout40minutes.Thestudyinvolvedthreetreatmentgroupsthatreceivedinter-ventionsdesignedtohelpstudentscorrectlyrepresenttheproblem:thefirsttreatmentgroupreceivedapromptforstudentstonoticethetenthsdigitofeachdecimal,thesecondgroupusedanumberlinewiththetenthsplacemarked,andthethirdgroupreceivedboththepromptsandmarkedtenthsonthenumberline.Studentsinthecontrolgroupalsosolvedcomputer-basednumberlineproblems,butwithouttheassistanceoftheseinterventions.

Sincestudentsinboththetreatmentandcon-trolgroupsusednumberlines,thestudydoesnotprovidecausalevidenceforwhetherusingnumberlinesimprovesstudents’understand-ingofdecimals.However,theresultsindicatethatfocusingoncertainaspectsofthenum-berline—specifically,noticingandmarkingthetenthsplace—ledtosignificantimprove-mentsinstudents’abilitytolocatedecimals

((5588))

Page 65: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

onanumberline.Thecombinationofplac-ingtenthsmarkingsonthenumberlinesandpromptingstudentstonoticeandthinkaboutthem(treatmentgroup3)significantlyimprovedstudents’abilitytolocatedecimalfractionsonanumberlinerelativetowhenneitherwaspresent(effectsizeof0.57).Whenstudentsonlyreceivedthetenthsmarkings(treatmentgroup1)oronlyheardtheprompts(treatmentgroup2),theinterventionsdidnothaveasignificanteffect.Thepanelbelievesthisoutcomeindicatesthatthecombinationofthepromptsandmarkings,togetherwithuseofthenumberline,leadstoincreasedunder-standingofdecimals’magnitude.

Acomparisonofstudents’conceptualunder-standingofdecimalsbeforeandaftertheinterventionprovidesadditionalevidenceontheusefulnessofnumberlines.Playingthecomputer-basednumberlinegameledtoimprovementsintreatmentandcontrolstu-dents’conceptualunderstandingofdecimals,includingtheirabilitytocomparerelativemagnitudesoffractions,identifyequivalentfractions,andunderstandplacevalue.Thisissuggestiveevidence,becausethereisnocomparisongroupofstudentswhodidnotuseanumberline.

Anotherstudyexaminedtheuseofnumberlinesinfractionsinstructionbutdidnotmeetstandards.197ThestudycomparedtwoDutchcurriculaoverthecourseofaschoolyear.Onecurriculumfocusedontheuseofnumberlinesandmeasurementcontextstoteachfractions;theothercurriculumusedcirclesandpart-wholerepresentationsoffractions.Studentsinthetreatmentgroupmeasuredobjectsusingdifferent-sizebarsandcomparedfractionsonanumberline.Theauthorsreportedpositiveeffectson9-to10-year-olds’understandingoffractions.However,thestudydidnotmeetstandards,becauseonlyoneclassroomofstudentswasassignedtothetreatment.Anotherproblemininterpretingthestudywasthattheexperi-mentalgroupencouragedstudentinteraction,whereasthecontrolgroupstudentsprimarily

workedalone.Asaresult,distinguishingtheeffectoftheseinstructionalapproachesfromtheeffectofthecurriculumwasnotpossible.

Twoadditionalstudiesthatwerenoteligibleforreviewfoundmixedresultsofusinganumberlinetoteachfractionconcepts.198

Onestudyexaminedusinganumberlinetoteachfractionadditiontoaclassof6th-gradestudents.Basedonclassroomobservationsandinterviewswiththeteacherandtwostudents,theauthorsfoundthatstudentshaddifficultyviewingpartitionsonanumberlineasfixedunits,aswellasdifficultyassociatingequivalentfractionswithasinglepointonthenumberline.Minordifferencesinhowtheteacherpresentedthenumberlineaffectedwhetherstudentsviewedthepartitionsasfixedunits.

Thesecondstudydescribedthreesmallcasestudiesoffractioninstructionthatusednumberlinesforrepresentingandorderingfractions.199Inthisstudy,4th-and5th-gradestudentshadtroublelocatingfractionsonanumberlinewhenfractionswereinreducedformandthenumberlinewasorganizedbyasmallerunitfraction(e.g.,theyhaddifficultylocating1/3onanumberlinedividedintosixths).However,theauthorsalsoreportedthatnumberlineinstructionimprovedstu-dents’abilitytoworkwithfractions.

Additionalevidence.Othertypesofevi-dencealsosupportedtheimportanceofdevelopingstudents’abilitytounderstandfractionsonanumberline.Students’abilitytolocatedecimalsonanumberlineisrelatedtogeneralmathachievement.Astudyof5th-and6th-gradeGermanstudentsfoundasignificantpositivecorrelationbetweenstudents’skillinestimatingthelocationofdecimalsonanumberlineandtheirself-reportedmathematicsgradesinschool.200Inaddition,amathematician’sanalysisindicatedthatlearningtorepresentthefullrangeofnumbersonnumberlinesisfundamentaltounderstandingnumbers.201

((5959))

Page 66: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

Recommendation3.Helpstudentsunderstandwhyproceduresforcomputationswithfractionsmakesense.

Levelofevidence:ModerateEvidence

Thepanelratedthisrecommendationasbeingsupportedbymoderate evidence,basedonstudiesspecificallyrelatedtoconceptualandproceduralknowledgeoffractions.ThisevidenceratingisbasedonthreerandomizedcontrolledtrialsthatmetWWCstandardsanddemonstratedtheeffectivenessofteachingconceptualunderstandingwhendevelopingstudents’computationalskillwithdecimals.202

Interventionsthatiteratedbetweeninstruc-tiononconceptualknowledgeandproceduralknowledgehadapositiveeffectondecimalcomputation.203Althoughthestudiesfocusedondecimalsandwererelativelysmall-scale,thepanelbelievesthatthethree,togetherwiththeextensiveevidencethatmeaning-fulinformationisrememberedmuchbetterthanmeaninglessinformation,204providepersuasiveevidencefortherecommendation.Additionalsupportfortherecommendationcomesfromfourcorrelationalstudiesof4th-,5th-and6th-gradestudentsthatshowedsignificantrelationsbetweenconceptualandproceduralknowledgeoffractions.205Consen-susdocuments,suchasAdding It UpandtheNationalMathematicsAdvisoryPanelreport,alsosuggesttheimportanceofcombininginstructiononconceptualunderstandingwithproceduralfluency.206

Panelmembersfocusedtheirreviewonstudiesthatspecificallyexaminedinterven-tionstodevelopstudents’understandingoffractioncomputation.ThreerandomizedcontrolledtrialsthatmetWWCstandardssupporttherecommendation.207Twoofthestudiesusedcomputer-basedinterventionstocomparedifferentwaysoforderingconcep-tualandproceduralinstructionfor6th-gradestudents.208Thestudies’treatmentgroupsalternatedbetweenconceptuallessonsondecimalplacevalueandprocedurallessonsonadditionandsubtractionofdecimals;the

controlgroupscompletedalloftheconcep-tuallessonsbeforereceivinganyofthepro-cedurallessons.Theinterventionconsistedofsixlessons,duringwhichstudentssolvedwordproblemswhilereceivingfeedbackfromthecomputerprogramasneeded.Bothoftherelativelysmall-scalestudiesfoundpositiveeffectsofiteratingbetweenconceptualandprocedurallessons.Onerandomlyassigned26studentsandfoundalarge,significanteffectoncomputationalproficiencywithdecimals(effectsize=2.38);theotherstudyrandomlyassignedfourclassroomsandfoundasubstantivelyimportant,butnotsignificant,effect(effectsize=0.63).

Thethirdstudyexaminedaninterventiondesignedtoimprovestudents’conceptualunderstandingofhowtolocatedecimalsonanumberline.209Init,5th-and6th-gradestudentspracticedlocatingfractionsonanum-berlineusingacomputer-basedgamecalledCatchtheMonster.Studentsinthetreatmentgroupsreceivedeitheraprompttonoticethetenthsdigitoranumberlinedividedintotenths—twointerventionsthatthepanelviewsasbuildingstudents’conceptualknowl-edge.Controlstudentsdidnotreceivethepromptsanduseda0-to-1numberlinewith-outthetenthsmarked.Bothtreatmentshadasignificant,positiveeffectonstudents’abilitytolocatedecimalsonanumberlinewithoutthepromptsorthetenthsmarked.Receivingboththepromptsandthenumberlinewiththetenthsmarkedhadagreaterimpactthanreceivingthetwointerventionsseparately.

Thepanel’srecommendationalsoissup-portedbycorrelationalevidencethatshowsasignificantrelationbetweenstudents’concep-tualandproceduralknowledgeoffractions.Hechtetal.(2003)administeredavarietyofassessmentsto1055th-graders,andHecht(1998)assessed1037th-and8th-graderstoexaminehowconceptualunderstandingandproceduralskillarerelated.HechtandVagi(inpress)includedasampleof1814th-and5th-graderstomeasuretherelationbetweenconceptualandproceduralknowledge.Thestudiesmeasuredbothconceptualand

((6600))

Page 67: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

TableD.2.StudiesofinterventionsthatdevelopedconceptualunderstandingoffractioncomputationthatmetWWCstandards(withorwithoutreservations)

CitationGradeLevel

AnalysisSampleSize Intervention Comparison Outcome EffectSize210

Rittle-Johnsonand

6th 4classrooms Studentscompletesixcomputer-based

Studentscompletesixcomputer-based

Computationalproficiency

0.63,ns

Koedinger(2002)

lessonsoncomputa-tionwithdecimals,alternatingbetween

lessonsoncomputa-tionwithdecimals,completingallofthe

withdecimals

conceptualandproce-durallessons.

conceptuallessonsbeforetheprocedurallessons.

Rittle-Johnsonand

6th 26students Studentscompletesixcomputer-based

Studentscompletesixcomputer-based

Decimalarithmetic

2.83,sig

Koedinger(2009)

lessonsoncomputa-tionwithdecimals,alternatingbetween

lessonsoncomputa-tionwithdecimals,completingallofthe

conceptualandproce-durallessons.

conceptuallessonsbeforetheprocedurallessons.

Rittle-Johnson,Siegler,andAlibali(2001)

5thand6th

61students Whenlocatingdeci-malsonanumberline,studentsreceiveaprompttonoticethetenthsdigitandusea0-to-1number

Whenlocatingdecimalsonanumberline,studentsuseda0-to-1numberlinewithoutthetenthsmarked.

Locatingdecimalsonanumberline

0.57,sig

linewiththetenthsmarked.

ns=notsignificantsig=statisticallysignificant

proceduralknowledgeoffractionsandfrac-tioncomputation.Allthreestudiesfoundthataftercontrollingforotherfactors,conceptualknowledgeoffractionssignificantlypredictedstudents’abilitytosucceedatfractioncom-putationandestimation.Whilethesestudiesshowacorrelationbetweenconceptualandproceduralknowledge,theydonotestablishwhetherinterventionstodevelopconceptualknowledgeimproveproceduralknowledge.

Inanotherexperiment,Rittle-Johnson,Siegler,andAlibali(2001)211foundthat5th-gradestudents’understandingofdecimals(i.e.,relativemagnitudeandequivalence)wassignificantlyrelatedtotheirabilitytolocatedecimalsonanumberline.212Con-trollingforinitialproceduralknowledge,conceptualknowledgewasfoundtoaccountfor20%ofperformancevarianceonatestofproceduralknowledge.

