178
Development and Implementation of a Water Quality Monitoring Plan to Support the Creation of a Geographic Information System to Assess Water Quality Conditions of Rivers in the State of Veracruz in Mexico Miguel A. Medina A project submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science E. James Nelson, Chair Gustavious P. Williams Rollin H. Hotchkiss A. Woodruff Miller Department of Civil and Environmental Engineering Brigham Young University December 2011 Copyright © 2011 Miguel A. Medina All Rights Reserved

Development and Implementation of a Water Quality ... · ABSTRACT Development and Implementation of a Water Quality Monitoring Plan to Support the Creation of a Geographic Information

Embed Size (px)

Citation preview

Development and Implementation of a Water Quality Monitoring Plan to Support

the Creation of a Geographic Information System to Assess Water Quality

Conditions of Rivers in the State of Veracruz in Mexico

Miguel A. Medina

A project submitted to the faculty of Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

E. James Nelson, Chair Gustavious P. Williams

Rollin H. Hotchkiss A. Woodruff Miller

Department of Civil and Environmental Engineering

Brigham Young University

December 2011

Copyright © 2011 Miguel A. Medina

All Rights Reserved

ABSTRACT

Development and Implementation of a Water Quality Monitoring Plan to Support the Creation of a Geographic Information System to Assess Water Quality

Conditions of Rivers in the State of Veracruz in Mexico

Miguel A. Medina Department of Civil and Environmental Engineering, BYU

Master of Science

Geographic information has always played a crucial role in the decision making process of many fields because the visual nature of the information adds important understanding that translates into better decision making. A Geographic Information System (GIS) integrates computer software and data to visualize, understand, and use information in many ways. A GIS stores many different types of information, including environmental and water quality information. Regardless of what type of information is to be used within a GIS, the information must be properly gathered using a systematic approach.

For this project, a water quality monitoring plan was developed and implemented at the

University of Veracruz (UV) to collect water quality data to assist the creation of a GIS. This GIS will support the decision making process in environmental concerns at a watershed level for some