Manipulativesandrepresentations.Thepanelidentifiedevidencethatsupportsthefirstactionstep,whichrecommendsusingmanipu-lativesandvisualrepresentationstoteachfrac-tioncomputation.Tworandomizedcontrolledtrials,bothunpublisheddissertations,thatmetWWCstandardsfoundthatusingmanipulativeshadapositiveeffectonfractioncomputa-tion.213Nishida(2008)214conductedarelativelysmall-scalestudyontheuseoffractioncirclestoteachnumerator-denominatorrelationsandotherfractionconcepts.Thestudyfoundthathavingstudentsusefractioncircles,ratherthanobservingteachers’useofthem,significantlyimprovedstudents’understandingoffractionconceptsrelevanttocomputation(effectsize=0.73).Theuseofmanipulativefractioncirclesalsohadasubstantivelyimportant,butnotstatisticallysignificant,effectonfractionunder-standing,comparedwiththeuseofpicturesoffractionscircles.

((6161))

Page 68: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

Thesecondstudyfoundthatusingavarietyofmanipulativestosupplementa3rd-gradefractionscurriculumimprovedstudents’understandingoffractionsandfractioncom-putation.215Thestudy’sunitincludedlessonsonfractionmagnitude,equivalence,addition,andsubtraction.Teachersinthestudyusedmanyofthesamematerials,butteachersinthetreatmentgroupalsoemployedvariousmanipulativesandmodels,includingfrac-tionsquares,fractiongames,fractionstrips,pizzas,fractionspinners,cubes,gridcards,paperstrips,virtualmanipulatives,cutouts,andshapes.Theuseofthesemanipulativeshadasubstantivelyimportant,butnotstatis-ticallysignificant,effectonatextbookassess-mentoffractionknowledgeandcomputation(effectsize=0.60).

Arandomizedcontrolledtrialthatpoten-tiallymeetsstandardsexaminedtheuseofmanipulativesandreal-worldcontextsforteachingfractions.216ThestudyexaminedacurriculumdevelopedbytheRationalNumberProject(RNP)thatemploysamulti-prongedapproachincorporatingmanipula-tives,real-worldcontexts,andestimationandfocusesonbuildingstudents’quantita-tivesenseoffractions.Teachersof5th-and6th-gradestudentswererandomlyassignedtouseeithertheRNPcurriculumoroneoftwocommercialcurriculathatincludedminimaluseofmanipulatives(Addison­Wesley MathematicsorMathematics Plus).TheRNPcurriculumhadasignificantpositiveeffectonfractioncomputationandestimation(effectsize=0.27and0.65,respectively).However,thestudyprovidedinsufficientinformationtoassesssampleattrition,andamountofuseofmanipulativeswasonlyoneofmanydifferencesbetweenthecurricula,makingitdifficulttodistinguishwhichaspectsoftheinterventionledtothepositiveoutcomes.

Real­worldcontextsandintuitiveunder­standing.Useofreal-worldconceptsalsocanimprovefractioncomputationprofi-ciency(Step4).ArandomizedcontrolledtrialthatmetWWCstandardsindicatedthatusinginformationfromstudentstopersonalize

lessonsonfractiondivisionsignificantlyimprovedtheirabilitytosolvefractiondivisionwordproblems.217Studentsinthetreatmentconditionreceivedinstructionviacomputer-assistedlessonsbasedoncontextssuggestedbythestudents;controlstudentsweretaughtusingabstractlessonswith-outsuchcontexts.Thetreatmenttargeted5th-and6th-gradestudentsduringasingle-lessonunitonfractiondivision.

Aquasi-experimentaldesignstudythatpotentiallymeetsstandardsevaluatedtheimpactofpracticingfractioncomputationwithproblemssetineverydaycontexts.218

Overthecourseofthreedays,studentsinthetreatmentgroupsolvedcontextualizedprob-lemsinvolvingcomputationwithdecimals.Problemsincludedreferencestosoft-drinkbottles,monetaryexchanges,andmeasure-ment.Thecontrolgroupsolvedsimilarprob-lemsbutwithoutanycontextualreferences.Basedontheauthor’scalculations,instructionusingcontextualizedproblemssignificantlyimprovedthestudents’abilitytoorderandcomparedecimals.Thestudyhadasmallsampleof1611- and12-year-oldsfromNewZealand;itpotentiallymetstandardsbecauseinsufficientinformationexistedtodemon-stratethatthetreatmentandcontrolgroupswereequivalentatbaseline.

Recommendation4.Developstudents’conceptualunderstandingofstrategiesforsolvingratio,rate,andproportionproblemsbeforeexposingthemtocross­multiplicationasaproceduretousetosolvesuchproblems.

Levelofevidence:MinimalEvidence

Thepanelassignedaratingofminimal evidencetothisrecommendation.Evidencefortheoverallrecommendationcomesfromconsensusdocumentsthatemphasizetheimportanceofproportionalreasoningformathematicslearning.219Thepanelsepa-ratelyreviewedevidenceforthethreeactionstepsthatcomprisethisrecommendation.

((6262))

Page 69: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

Theseactionstepsaresupportedbycasestudiesdemonstratingthevarietyofstrate-giesstudentsusetosolveratio,rate,andproportionproblems;astudyofmanipula-tivesthatmetWWCstandards;andtwostud-iesthatmetstandardsandtaughtstrategiesforsolvingwordproblems.

Buildingonearly­developingstrategiesforsolvingproportionalityproblems.Evidenceforthefirstactionstepisbasedoncasestudiesthatexaminestudents’strate-giesforsolvingproportionalityproblems.Nostudiesbothmetstandardsandexam-inedtheeffectofusingstudents’developingstrategiestoimprovetheirunderstandingofproportionality.However,thepanelbelievesthatthefindingsofthesecasestudiesprovideabasisforusingaprogressionofproblemsthatbuildsonthesestrategiestodevelopstudents’proportionalreasoning.

Aliteraturereviewofearlyproportionalreasoningfoundthatstudentsinitiallytendtorelyonstrategiesthatbuildupadditivelyfromoneratiotoanother.220Studentswhousethisapproachmaynotunderstandthemultiplicativerelationsbetweenratios.221

Toillustratethispoint,acasestudyof214th- and5th-gradestudentsdescribedfourdevelopmentallevelsforsolvingproportion-alityproblems.222Oneimportantdifferenceamongtheselevelswaswhetherthedevelop-mentallevelsonlyinvolvedbuildingupfromsmallertolargerratiosorwhethertheyalsoincludedtheknowledgethatratios,likefrac-tions,canbereduced.

Carpenteretal.(1999)andLamon(1994)suggestedthattreatingratiosassingleunitsisanimportantdevelopmentalstepforproportionalreasoning.InCramer,Post,andCurrier(1993),8th-gradestudentsweremorelikelythan7th-gradestudentstosolvepro-portionalityproblemsbytreatingtheratioasaunitandbyfindinganequivalentfraction.Bothstudiesconfirmthatstudentshavemoredifficultywithproportionalityproblemsthatinvolvenon-integerrelations.223

Usingvisualrepresentationsandmanipu­latives.Visualrepresentationsandconcretemanipulativescanincreasestudents’proficiencyinsolvingrate,ratio,andproportionproblems.Inarandomizedcontrolledtrialthatmetstan-dards,Fujimura(2001)evaluatedtheimpactofprovidingstudentswithconcretemanipulativestosolvemixtureproblems.Japanesestudentsin4thgradereceivedamanipulativetoassisttheminsolvingaproportionprobleminvolv-ingthemixtureoftwoliquids.Studentsusedthemanipulativetovisuallyrepresenttheunitrate,ortheamountoforangeconcentrateforeachunitofwater.Completingaproblemusingthemanipulativeimprovedstudents’abilitytolatersolvethesametypeofmixtureproblemswithoutthemanipulative.Studentsinthetreat-mentgroupperformedsignificantlybetterthanstudentswithnoexposuretomixtureproblemsduringtheintervention(effectsize=0.74).Thetreatmenthadasubstantivelyimportant,butnotstatisticallysignificant,effectrelativetoacontrolgroupinwhichstudentsreceivedaworksheettocalculatetheunitratetosolvemixtureproblems(effectsize=0.34).

Aninstructionalstrategythattaughtstudentstouseadatatableforrepresentinginforma-tioninamissingvalueproportionproblemhadasignificantpositiveeffectonthestu-dents’abilitytosolvetheseproblems.InastudythatmetWWCstandards,7th-gradersweretaughtaproblem-solvingstrategyinwhichtheyidentifiedtheproblemtype,rep-resentedtheprobleminatable,determinedthemultiplicativerelationbetweentheknownquantities,andthenappliedthatrelationtocalculatetheunknownquantity.224Research-ersrandomlyassignedfiveclassroomstoreceiveinstructionineithertheabovestrategyorasubstituteapproachinwhichstudentslearnedtorecognizetheproblemstructure,solvetheproblembysubstitut-ingintegersforanycomplexnumbers,andthenresolvetheproblemwiththecomplexnumbers.After10lessons,studentsinthetreatmentgroupperformedbetterthanthoseinthecontrolgrouponmissingvaluepropor-tionproblems.

((6363))

Page 70: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

Inanotherrandomizedcontrolledtrialthatmetstandards,Terweletal.(2009)investigatedtheeffectivenessofinstructing5th-gradestudentstosolvepercentageproblemsbyconstructingrepresentationscollaborativelyinsteadofusingteacher-maderepresentationsandgraphs.Thisinterventionhadasubstantivelyimportant,butnotstatisticallysignificant,impactonstu-dentperformanceonaresearcher-constructedposttestofproblemsolvingwithpercentages(effectsize=0.41).

Strategiesforsolvingwordproblems.Theliteratureonteachingstrategiesforwordproblemsincludesmanystudiesout-sidethescopeofthisguide—studiesthatfocusonstudentsin9thgradeorabove,low-performingstudents,andstudentswithlearningdisabilitiesorontopicsotherthanratio,rate,orproportion.225Initsreviewofavailableresearch,theNationalMathematicsAdvisoryPanelusedthesestudiestosup-porttheteachingofexplicitstrategiesforsolvingwordproblemswithlow-performingstudentsandstudentswithlearningdis-abilities.226However,forthisactionstep,thepanelsoughtevidencespecificallyrelatedtostudentswithoutdiagnosedlearningdisabili-tiesupto8thgradeandtoratio,rate,andproportionwordproblems.

Tworandomizedcontrolledtrialsthatmetstandardsexaminedafour-stepstrategyforteachingstudentstosolveratioandproportionwordproblems.227Thestrategyinvolvedaschema-basedapproachinwhichstudentsidentifytheproblemtype,repre-sentcriticalinformationfromtheprobleminadiagram,translateinformationintoamathematicalequation,andsolvetheprob-lem.Keyaspectsoftheapproach,whichwasdesignedtoaddressconcernsaboutthelimi-tationsofdirectinstruction,includeteachingstudentstoidentifyunderlyingproblemstructures,suchasthroughschematicdia-grams,andcomparingandcontrastingdif-ferentsolutionstrategiesandproblemtypes.Oneofthestudiesfocusedonstudentswithlearningdisabilities(i.e.,16ofthe19stu-dentshadadiagnosedlearningdisability),228

andtheotherincludedstudentswithamorediverseabilityrange.229Xin,Jitendra,andDeatline-Buckman(2005)foundasignificantpositiveeffect(albeitwithstudentswithlearningproblems)ofanapproachthattaughtstudentstoidentifytheproblemtypeandrepresenttheproblemusingadiagram.Studentsinthecomparisongroupalsolearnedstrategiesforsolvingwordproblemsbutfocusedmoreondrawingpicturestorepresenttheproblems.Jitendraetal.(2009)foundasubstantivelyimportant,butnotstatisticallysignificant,effectofteachingthefour-stepstrategyonresearcher-developedtestsofratioandproportionwordproblems,relativetoteachingwordproblemswithadistrict-adoptedmathematicstextbook(effectsize=0.33and0.38,immediateanddelayedposttests,respectively).230

Athirdrandomizedcontrolledtrial,MooreandCarnine(1989),alsoexaminedanexplicitstrategyforteachingstudentstosolveratioandproportionwordproblems.Thisstudymetstandardsbutisoutsidethereviewprotocolbecauseitincludedstudentsin9ththrough11thgradesandfocusedonspecialeducationandlow-performingstudents.Thepanelviewsthestudyasprovidingsupplementalevidencetosupporttherecom-mendation.TheWWCdidnothavesufficientinformationtocalculateeffectsizes,butthestudy’sauthorsreportthatteachingstudentsexplicitrulesandproblem-solvingstrategiessignificantlyimprovedtheirproficiencyinsolvingratiowordproblemsrelativetostu-dentstaughtusingabasalcurriculum.

Recommendation5.Professionaldevelopmentprogramsshouldplaceahighpriorityonimprovingteachers’understandingoffractionsandofhowtoteachthem.

Levelofevidence:MinimalEvidence

Thepanelassignedaminimal evidence ratingtothisrecommendationbecauseoflimitedrigorousevidenceontheeffectsoffractions-relatedprofessionaldevelopmentactivities.

((6464))

Page 71: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

Toevaluatethisrecommendation,thepanelsoughtevidencethatprofessionaldevelopmentthatfocusesspecificallyonfractionsimprovesstudentoutcomes.231Twostudiesthatfocusedondevelopingteachers'knowledgeoffractionsmetstandards.Theprofessionaldevelopmentinthefirststudyaddressedthefirsttwoactionstepsfortherecommendationandfoundposi-tiveeffectsonstudentlearning;thesecondstudyaddressedallthreeactionstepsbutdidnotfindasignificanteffectonstudents'under-standingoffractions.232Twootherstudiesmetstandardsandprovidedevidencefortherecom-mendation’sthirdstep—developingteachers’understandingofstudents’mathematicalthink-ing—butfocusedonwholenumberadditionandalgebraicreasoningratherthanonfrac-tions.233Ahandfulofotherstudiespotentiallymetstandardsbutdidnotexaminefractionsordidnotprovideprofessionaldevelopmentdirectlyrelevanttotherecommendation.234

Despitethelimitedevidenceontheeffectsofprofessionaldevelopmentactivitiesonteach-ers’understandingoffractionconceptsandskills,thepanelbelievestheneedtodevelopteachers’knowledgeoffractionsandofhowtoteachthemiscritical.Teachers’mathemati-calcontentknowledgeispositivelycorrelatedwithstudents’mathematicsachievement,235

andresearchershaveconsistentlyfoundthatteachersintheUnitedStateslackadeepcon-ceptualunderstandingoffractions.236Takentogether,thesefindingssuggestthatprovid-ingprofessionaldevelopmentonfractionconceptsisimportant.

Professionaldevelopmentrelatedtofractions.OnerandomassignmentstudymetstandardsandexaminedaprofessionaldevelopmentprogramcalledIntegratedMathematicsAssessment(IMA).Thispro-gramaddressedteachers’understandingof(1)fractionconcepts,(2)howstudentslearnfractions,(3)students’motivationformathachievement,and(4)assessment.237

Teacherslearnedaboutfractionconceptsthroughactivitiesandexercisesthatweremorecomplexversionsofthoseforstudents.

Tounderstandstudents’thinking,teachersexaminedstudentworkandvideotapesofstudentssolvingproblemsandexploredstudents’difficultiesinlearningfractions.TheIMAtrainingconsistedofafive-daysummerinstituteand13follow-upsessionsforupperelementaryteachers.TeachersassignedtotheIMAprofessionaldevelopmentprogramachievedasignificantimprovementintheirstudents’conceptualunderstandingoffrac-tions,comparedwithteachersintheteachersupportgroup,whometninetimestoreflectontheirinstructionalpractices.TheIMAtraininghadasubstantivelyimportant,butnotstatisticallysignificant,effectonstudents’abilitytocomputewithfractions.

Amorerecentstudyofprofessionaldevelop-mentrelatedtofractionsalsometWWCstan-dardsbutdidnotfindasignificanteffectonstudents’learningoffractionconcepts.238Thestudyexaminedtwoprofessionaldevelopmentprogramsfor7th-gradeteachersin12districtsacrossthecountry.Teachersinthetreatmentschoolswereeligibleforabout68hoursoftrainingthroughathree-daysummerinstituteandfive1-dayseminarspairedwithtwo-dayin-schoolcoachingvisits.Theprofessionaldevelopmentfocusedonconceptualandpro-ceduralskillinrationalnumbertopics,aswellasmathematicsknowledgeforteaching.Thisincludedidentifyingthekeyaspectsofmath-ematicalunderstanding,recognizingcommonerrorsmadebystudents,andselectingrep-resentationsforteachingfractions.Activitiesincludedsolvingmathproblemsandreceivingfeedbackontheirsolutions,discussingcom-monstudentmisconceptions,andplanningles-sons.Teachersinthecontrolschoolsreceivedtheexistingprofessionaldevelopmentpro-videdbythedistrict.However,theprofessionaldevelopmentdidnothaveasignificantimpactonstudents’understandingoffractions,deci-mals,percentages,orproportions.

Professionaldevelopmentrelatedtoothermathematicstopics.Findinglittleevidencerelatedspecificallytofractions,thepanelexpandeditsreviewtoincludeprofes-sionaldevelopmentthatfocusedonother

((6565))

Page 72: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

mathtopics.Twoadditionalstudiesmetstandardsandimplementedtrainingrelevanttothethirdactionstepoftherecommenda-tion—developingteachers’understandingofstudents’mathematicalthinking.239

Onestudyexaminedafour-weeksummerworkshop(20hours)aimedatdevelopingteachers’knowledgeofhowchildrenlearnwholenumberadditionandsubtractionconcepts.240Teachersparticipatinginthepro-gram,calledCognitivelyGuidedInstruction(CGI),learnedaboutchildren’ssolutionstrate-giesandhowtoclassifyproblemtypes,dis-cussedhowtoincorporateinformationfromtheCGIworkshopintotheclassroom,andplannedinstructionaccordingly.Comparedwithacontrolgroupofteacherswhoreceivedfourhoursofworkshopsonproblemsolvingandtheuseofnonroutineproblems,theCGIprogramhadasubstantivelyimportant,butnotstatisticallysignificant,effectoncomputa-tionproblemsandadditionandsubtractionwordproblems.Thedifferingamountsoftimethatteachersspentinthetwoconditionsalsolimitedinterpretationofthefindings.

Thesecondstudy,arandomizedcontrolledtrialstudyconductedinalarge,urbandistrictwith1st-through5th-gradeteachers,alsoexaminedaprofessionaldevelopmentprogramfocusedondevelopingteachers’understandingofstudents’mathematicalthinking.241Emphasizingunderstandingoftheequalsignandusingnumberrelationstosimplifycalculations,thetraininginthisstudywasdesignedtoimproveteachers’abilitytoincorporatealgebraicreasoningintoelementarymathematics.Teacherslearnedtomakesenseofstudents’strategiesforsolvingproblems,tolinkstudents’think-ingtokeymathematicalideas,andtoleadmathematicalconversationswithstudents.Theprogramincludedaninitialmeetingandeightmonthlyafter-schoolwork-groupmeet-ings(atotalofabout16.5hours),aswellasatrainerwhospentahalf-dayaweekateachschooltoprovideadditionalsupport.Resultsfromthestudyshowedthatthisprofes-sionaldevelopmentsignificantlyimproved

students’understandingoftheequalsignandstudents’useofrelational-thinkingstrat-egiesforsolvingcomputationsbutnotforsolvingequations(i.e.,withlettersrepresent-ingunknownquantities).

Additionalevidence.Thereisfurtherevidencethatstudents’achievementispositivelyrelatedtoteachers’mathematicsknowledgeforteaching—forexample,theirskillatexplainingmathconcepts,under-standingstudentstrategies,andprovidingrepresentations.Astudyof6991st-and3rd-grademathteachersfoundapositiverelationbetweenteachers’mathknowledgeforteachingandstudents’learninggainsinmathaftercontrollingforstudentandteachercharacteristics.242 Althoughthisstudydidnotspecificallyfocusonfractions,itdemonstratedtheimportanceofteachers’mathcontentknowledgeforteaching.

ProfessionaldevelopmentwithfractionsisneededbecausemanyU.S.teacherslackadeepconceptualunderstandingoffractions.243

AstudycomparingChineseandAmericanteachersfoundthatonly9ofthe21U.S.teacherswhotriedtocalculate13/4÷1/2 didsocorrectly,whereasall72Chineseteacherscorrectlycompletedtheproblem.244U.S.teacherscouldnotrepresentorexplaindivisionwithfractions,andmanyconfusedthealgorithmfordividingfractionswiththealgorithmsforadding,subtracting,andmulti-plyingfractions.

Otherstudieshavereportedsimilarfindings.Astudyof218elementaryschoolteachersinMinnesotaandIllinoisfoundthatmanyteacherscouldnotsolvecomputationprob-lemsinvolvingfractionsandthatmostofthosewhocorrectlysolvedproblemscouldnotprovideacorrectexplanationoftheirsolutions.245Forexample,almosthalfoftheteachersintheMinnesotastudyincorrectlysolvedasubtractionprobleminvolvingfrac-tions(1/3–3/7).Further,astudyof46preser-vicemiddleschoolteachersatauniversityinTexasfoundthatmostteachersknewtheprocedurefordividingwithfractionsbutdid

((6666))

Page 73: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixDcontinued

notunderstandwhytheprocedureworkedandcouldnotjudgewhetheranalternativeprocedureforsolvingadivisionproblemwithfractionswascorrect.246

Thesestudiesclearlyindicatethatteach-ers’understandingoffractionsneedstobe

upgraded.However,therecommendationregardingprofessionaldevelopmentislargelybasedonthepanel’sexpertise,becauseofthelimitedevidenceregardingtheeffectsofprofessionaldevelopmentactivitiesfocusedonfractions.

((6767))

Page 74: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

AppendixE

EvidenceHeuristic

Thisappendixcontainsaheuristicforcategorizingtheevidencebaseforpracticeguiderecommenda-tionsasstrong evidence,moderate evidence,orminimal evidence.Thisheuristicisintendedtoserveasaframeworktoensurethatthelevelsofevidenceareconsistentlyappliedacrosspracticeguideswhileatthesametimeclarifyingthelevelsforpanelistsandeducators.Thecoredocumenttoaccom-panythisheuristicisthe“InstituteofEducationScienceslevelsofevidenceforpracticeguides”(Table1inthispracticeguide).

TableE.1.Evidenceheuristic

CriteriaforaStrongEvidenceBaseThiscriterionisnecessaryforastronglevelofevidence.

Highinternalvalidity(high-qualitycausaldesigns).StudiesmustmeetWWCstandardswithorwithoutreservations.247

Highexternalvalidity(requiresaquantityofstudieswithhigh-qualitycasualdesigns).StudiesmustmeetWWCstandardswithorwithoutreservations.248

Effectsonrelevantoutcomes—consistentpositiveeffectswithoutcontradictoryevidence(i.e.,nostatisticallysignificantnegativeeffects)instudieswithhighinternalvalidity.249

Directrelevancetoscope(i.e.,ecologicalvalidity)—relevantcontext(e.g.,classroomvs.laboratory),sample(e.g.,ageandcharacteristics),andoutcomesevaluated.

Directtestoftherecommendationinthestudies,ortherecommendationisamajorcomponentoftheinterventiontestedinthestudies.

Forassessments,meetsThe Standards for Educational and Psychological Testing. Panelhasahighdegreeofconfidencethatthispracticeiseffective.

CriteriaforaModerateEvidenceBaseThiscriterionisnecessaryforamoderatelevelofevidence.

Highinternalvaliditybutmoderateexternalvalidity(i.e.,studiesthatsupportstrongcausalconclu-sions,butgeneralizationisuncertain)ORstudieswithhighexternalvaliditybutmoderateinternalvalidity(i.e.,studiesthatsupportthegeneralityofarelation,butthecausalityisuncertain).

•TheresearchmayincludestudiesgenerallymeetingWWCstandardsandsupportingtheeffec-tivenessofaprogram,practice,orapproachwithsmallsamplesizesand/orotherconditionsofimplementationoranalysisthatlimitgeneralizability.

•TheresearchmayincludestudiesthatsupportthegeneralityofarelationbutdonotmeetWWCstandards;250however,theyhavenomajorflawsrelatedtointernalvalidityotherthanlackofdemonstratedequivalenceatpretestforquasi-experimentaldesignstudies(QEDs).QEDswith-outequivalencemustincludeapretestcovariateasastatisticalcontrolforselectionbias.ThesestudiesmustbeaccompaniedbyatleastonerelevantstudymeetingWWCstandards.

Effectsonrelevantoutcomes—apreponderanceofevidenceofpositiveeffects.Contradictoryevidence(i.e.,statisticallysignificantnegativeeffects)mustbediscussedbythepanelandcon-sideredwithregardtorelevancetothescopeoftheguideandintensityoftherecommendationasacomponentoftheinterventionevaluated.

Relevancetoscope(i.e.,ecologicalvalidity)mayvary,includingrelevantcontext(e.g.,classroomvs.laboratory),sample(e.g.,ageandcharacteristics),andoutcomesevaluated.

Intensityoftherecommendationasacomponentoftheinterventionsevaluatedinthestudiesmayvary.

Forassessments,evidenceofreliabilitythatmeetsThe Standards for Educational and Psychological Testingbutwithevidenceofvalidityfromsamplesnotadequatelyrepresentativeofthepopulationonwhichtherecommendationisfocused.

Thepanelisnotconclusiveaboutwhethertheresearchhaseffectivelycontrolledforotherexplanationsorwhetherthepracticewouldbeeffectiveinmostorallcontexts.

Thepaneldeterminesthattheresearchdoesnotrisetothelevelofstrongevidencebutismorecompellingthanaminimallevelofevidence.

(continued)

((6868))

Page 75: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

CriteriaforaMinimalEvidenceBaseThiscriterionisnecessaryforaminimallevelofevidence.

Expertopinionbasedondefensibleinterpretationsoftheory(ortheories).Insomecases,thissimplymeansthattherecommendedpracticeswouldbedifficulttostudyinarigorous,experimentalfashion;inothercases,itmeansthatresearchershavenotyetstudiedthispractice.

Expertopinionbasedonreasonableextrapolationsfromresearch:

•Theresearchmayincludeevidencefromstudiesthatdonotmeettstrongevidence(e.g.,casestudies,qualitativeresearch).

•Theresearchmaybeoutofthescopeofthepracticeguide.

•Theresearchmayincludestudiesforwhichtheintensityofthereconentoftheinterventionsevaluatedinthestudiesislow.

hecrit

mme

eriafor

ndation

moder

asaco

ateor

mpo

Theremaybeweakorcontradictoryevidence.

Inthepanel’sopinion,therecommendationmustbeaddressedaspartofthepracticeguide;however,thepanelcannotpointtoabodyofresearchthatrisestothelevelofmoderateorstrong.

AppendixEcontinued

TableE.1.Evidenceheuristic(continued)

-

-

-

((6699))

Page 76: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Endnotesa

1. Formoreinformation,seetheWWCFre-quentlyAskedQuestionspageforpracticeguides,http://ies.ed.gov/ncee/wwc/refer-ences/idocviewer/doc.aspx?docid=15.

2. SeetheWWCguidelinesathttp://ies.ed.gov/ncee/wwc/pdf/wwc_procedures_v2_stan-dards_handbook.pdf.

3.Thisincludesrandomizedcontroltrials(RCTs),quasi-experimentaldesigns(QEDs),regressiondiscontinuitydesigns(RDDs),andsingle-casedesigns(SCDs)evaluatedwithWWCstandards.

4. Iftheonlyevidencemeetingstandards(withorwithoutreservations)isSCDs,theguide-linessetbytheSCDstandardspanelwillapply.Forexternalvalidity,therequirementsareaminimumoffiveSCDresearchpapersexaminingtheinterventionthatmeetevi-dencestandardsormeetevidencestandardswithreservations,thestudiesmustbecon-ductedbyatleastthreedifferentresearchteamsatthreedifferentgeographicalloca-tions,andthecombinednumberofexperi-mentsacrossstudiestotalsatleast20.

5. Incertaincircumstances(e.g.,acomparisongroupcannotbeformed),thepanelmaybaseamoderateratingonmultiplecorrela-tionaldesignswithstrongstatisticalcontrolsforselectionbiasthatdemonstrateconsis-tentpositiveeffectswithoutcontradictoryevidence.

6. Baldietal.(2007);Gonzalesetal.(2009).

7. NationalAcademyofSciences(2007).8.McCloskey(2007);NationalAcademyof

Sciences(2007);Rivera-Batiz(1992).9. Starkey,Klein,andWakeley(2004).

10.Rivera-Batiz(1992).11. Mullisetal.(1997).12.NationalMathematicsAdvisory Panel

(2008).13.Hofferetal.(2007).14.NationalCouncilofTeachersofMathematics

(2007).15.Kloosterman(2010).16. Rittle­Johnson,Siegler,andAlibali

(2001).17. VamvakoussiandVosniadou(2004).

18.DavisandPepper(1992);FrydmanandBry-ant(1988);HuntingandSharpley(1988);Pepper(1991);Singer-FreemanandGoswami(2001);SpinilloandBryant(1991,1999).

19.Ma(1999).20.Ma(1999);Moseley,Okamoto,andIshida

(2007).21.DavisandPepper(1992);FrydmanandBry-

ant(1988);HuntingandSharpley(1988);Pepper(1991).

22.Singer-FreemanandGoswami(2001);SpinilloandBryant(1991,1999).

23.DavisandPepper(1992);FrydmanandBry-ant(1988);HuntingandSharpley(1988);Pepper(1991);Singer-FreemanandGoswami(2001);SpinilloandBryant(1991,1999).

24.Empson(1999);Streefland(1991).25.DavisandPepper(1992);FrydmanandBry-

ant(1988);HuntingandSharpley(1988);Pepper(1991).

26.Chen(1999);HuntingandSharpley(1988).27. Empson(1999);Streefland(1991).28.Singer-FreemanandGoswami(2001);Spinillo

andBryant(1991,1999).29.SpinilloandBryant(1991,1999).30.Goswami(1989,1995).31. Empson(1999);Streefland(1991).32.Empson(1999).33.Teachersshouldalsonotethatsharingsitu-

ationswithmorepeoplethanobjectsresultinproperfractions,whereassharingsitua-tionswithmoreobjectsthanpeopleresultinimproperfractionsormixednumbers.

34.Empson(1999);Streefland(1991).35.Empson(1999).36.PothierandSawada(1990).37. Ibid.38.Empson(1999);Streefland(1991).39. Ibid.40.Streefland(1991).41. Ibid.42.ResnickandSinger(1993).43. Ibid.44.WarrenandCooper(2007).45. Ibid.

aEligiblestudiesthatmeetWWCevidencestandardsormeetevidencestandardswithreservationsareindicatedbyboldtextintheendnotesandreferencespages.Formoreinformationaboutthesestudies,pleaseseeAppendixD.

((7070))

Page 77: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Endnotescontinued

46.DavisandPitkethly(1990).47. FrydmanandBryant(1988).48.Ibid.49.Mack(1993).50.Sophian(2007).51. BoothandSiegler(2008);Ramaniand

Siegler(2008);SieglerandBooth(2004);SieglerandRamani(2008,2009).

52.Rittle­Johnson,Siegler,andAlibali(2001).

53.BoothandSiegler(2006,2008);Schneider,Grabner,andPaetsch(2009);Siegler&Booth(2004).

54.RamaniandSiegler(2008);SieglerandRamani(2008,2009).

55. SieglerandBooth(2004).56.Rittle­Johnson,Siegler,andAlibali

(2001).57.KeijzerandTerwel(2003).58.Ibid.59.Brightetal.(1988);Izsak,Tillema,andTunc-

Pekkan(2008).60.Brightetal.(1988).61.Schneider,Grabner,andPaetsch(2009).62.Wu(2002).63.Sophian(2007).64.Izsak,Tillema,andTunc-Pekkan(2008);

Yanik,Helding,andFlores(2008).65.Adapted from Beckmann (2008); Wu

(2002).66.Beckmann(2008);Lamon(2005).67.VandeWalle, Karp, andBay-Williams

(2010).68.Brightetal.(1988);Izsak(2008).69.NiandZhou(2005).70.Lamon(2005);Niemi(1996).71.NiandZhou(2005).72.Brightetal.(1988).73.Rittle­JohnsonandKoedinger(2002,

2009);Rittle­Johnson,Siegler,andAli­bali(2001).

74.Anderson(2004);SchneiderandPressley(1997).

75.Hecht(1998);Hecht,Close,andSantisi(2003);HechtandVagi(inpress);Rittle­Johnson,Siegler,andAlibali(2001).

76.Rittle­JohnsonandKoedinger(2002,2009).

77. Rittle­Johnson,Siegler,andAlibali(2001),Experiment2.

78.Hecht(1998);Hecht,Close,andSantisi(2003);HechtandVagi(inpress).

79.Rittle-Johnson,Siegler,andAlibali(2001),Experiment1.

80.Hudson Hawkins (2008); Nishida(2008).

81. Nishida(2008),Experiment2.82.HudsonHawkins(2008).83.Cramer,Post,anddelMas(2002).84.AnandandRoss(1987);Irwin(2001).85.AnandandRoss(1987).86.Irwin(2001).87.Mack(2000);Mack(2001);Rittle-Johnsonand

Koedinger(2005).88.CramerandWyberg(2009).89.Sowderetal.(1998).90.Bulgar(2009).91.VandeWalle, Karp, andBay-Williams

(2010).92.Smith(2002).93.Hecht(1998).94.Johanning(2006).95.Smith(2002).96.GerverandSgroi(1989).97. CramerandWyberg(2009);Cramer,Wyberg,

andLeavitt(2008);Hecht(2003).98.Kerslake (1986); Mack (1995); Painter

(1989).99.Sharp(2004).

100.TatsuokaandTatsuoka(1983).101. Hackenberg(2007).102.Mack(1995).103.Painter(1989).104.Ashlock(2009);BarashandKlein(1996).105.KamiiandWarrington(1995);Mack(2001);

WarringtonandKamii(1998).106.Mack(1990,1993).107. AnandandRoss(1987);Irwin(2001).108.Mack(1990).109. Ibid.110. Cramer,Wyberg,andLeavitt(2008).

((7171))

Page 78: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Endnotescontinued

111. Lesh,Post,andBehr(1988);NationalCouncilofTeachersofMathematics(2000);NationalMathematicsAdvisoryPanel(2008).

112. Smith(2002);Stemn(2008).113.NationalMathematicsAdvisory Panel

(2008).114. Kloosterman(2010);Lamon(2007);Thomp-

sonandSaldanha(2003).115. Lesh,Post,andBehr(1988);NationalCouncil

ofTeachersofMathematics(2000);NationalMathematicsAdvisoryPanel(2008).

116. Carpenteretal.(1999);Cramer,Post,anddelMas(2002);Lamon(1994).

117. Fujimura(2001).118. Sellke,Behr,andVoelker(1991).119. Terweletal.(2009).120. Jitendraetal.(2009);Xin,Jitendra,and

Deatline­Buchman(2005).121. Thestudywithmostlylearningdisabled

studentsfallswithinthepanel’sprotocolbecausesomeofthestudentsarelowper-formingbutnotlearningdisabled.Thepro-tocolincludesstudiesthatdidnotfocussolelyonlearningdisabledstudents.

122.Thisstepfocusesprimarilyonstrategiesforsolvingtwotypesofproportionproblems(Lamon,2005):(1)missing-valueproblemsinwhichstudentsaregivenonecompleteratioandanotherratiowithamissingvaluethatstudentsmustidentify,and(2)compari-sonproblemsinwhichstudentsdeterminewhethertworatiosareequivalent.

123.Carpenteretal.(1999);Cramer,Post,andCurrier(1993);Lesh,Post,andBehr(1988).

124. Carpenteretal.(1999).125. Ibid.126.Carpenteretal.(1999);Lamon(2007).127. Kent,Arnosky,andMcMonagle(2002);Ter-

weletal.(2009).128.ResnickandSinger(1993).129.Lamon(1993).130. Jitendraetal.(2009).131. Xin,Jitendra,andDeatline­Buchman

(2005).132.Hembree(1992);Jitendraetal.(2009).133. Jitendraetal.(2009);Xin,Jitendra,and

Deatline­Buchman(2005).134. Bottge(1999);Helleretal.(1989).

135.LiandKulm(2008);Ma(1999);Newton(2008);Postetal.(1988).

136.Hill,Rowan,andBall(2005).137. LiandKulm(2008);Ma(1999);Newton

(2008);Postetal.(1988).138. Saxe,Gearhart,andNasir(2001).139. Garetetal.(2010).140. Garetetal.(2010);Ma(1999);Postetal.

(1988).141. Ma(1999).142.Postetal.(1988).143.Hilletal.(2005).144.Ma(1999).145.LiandKulm(2008).146.Althoughafulldiscussionofhowtostruc-

tureprofessionaldevelopmentisbeyondthisguide’sscope,thepanelprovidesbasicsuggestionsthataddressthegoalofthisstep.

147. Marchiondra(2006);Saxe,Gearhart,andNasur(2001).

148.Tirosh(2000).149. Saxe,Gearhart,andNasir(2001);Wu

(2004).150. Saxe,Gearhart,andNasir(2001).151. Carpenteretal.(1989).152. Jacobsetal.(2007);Saxe,Gearhart,and

Nasir(2001).153.Kloosterman(2010);NationalCouncilof

TeachersofMathematics(2007).154.Mullisetal.(1997).155. NationalResearchCouncil(2001).156.SophianandWood(2007).157. CramerandPost(1993);VandeWalle,Karp,

andBay-Williams(2010).158.DavisandPepper(1992);FrydmanandBry-

ant(1988);HuntingandSharpley(1988);Pepper(1991);Singer-FreemanandGoswami(2001);SpinilloandBryant(1991,1999).

159. Empson(1999);Streefland(1991).160.Chen(1999);DavisandPepper (1992);

FrydmanandBryant(1988);HuntingandSharpley(1988);Pepper(1991).

161. Chen(1999).162.HuntingandSharpley(1988).163.Sophian,Garyantes,andChang(1997).164.Ibid.

((7272))

Page 79: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Endnotescontinued

165.Empson(1999);Streefland(1991).166.Streefland(1991).167. Empson(1999).168.Singer-FreemanandGoswami(2001);Spinillo

andBryant(1991,1999).169.Singer-FreemanandGoswami(2001).170.SpinilloandBryant(1991).171. SpinilloandBryant(1991,1999).172.Boyer,Levine,andHuttenlocher(2008);

Singer-FreemanandGoswami(2001);SpinilloandBryant(1999).

173.Goswami(1989).174. Goswami(1995).175. Spinillo(1995).176. RamaniandSiegler(2008);Sieglerand

Ramani(2008,2009).177. Rittle­Johnson,Siegler,andAlibali

(2001).178. BoothandSiegler(2006,2008);Sieglerand

Booth(2004);SieglerandRamani(2009).179.OpferandDeVries(2008).180. RamaniandSiegler(2008);Sieglerand

Ramani(2008,2009).181. RamaniandSiegler(2008);Sieglerand

Ramani(2008).182. SieglerandRamani(2009).183. RamaniandSiegler(2008);Sieglerand

Ramani(2008,2009).TheWWCcalcu-latedtheeffectsizeforSieglerandRamani(2008);theeffectsizesreportedforRamaniandSiegler(2008)andSieglerandRamani(2009)werereportedbytheauthors(theauthorsdidnotprovidesufficientinformationfortheWWCtocalculatetheeffectsize).

184. SieglerandRamani(2008);RamaniandSiegler(2008).SieglerandRamani(2009)foundasignificanteffectofthenum-berboardgameonpercentabsoluteerrorbutdidnotreportaneffectsizeorprovidesufficientinformationtocalculateit.

185. SieglerandRamani(2008,2009).186. SieglerandBooth(2004).187.Theauthorsdidnotreportwhetherthe

differencebetweentreatmentandcontrolgroupswassignificant.

188.FollowingWWCguidelines,improvedout-comesareindicatedbyeitherapositivestatisticallysignificanteffectorapositive

substantivelyimportanteffectsize.Inthisguide,thepaneldiscussessubstantivelyimportantfindingsasonesthatcontributetotheevidenceofpractices’effectiveness,evenwhenthoseeffectsarenotstatisti-callysignificant.SeetheWWCguidelinesathttp://ies.ed.gov/ncee/wwc/pdf/wwc_pro-cedures_v2_standards_handbook.pdf.

189. BoothandSiegler(2008).190.Thisstudyalsoincludedacircularnumeric

boardgametreatmentthatwasnotcon-sideredaspartoftheevidenceforthisrecommendation.

191. Thisstudyalsoincludedkindergartenstu-dents,buttheauthorsfocusedtheiranalysisresultson1st- and2nd-graderssincethetreatmentdidnothavetheexpectedeffectforkindergarteners.

192. Thisstudyalsoincludedatreatmentgroupthathadstudentsgenerateanumberlinewiththeaddendsandsums(insteadofpro-vidingthemwithacomputer-generatedline).Thesetwotreatmentsdidnotsignificantlydifferinthepercentageofcorrectanswers.

193.BoothandSiegler(2006);SieglerandBooth(2004).

194. SieglerandBooth(2004).195.BoothandSiegler(2006).196. Rittle­Johnson,Siegler,andAlibali

(2001).197. KeijzerandTerwel(2003).198.Brightetal.(1988);Izsak,Tillema,andTunc-

Pekkan(2008).199.Brightetal.(1988).200.Schneider,Grabner,andPaetsch(2009).201.Wu(2002).202.Rittle­JohnsonandKoedinger(2002,

2009);Rittle­Johnson,Siegler,andAli­bali(2001).

203.Rittle­JohnsonandKoedinger(2002,2009).

204.Anderson(2004);SchneiderandPressley(1997).

205.Hecht(1998);Hecht,Close,andSantisi(2003);HechtandVagi(inpress);Rittle­Johnson,Siegler,andAlibali(2001).

206. NationalMathematicsAdvisoryPanel(2008);NationalResearchCouncil(2001).

((7373))

Page 80: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Endnotescontinued

207. Rittle­JohnsonandKoedinger(2002,2009);Rittle­Johnson,Siegler,andAli­bali(2001).

208.Rittle­JohnsonandKoedinger(2002,2009).

209.Rittle­Johnson,Siegler,andAlibali(2001),Experiment2.

210.Forap-value<0.05,theeffectsizeissig-nificant(sig);forap-value≥0.05,theeffectsizeisnotsignificant(ns).

211. Rittle­Johnson,Siegler,andAlibali(2001),Experiment1.

212. Ibid.213. Hudson Hawkins (2008); Nishida

(2008).214. Nishida(2008),Experiment2.215. HudsonHawkins(2008).216.Cramer,Post,anddelMas(2002).217. AnandandRoss(1987).218. Irwin(2001).219. NationalCouncilofTeachersofMathematics

(2000);NationalMathematicsAdvisoryPanel(2008).

220.ResnickandSinger(1993).221. Lamon(1994).222.Carpenteretal.(1999).223.Carpenteretal.(1999);Cramer,Post,and

Currier(1993).224. Sellke,Behr,andVoelker(1991).225.Bassok(1990);Carroll(1994);Cooperand

Sweller(1987);Lewis(1989);LewisandMayer(1987);ReedandBolstad(1991);SwellerandCooper(1985).

226.NationalMathAdvisoryPanel(2008).227. Jitendraetal.(2009);Xin,Jitendra,and

Deatline­Buchman(2005).228.Xin,Jitendra,andDeatline­Buchman

(2005).229.Jitendraetal.(2009).230.Jitendraetal.(2009)reportedasignifi-

cantpositiveeffectofthetreatmentontheproblemsolvingposttest.However,whentheWWCappliedaclusteringcorrection,sincestudentsinthestudywereclusteredinclassrooms,theresultswerenotsig-nificant.Foranexplanation,seetheWWCTutorialonMismatch.FortheformulastheWWCusedtocalculatethestatistical

significance,seetheWWCProceduresandStandardsHandbook.

231. Thepaneldidnotreviewstudiesthatmea-suredtheeffectofprofessionaldevelopmentonteacherknowledge,althoughareviewbytheNationalMathAdvisoryPaneldidnotidentifyanystudieswithacomparisongroupdesign.

232. Garetetal.(2010);Saxe,Gearhart,andNasir(2001).

233. Carpenteretal.(1989);Jacobsetal.(2007).

234.Cole(1992);MeyerandSutton(2006);Niess(2005);Ross,Hogaboam-Gray,andBruce(2006);Sloan(1993).

235.Hill,Rowan,andBall(2005).236.LiandKulm(2008);Ma(1999);Newton

(2008);Postetal.(1988).237. Saxe,Gearhart,andNasir(2001).Although

thestudyalsousedaquasi-experimentaldesigntocomparetwomathcurricula,onlytheprofessionaldevelopmentportionofthisstudy,whichusedarandomassignmentdesign,isrelevantforRecommendation5.

238.Garetetal.(2010).239.Carpenteretal.(1989);Jacobsetal.

(2007).240. Carpenteretal.(1989).241. Jacobsetal.(2007).242.Hill,Rowan,andBall(2005).243.LiandKulm(2008);Ma(1999);Postetal.

(1988).244.Ma(1999).245.Postetal.(1988).246.LiandKulm(2008).247. Thisincludesrandomizedcontroltri-

als(RCTs),quasi-experimentaldesigns(QEDs),regressiondiscontinuitydesigns(RDDs),andsingle-casedesigns(SCDs)evaluatedwithWWCstandards.

248. Iftheonlyevidencemeetingstandards(withorwithoutreservations)isSCDs,theguidelinessetbytheSCDstandardspanelwillapply.Forexternalvalidity,therequirementsareaminimumoffiveSCDresearchpapersexaminingtheinterven-tionthatmeetevidencestandardsormeetevidencestandardswithreserva-tions,thestudiesmustbeconductedby

((7474))

Page 81: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Endnotescontinued

atleastthreedifferentresearchteamsat andfloor,theassessment’sitemgradients,threedifferentgeographicallocations,andthecombinednumberofexperimentsacrossstudiestotalsatleast20.

whethertheassessmentwasoveralignedwiththeintervention,andtheappropriate-nessoftheassessmentforthesampleto

249. Whenevaluatingwhethereffectsarecon- whichitwasapplied.sistentorcontradictory,considerthepsy-chometricpropertiesoftheassessments.Forexample,effectsarelesslikelytobe

250. Incertaincircumstances(e.g.,acomparisongroupcannotbeformed),thepanelmaybaseamoderateratingonmultiplecorrelational

detectedifanassessmentisunreliable.Psychometricpropertiestoconsiderincludereliability,thepresenceoflimitedorcon-

designswithstrongstatisticalcontrolsforselectionbiasthatdemonstrateconsistentpos-itiveeffectswithoutcontradictoryevidence.

strainedvariance,theassessment’sceiling

((7575))

Page 82: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencesa

AmericanEducationalResearchAssociation,AmericanPsychologicalAssociation,&NationalCouncilonMeasurementinEduca-tion.(1999).The standards for educational and psychological testing. Washington,DC:AmericanEducationalResearchAssociationPublications.

AmericanPsychologicalAssociation.(2002).Criteriaforpracticeguidelinedevelopmentandevaluation.American Psychologist, 57(12),1048–1051.

Anand,P.G.,&Ross,S.M.(1987).Usingcomputer­assistedinstructiontopersonalizearithmeticmaterialsforelementaryschoolchildren.JournalofEducationalPsychology,79(1),72–78.

Anderson,J.R.(2004).Cognitive psychology and its implications(6thed.).NewYork:WorthPublishers.

Ashlock,R.(January2009).Error patterns in computation: Using error patterns to improve instruction.Boston,MA:AllynandBacon.

Baldi,S.,Jin,Y.,Skemer,M.,Green,P.J.,&Her-get,D.(2007).Highlights from PISA 2006: Performance of U.S. 15­year­old students in science and mathematics literacy in an international context(NCES2008–016).Washington,DC:NationalCenterforEduca-tionStatistics,InstituteofEducationSci-ences,U.S.DepartmentofEducation.

Barash,A.andKlein,R.(1996).Seventhgradestudents’algorithmic,intuitiveandformalknowledgeofmultiplicationanddivisionofnonnegativerationalnumbers.InPuig,L.andGutiérrez,A.(Eds.),Proceedings of the 20th conference of the International Group for the Psychology of Mathematics Educa­tion, Volume 2 (pp.35–42).Valencia,Spain:UniversityofValencia.

Bassok,M.(1990).Transferofdomain-specificproblem-solvingprocedures.Journal of Experimental Psychology: Learning, Mem­ory, and Cognition, 16,522–533.

Beckmann,S.(2008).Mathematics for elemen­tary teachers and activities(2nded.).Boston:AddisonWesley.

Booth,J.L.,&Siegler,R.S.(2006).Devel-opmentalandindividualdifferencesinpurenumericalestimation.Developmental Psychology, 42(1),189–201.

Booth,J.L.,&Siegler,R.S.(2008).Numericalmagnituderepresentationsinfluencearithmeticlearning.ChildDevelopment,79(4),1016–1031.

Bottge,B.A.(1999).Effectsofcontextu­alizedmathinstructiononproblemsolvingofaverageandbelowaverageachievingstudents.TheJournalofSpecialEducation,33(2),81–92.

Boyer,T.W.,Levine,S.C.,&Huttenlocher,J.(2008).Developmentofproportionalreason-ing:Whereyoungchildrengowrong.Devel­opmental Psychology, 44(5),1478–1490.

Bright,G.,Behr,M.,Post,T.,&Wachsmuth,I.(1988).Identifyingfractionsonnumberlines.Journal for Research in Mathematics Education, 19(3),215–232.

Bulgar,S.(2009).Alongitudinalstudyofstudents’representationsfordivisionoffractions.Montana Mathematics Enthusiast, 6(1),165–200.

Carpenter,T.P.,Fennema,E.,Peterson,P.L.,Chiang,C.P.,&Loef,M.(1989).Usingknowledgeofchildren’smath­ematicsthinkinginclassroomteach­ing:Anexperimentalstudy.AmericanEducationalResearchJournal,26(4),499–531.

Carpenter,T.P.,Gomez,C.,Rousseau,C.,Steinthorsdottir,O.,Valentine,C.,Wagner,L.,&Wiles,P.(April,1999).An analysis of student construction of ratio and propor­tion understanding.PaperpresentedattheannualmeetingoftheAmericanEduca-tionalResearchAssociation,Montreal.

Carraher,D.W.(1996).Learningaboutfrac-tions.InL.P.Steffe,P.Nesher,P.Cobb,G.A.Goldin,&B.Greer(Eds.),Theories of mathematical learning(pp.241–266).Mah-wah,NJ:LawrenceErlbaumAssociates.

Carroll,W.M.(1994).Usingworkedexamplesasaninstructionalsupportinthealgebra

aEligiblestudiesthatmeetWWCevidencestandardsormeetevidencestandardswithreservationsareindicatedbyboldtextintheendnotesandreferencespages.Formoreinformationaboutthesestudies,pleaseseeAppendixD.

((7676))

Page 83: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencescontinued

classroom.Journal of Educational Psychol­ogy,86,360–367.

Chapin,S.H.,&Anderson,N.C.(2003).Crossingthebridgetoformalproportionalreasoning.Mathematics Teaching in the Middle School, 8(8),420–425.

Chen,P.(1999).Early understanding of ratio­nal numbers: Sharing and proportional reasoning.Doctoraldissertation,UniversityofCalifornia–SantaBarbara.

Cole,D.C.(1992).Theeffectsofaone-yearstaffdevelopmentprogramontheachieve-mentoftestscoresoffourth-gradestu-dents.Dissertation Abstracts International (UMINo.9232258),53(06),1792A.

Cooper,G.,&Sweller,J.(1987).Effectsofschemaacquisitionandruleautomationonmathematicalproblem-solvingtransfer.Jour­nal of Educational Psychology,79,347–362.

Cramer,K.,&Henry,A.(2002).Usingmanipu-lativemodelstobuildnumbersenseforadditionoffractions.InB.Litwiller&G.Bright(Eds.),Making sense of fractions, ratios, and proportions: 2002 yearbook (pp.41–48).Reston,VA:NationalCouncilofTeachersofMathematics.

Cramer,K.&Post,T.(1993,February).Makingconnections:Acaseforproportionality.Arithmetic Teacher,60(6),342–346.

Cramer,K.,Post,T.,&Currier,S.(1993).Learningandteachingratioandpropor-tion:Researchimplications.InD.Owens(Ed.),Research ideas for the classroom (pp.159–178).NewYork:Macmillan.

Cramer,K.,Post,T.,&delMas,R.C.(2002).Initialfractionlearningbyfourth-andfifth-gradestudents:AcomparisonoftheeffectsofusingcommercialcurriculawiththeeffectsofusingtheRationalNumberProjectCurriculum.Journal for Research in Mathematics Education, 33(2),111–144.

Cramer,K.,&Wyberg,T.(2009).Efficacyofdifferentconcretemodelsforteachingthepart-wholeconstructforfractions.Mathematical Thinking and Learning, 11(4),226–257.

Cramer,K.,Wyberg,T.,&Leavitt,S.(2008).Theroleofrepresentationsinfractionaddi-tionandsubtraction.Mathematics Teaching in the Middle School, 13(8),490–496.

Davis,G.E.,&Pepper,K.L.(1992).Mathemati-calproblemsolvingbypre-schoolchildren.Educational Studies in Mathematics, 23,397–415.

Davis,G.E.,&Pitkethly,A.(1990).Cognitiveaspectsofsharing.Journal for Research in Mathematics Education, 21,145–153.

Empson,S.B.(1999).Equalsharingandsharedmeaning:Thedevelopmentoffrac-tionconceptsinafirst-gradeclassroom.Cognition & Instruction, 17(3),283.

Frydman,O.,&Bryant,P.E.(1988).Shar­ingandtheunderstandingofnumberequivalencebyyoungchildren.Cogni­tiveDevelopment,3,323–339.

Fujimura,N.(2001).Facilitatingchildren’sproportionalreasoning:Amodelofreasoningprocessesandeffectsofinterventiononstrategychange.Jour­nalofEducationalPsychology,93(3),589–603.

Garet,M.,Wayne,A.,Stancavage,F.,Taylor,J.,Walters,K.,Song,M.,...Doolittle,F.(2010).Middleschoolmathematicsprofessionaldevelop­mentimpactstudy:Findingsafterthefirstyearofimplementation(NCEE2010­4009).Washington,DC:NationalCenterforEducationEvaluationandRegionalAssistance,InstituteofEdu­cationSciences,U.S.DepartmentofEducation.

Gerver,R.,&Sgroi,R.(1989).Focus on com­putational errors for teachers of basic skills mathematics programs.Cincinnati,OH:South-WesternSchoolDivision.

Gonzales,P.,Williams,T.,Jocelyn,L.,Roey,S.,Kastberg,D.,&Brenwald,S.(2009).Highlights from TIMSS 2007: Mathematics and science achievement of U.S. fourth­ and eighth­grade students in an international context(NCES2009–001,revised).Wash-ington,DC:NationalCenterforEducationStatistics,InstituteofEducationSciences,U.S.DepartmentofEducation.

Goswami,U.(1989).Relationalcomplexityandthedevelopmentofanalogicalreasoning.Cognitive Development, 4,251–268.

Goswami,U.(1995).Transitiverelationalmappingsinthree-andfour-year-olds:The

((7777))

Page 84: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencescontinued

analogyofGoldilocks and the Three Bears.Child Development, 66(3),877–892.

Hackenberg,A.J.(2007).Unitscoordinationandtheconstructionofimproperfractions:Arevisionofthesplittinghypothesis.Jour­nal of Mathematical Behavior, 26(1),27–47.

Hecht,S.A.(1998).Towardaninformation-processingaccountofindividualdif-ferencesinfractionskills.Journal of Educational Psychology, 90(3),545–559.

Hecht,S.A.,Close,L.,&Santisi,M.(2003).Sourcesofindividualdifferencesinfractionskills.Journal of Experimental Child Psy­chology, 86(4),277.

Hecht,S.A.&Vagi,K.(inpress).Sourcesofgroupandindividualdifferencesinemerg-ingfractionskills.Journal of Educational Psychology.

Heller,P.M.,Ahlgren,A.,Post,T.,Behr,M.,&Lesh,R.(1989).Proportionalreason-ing:Theeffectoftwocontextvariables,ratetype,andproblemsetting.Journal of Research in Science Teaching, 26(3),205–220.

Hembree,R.(1992).Experimentsandrela-tionalstudiesinproblemsolving:Ameta-analysis.Journal for Research in Mathematics Education, 23,242–273.

Hiebert,J.,Wearne,D.,&Taber,S.(1991).Fourthgraders’gradualconstructionofdecimalfractionsduringinstructionusingdifferentphysicalrepresentations.The Elementary School Journal, 91(4),321–341.

Hill,H.C.,Rowan,B.,&Ball,D.L.(2005).Effectsofteachers’mathematicalknowl-edgeforteachingonstudentachievement.American Educational Research Journal, 42(2),371–406.

Hoffer,T.,Venkataraman,L.,Hedberg,E.C.,&Shagle,S.(2007).Final report on the national survey of algebra teachers for the National Math Panel.Chicago:NationalOpinionResearchCenterattheUniversityofChicago.

HudsonHawkins,V.(2008).Theeffectsofmathmanipulativesonstudentachievementinmathematics.Unpub­lisheddoctoraldissertation,CappellaUniversity,Minneapolis,MN.

Hunting,R.P.&Sharpley,C.F.(1988).Preschool-ers’cognitionoffractionalunits.British Jour­nal of Educational Psychology,58,172–183.

Irwin,K.C.(2001).Usingeverydayknowledgeofdecimalstoenhanceunderstanding.Journal for Research in Mathematics Educa­tion, 32(4),399–420.

Izsak,A.,Tillema,E.,&Tunc-Pekkan,Z.(2008).Teachingandlearningfractionadditiononnumberlines.Journal for Research in Math­ematics Education, 39(1),33–62.

Jacobs,V.J.,Franke,M.L.,Carpenter,T.P.,Levi,L.,&Battey,D.(2007).Alarge­scalestudyofprofessionaldevelop­mentfocusedonchildren’salgebraicreasoninginelementaryschool.JournalforResearchinMathematicsEducation,38,258–288.

Jitendra,A.K.,Star,J.R.,Starosta,K.,Leh,J.M.,Sood,S.,Caskie,G.,...Mack,T.R.(2009).Improvingseventhgradestudents’learningofratioandproportion:Theroleofschema­basedinstruction.ContemporaryEduca­tionalPsychology,34(3),250–264.

Johanning,D.I.(2006,April).Benchmarks and estimation: A critical element in sup­porting students as they develop fraction algorithms.PaperpresentedatmeetingofPsychologyofMathematics&EducationofNorthAmerica,St.Louis,MO.

Kamii,C.,&Warrington,M.A.(1995).Divisionwithfractions:APiagetian,constructivistapproach.Hiroshima Journal of Mathemat­ics Education, 3,53–62.

Keijzer,R.,&Terwel,J.(2003).Learningformathematicalinsight:Alongitudinalcom-parativestudyonmodeling.Learning and Instruction, 13(3),285–304.

Kent,L.B.,Arnosky,J.,&McMonagle,J.(2002).Usingrepresentationalcontextstosupportmultiplicativereasoning.InB.Litwiller&G.Bright(Eds.),Making sense of fractions, ratios, and proportions: 2002 yearbook (pp.145–152).Reston,VA:NationalCouncilofTeachersofMathematics.

Kerslake,D.(1986).Fractions: Children’s strategies and errors: A report of the strate­gies and errors in secondary mathematics project.Windsor,UK:NFER-Nelson.

((7788))

Page 85: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencescontinued

Kloosterman,P.(2010).Mathematicsskillsof17-year-oldsintheUnitedStates:1978to2004.Journal for Research in Mathematics Education, 41(1),20–51.

Lamon,S.J.(1993).Ratioandproportion:Children’scognitiveandmetacognitiveprocesses.InT.P.Carpenter,E.Fennema,&T.A.Romberg(Eds.),Rational numbers: An integration of research(pp.131–156).Hillsdale,NJ:Erlbaum.

Lamon,S.J.(1994).Ratioandproportion:Cognitivefoundationsinunitizingandnorming.InG.Harel&J.Confrey(Eds.),The development of multiplicative reason­ing in the learning of mathematics (pp.89–120).Albany:StateUniversityofNewYorkPress.

Lamon,S.J.(2005).Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers(2nded.).Mahwah,NJ:LawrenceErlbaumAssociates.

Lamon,S.J.(2007).Rationalnumbersandproportionalreasoning:Towardatheoreti-calframeworkforresearch.InF.Lester(Ed.),Second handbook of research on mathematics teaching and learning (pp.629–668).Reston,VA:NationalCouncilofTeachersofMathematics.

Lesh,R.,Post,T.,&Behr,M.(1988).Propor-tionalreasoning.InJ.Hiebert&M.Behr(Eds.),Number concepts and operations in the middle grades(pp.93–118).Reston,VA:LawrenceErlbaumAssociates&NationalCouncilofTeachersofMathematics.

Lewis,A.B.(1989).Trainingstudentstorepre-sentarithmeticwordproblems.Journal of Educational Psychology, 81(4),521–531.

Lewis,A.B.,&Mayer,R.E.(1987).Students’miscomprehensionofrelationalstatementsinarithmeticwordproblems.Journal of Educational Psychology, 79,363–371.

Li,Y.,&Kulm,G.(2008).Knowledgeandcon-fidenceofpre-servicemathematicsteach-ers:Thecaseoffractiondivision.ZDM, 40(5),833–843.

Ma,L.(1999).Knowing and teaching elemen­tary mathematics: Teachers’ understanding of fundamental mathematics in China and

the United States.Mahwah,NJ:LawrenceErlbaumAssociates.

Mack,N.K.(1990).Learningfractionswithunderstanding:Buildingoninformalknowl-edge.Journal for Research in Mathematics Education, 21(1),16–32.

Mack,N.K.(1993).Learningrationalnumberswithunderstanding:Thecaseofinformalknowledge.InT.P.Carpenter,E.Fennema,&T.A.Romberg(Eds.),Rational numbers: An integration of research(pp.85–105).Hillsdale,NJ:LawrenceErlbaumAssociates.

Mack,N.K.(1995).Confoundingwhole-num-berandfractionconceptswhenbuildingoninformalknowledge.Journal for Research in Mathematics Education, 26(5),422–441.

Mack,N.K.(2000,April).Long­term effects of building on informal knowledge in a complex content domain: The case of multiplication of fractions.PaperpresentedattheannualmeetingoftheAmericanEducationalResearchAssociation,NewOrleans,LA.

Mack,N.K.(2001).Buildingoninformalknowledgethroughinstructioninacom-plexcontentdomain:Partitioning,units,andunderstandingmultiplicationoffrac-tions.Journal for Research in Mathematics Education, 32(3),267–295.

Marchionda,H.(2006).Preservice teachers’ procedural and conceptual understanding of fractions and the effects of inquiry­based learning on this understanding.Unpublishedthesis,ClemsonUniversity,Clemson,SC.

McCloskey,M.(2007).Quantitativeliteracyanddevelopmentaldyscalculias.InD.B.Berch&M.M.M.Mazzocco(Eds.),Why is math so hard for some children? The nature and origins of mathematical difficulties and disabilities(pp.415–429).Baltimore,MD:PaulH.BrookesPublishing.

Meyer,S.J.,&Sutton,J.T.(2006,October).Linking teacher characteristics to student mathematics outcomes: Preliminary evi­dence of impact on teachers and students after participation in the first year of the Math in the Middle Institute Partnership.PaperpresentedattheMSPEvaluationSummitII,Minneapolis,MN.

Moore,L.J.,&Carnine,D.(1989).Evaluatingcurriculumdesigninthecontentofactive

((7979))

Page 86: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencescontinued

teaching.Remedial and Special Education, 10(4),28–37.

Moseley,B.J.,Okamoto,Y.,&Ishida,J.(2007).ComparingUSandJapaneseelementaryschoolteachers’facilityforlinkingrationalnumberrepresentations.International Journal of Science & Mathematics Educa­tion, 5(1),165–185.

Mullis,I.,Martin,M.,Beaton,A.,Gonzalez,E.,Kelly,D.,&Smith,T.(1997).Mathematics achievement in the primary school years: IEA’s third mathematics and science study.Boston:CenterfortheStudyofTesting,Evaluation,andEducationalPolicy,BostonCollege.

NationalAcademyofSciences.(2007).Rising above the gathering storm: Energizing and employing America for a brighter economic future.Washington,DC:TheNationalAcad-emiesPress.

NationalCouncilofTeachersofMathematics.(2000).Principles and standards for school mathematics.Reston,VA:Author.

NationalCouncilofTeachersofMathemat-ics.(2007).The learning of mathematics: 69th NCTM yearbook.Reston,VA:NationalCouncilofTeachersofMathematics.

NationalMathematicsAdvisoryPanel.(2008).Foundations for success: The final report of the National Mathematics Advisory Panel.Washington,DC:NationalAcademiesPress.

NationalResearchCouncil.(2001).Adding it up: Helping children learn mathematics.J.Kilpatrick,J.Swafford,andB.Findell(Eds.).MathematicsLearningStudyCommittee,CenterforEducation,DivisionofBehavioralandSocialSciencesandEducation.Wash-ington,DC:NationalAcademyPress.

Newton,K.J.(2008).Anextensiveanalysisofpreserviceelementaryteachers’knowl-edgeoffractions.American Educational Research Journal, 45(4),1080–1110.

Ni,Y.,&Zhou,Y.(2005).Teachingandlearn-ingfractionandrationalnumbers:Theoriginsandimplicationsofwholenumberbias.Educational Psychologist, 40(1),27–52.

Niemi,D.(1996).Afractionisnotapieceofpie:Assessingexceptionalperformanceanddeepunderstandinginelementary

schoolmathematics.Gifted Child Quarterly, 40(2),70–80.

Niess,M.L.(2005).Oregon ESEA title IIB MSP: Central Oregon consortium. Report to the U.S. Department of Education, Mathemat­ics and Science Partnerships.Corvallis,OR:DepartmentofScience&MathematicsEducation,OregonStateUniversity.

Nishida,T.K.(2008).Theuseofmanipu­lativestosupportchildren’sacqui­sitionofabstractmathconcepts.Unpublishedthesis,UniversityofVirginia,Charlottesville,VA.

Opfer,J.,&DeVries,J.(2008).Representationalchangeandmagnitudeestimation:Whyyoungchildrencanmakemoreaccuratesalarycomparisonsthanadults.Cognition, 108,pp.843–849.

Painter,R.R.(1989).A comparison of the pro­cedural error patterns, scores, and other variables, of selected groups of university and eighth­grade students in Mississippi on a test involving arithmetic operations on fractions.Unpublishedthesis,UniversityofSouthernMississippi,Hattiesburg,MS.

Pepper,K.L.(1991).Preschoolers’knowledgeofcountingandsharingindiscretequan-titysettings.InR.P.HuntingandG.Davis(Eds.),Early fraction learning(pp.103–127).NewYork:Springer-Verlag.

Post,T.,Harel,G.,Behr,M.,&Lesh,R.(1988).Intermediateteachers’knowledgeofrationalnumberconcepts.InE.Fennema,T.P.Carpenter,&S.J.Lamon(Eds.),Inte­grating research on teaching and learning mathematics(pp.177–198).Albany:StateUniversityofNewYorkPress.

Pothier,Y.,&Sawada,D.(1990).Partition-ing:Anapproachtofractions.Arithmetic Teacher, 38(4),12–17.

Ramani,G.B.,&Siegler,R.S.(2008).Promotingbroadandstableimprove­mentsinlow­incomechildren’snumericalknowledgethroughplayingnumberboardgames.ChildDevelop­ment,79(2),375–394.

Reed,S.K.,&Bolstad,C.A.(1991).Useofexam-plesandproceduresinproblemsolving.Journal of Experimental Psychology: Learn­ing, Memory, and Cognition,17,753–766.

((8080))

Page 87: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencescontinued

Resnick,L.B.,&Singer,J.A.(1993).Proto-quantitativeoriginsofratioreasoning.InT.P.Carpenter,E.Fennema&T.A.Rom-berg(Eds.),Rational numbers: An integra­tion of research(pp.107–130).Hillsdale,NJ:LawrenceErlbaumAssociates.

Rittle­Johnson,B.,&Koedinger,K.R.(2002,October).Comparinginstruc­tionalstrategiesforintegratingcon­ceptualandproceduralknowledge.Paperpresentedattheannualmeet­ingoftheNorthAmericanChapteroftheInternationalGroupforthePsychologyofMathematicsEducation,Athens,GA.

Rittle-Johnson,B.,&Koedinger,K.R.(2005).Designingknowledgescaffoldstosupportmathematicalproblemsolving.Cognition & Instruction, 23(3),313–349.

Rittle­Johnson,B.,&Koedinger,K.(2009).Iteratingbetweenlessonsonconceptsandprocedurescanimprovemathematicsknowledge.BritishJour­nalofEducationalPsychology,79,483–500.

Rittle­Johnson,B.,Siegler,R.S.,&Alibali,M.W.(2001).Developingconceptualunderstandingandproceduralskillinmathematics:Aniterativeprocess.JournalofEducationalPsychology,93(2),346–362.

Rivera-Batiz,F.L.(1992).QuantitativeliteracyandthelikelihoodofemploymentamongyoungadultsintheUnitedStates.Journal of Human Resources, 27(2),313–328.

Ross,J.A.,Hogaboam-Gray,A.,&Bruce,C.(2006).Theimpactofaprofessionaldevel-opmentprogramonstudentachievementingrade6.Journal of Mathematics Teacher Education, 9(6),1–27.

Saxe,G.B.,Gearhart,M.,&Nasir,N.S.(2001).Enhancingstudents’under­standingofmathematics:Astudyofthreecontrastingapproachestopro­fessionalsupport.JournalofMathe­maticsTeacherEducation,4(1),55–79.

Schneider,M.,Grabner,R.H.,&Paetsch,J.(2009).Mentalnumberline,numberlineestimation,andmathematicalachievement:Theirinterrelationsingrades5and6.

Journal of Educational Psychology, 101(2),359–372.

Schneider,W.,&Pressley,M.(1997).Memory development between two and twenty (2nded.).Hillsdale,NJ:LawrenceErlbaumAssociates.

Sellke,D.,Behr,M.,&Voelker,A.(1991).Usingdatatablestorepresentandsolvemultiplicativestoryproblems.JournalforResearchinMathematicsEducation,22(1),30–38.

Sharp,B.D.(2004).Children’s knowledge of fractions.Unpublishedthesis,UniversityofVirginia,Charlottesville,VA.

Shoseki,T.(2010).Mathematics for elemen­tary school (grades 1 to 6).Madison,NJ:GlobalEducationResources.

Siegler,R.S.,&Booth,J.L.(2004).Devel­opmentofnumericalestimationinyoungchildren.ChildDevelopment,75(2),428–444.

Siegler,R.S.,&Ramani,G.B.(2008).Playinglinearnumericalboardgamespromoteslow­incomechildren’snumericaldevelopment.Developmen­talScience,11(5),655–661.

Siegler,R.S.,&Ramani,G.B.(2009).Playinglinearnumberboardgames—butnotcircularones—improveslow­incomepreschoolers’numericalunderstanding.JournalofEducationalPsychology,101(3),545–560.

Singer-Freeman,K.,&Goswami,U.(2001).Doeshalfapizzaequalhalfaboxofchocolates?Proportionalmatchinginananalogytask.Cognitive Development, 16(3),811–829.

Sloan,H.A.(1993).Direct instruction in fourth and fifth grade classrooms.Unpublishedthesis,PurdueUniversity,WestLafayette,IN.

Smith,J.P.(2002).Thedevelopmentofstu-dents’knowledgeoffractionsandratios.InB.Litwiller&G.Bright(Eds.),Making sense of fractions, ratios, and proportions: 2002 yearbook(pp.3–17).Reston,VA:NationalCouncilofTeachersofMathematics.

Sophian,C.(2007).The origins of math­ematical knowledge in childhood. Studies in mathematical thinking and learning.Hills-dale,NJ:LawrenceErlbaumAssociates.

((8181))

Page 88: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencescontinued

Sophian,C.,Garyantes,D.,&Chang,C.(1997).Whenthreeislessthantwo:Earlydevelopmentsinchildren’sunderstandingoffractionalquantities.Developmental Psychology, 33,731–744.

Sophian,C.,&Wood,A.(1997).Proportionalreasoninginyoungchildren:Thepartsandthewholeofit.Journal of Educational Psychology,89(2),309–317.

Sowder,J.T.,Philipp,R.A.,Armstrong,B.E.,&Schappelle,B.P.(1998).Middle­grade teachers’ mathematical knowledge and its relationship to instruction.Ithaca,NY:StateUniversityofNewYorkPress.

Spinillo,A.G.(1995,July).Can young children learn how to reason proportionally? An intervention study.PaperpresentedattheannualconferenceoftheInternationalGroupforthePsychologyofMathematicsEducation,Recife,Brazil.

Spinillo,A.G.,&Bryant,P.(1991).Children’sproportionaljudgments:Theimportanceof“half.”Child Development, 62,427–440.

Spinillo,A.G.,&Bryant,P.(1999).Propor-tionalreasoninginyoungchildren:Part-partcomparisonsaboutcontinuousanddiscontinuousquantity.Mathematical Cognition, 5(2),181–197.

Starkey,P.,Klein,A.,&Wakeley,A.(2004).Enhancingyoungchildren’smathematicalknowledgethroughapre-kindergartenmathematicsintervention.Early Childhood Research Quarterly, 19,99–120.

Stemn,B.S.(2008).Buildingmiddleschoolstudents’understandingofproportionalreasoningthroughmathematicalinvestiga-tion.Education 3–13, 36(4),383–392.

Streefland,L.(1991).Fractions in realistic mathematics education: A paradigm of developmental research.Dordrecht,TheNetherlands:Kluwer.

Sweller,J.,&Cooper,G.A.(1985).Theuseofworkedexamplesasasubstituteforprob-lemsolvinginlearningalgebra.Cognition and Instruction,2,59–89.

Tatsuoka,K.K.,&Tatsuoka,M.M.(1983).Spottingerroneousrulesofoperationbytheindividualconsistencyindex.Journal of Educational Measurement,20,221–230.

Terwel,J.,vanOers,B.,vanDijk,I.,&VandenEeden,P.(2009).Arerepresentationstobeprovidedorgeneratedinprimarymathematicseducation?Effectsontransfer.Educa­tionalResearch&Evaluation,15(1),25–44.

Thompson,P.W.,&Saldanha,L.A.(2003).Fractionsandmultiplicativereasoning.InP.Kilpatrick(Ed.),A research companion to principles and standards for school math­ematics(pp.95–113).Reston,VA:NationalCouncilofTeachersofMathematics.

Tirosh,D.(2000).Enhancingprospectiveteachers’knowledgeofchildren’sconcep-tions:Thecaseofdivisionoffractions.Journal for Research in Mathematics Educa­tion, 31(1),5–25.

Vamvakoussi,X.,&Vosniadou,S.(2004).Understandingthestructureofthesetofrationalnumbers:Aconceptualchangeapproach.Learning and Instruction, 14(1),453–467.

VandeWalle,J.,Karp,K.,&Bay-Williams,J.(2010).Elementary and middle school math­ematics: Teaching developmentally (7thed.).Boston,MA:AllynandBacon.

Warren,E.,&Cooper,T.(2007).Repeatingpat-ternsandmultiplicativethinking:Analysisofclassroominteractionswith9-year-oldstudentsthatsupportthetransitionfromtheknowntothenovel.Journal of Class­room Interaction, 41/42(2),7–17.

Warrington,M.,&Kamii,C.(1998).Multiplica-tionwithfractions:APiagetian,construc-tivistapproach.Mathematics Teaching in the Middle School, 3(5),339–343.

Wearne,D.,&Hiebert,J.(1989).Cognitivechangesduringconceptuallybasedinstruc-tionondecimalfractions.Journal of Educa­tional Psychology, 81(4),507–513.

Wu,H.(2002).Chapter 2: Fractions (Draft).RetrievedOctober3,2009,fromhttp://www.math.berkeley.edu/~wu/.

Wu,Z.(2004).The study of middle school teachers’ understanding and use of math­ematical representation in relation to teachers’zone of proximal development in teaching fractions and algebraic functions.

((8282))

Page 89: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

Referencescontinued

Unpublishedthesis,TexasA&MUniversity,CollegeStation,TX.

Xin,Y.P.,Jitendra,A.K.,&Deatline­Buch­man,A.(2005).Effectsofmathemati­calwordproblem–solvinginstructiononmiddleschoolstudentswithlearn­

ingproblems.TheJournalofSpecialEducation,39(3),181–192.

Yanik,H.B.,Helding,B.,&Flores,A.(2008).Teachingtheconceptofunitinmeasure-mentinterpretationofrationalnumbers.Ilkogretim Online, 7(3),693–705.

((8383))

Page 90: Developing Effective Fractions Instruction for Kindergarten ...IES Practice Guide Developing Efective Fractions Instruction for Kindergarten Through 8th Grade September 2010 Panel

IndexofKeyMathematicalConcepts

addition,9,19,20,24,27,28,30-34,36-39,43,46,57-59,60,62,63,65,66

commonfraction,6,8,9,24,30,47,48

compare,7,9,13,15,16,17,20,22-23,24,25,27,36,40,41,48,57,58,59,62

conceptualunderstanding,6,8,11,20,26-34,35,42,43,59,60,61,62,65,66

cross­multiplication,11,35, 37-39,41

decimals,6,7,8,9,20,21,22,23,24,26,27,30,31,43,45,48,57,58,59,60,61,62,65

density,23-24,47

division,8,9,12-17,18,19,22,24,25,27,29,30,31,33,37,38,44,45,46,47,48,62,66,67

equalsharing,8,11,12-17,18,44,47,55,56

equivalence,8,9,12-13,15-18,19,20,22-25,32,35,38-39,41,47,48,56,59,61-63

estimation,7,20,21,22,26,30,31,34,43,44,57,58,59,61,62

improperfractions,22,30,31,32,47

invert­and­multiply,9,33,46

magnitude,7,9,16,18,19-23,31,32,56-57

measurement,8,9,19-21,23,25,33-34,35,44,59,62,

mixednumbers,22,30,32,47

multiplication,8,9,28-29,31,32-33,35,36,38,39,41,45-46,63,66

multiplicativerelations,35-41,47,48,62-63

negativefractions,7,9,20,23-24,30

numberline, 7,9,11,19-25,27,28-30,32,44,45,55,56-59,60-61

ordering,6,12-17,19,20,23,27,43,45,56-60,62

partitioning,12-18,21,22,24,25,59

percents,7-8,9,20,22,23,24,43,45,48,64,65,

proceduralfluency,6,8,9,11,26-34,35-36,37-39,41,42-45,60-62,65-67

proportions,8,9,11,12,13,17,35,36,37-41,43,45,48,55,56,62-64,65

rate,9,11,35,36,37-41,45,48,62-64

ratio,9,11,12,17,35,36,37-41,43,45,48,62-64

ratiotable,39-40

rationalnumbers,6,7-8,43,48,65

reciprocal,33

representations,9,11,13,15,19-25,26,27,28-30,32,34,35,36,39-40,42,44,56-59,61,63-64,65,66

scaling,40

subtraction,9,24,27,28,30,32,43,45,60,62,66

unitfraction,14,22,24,31,32,33,34,38,48,59

((8484))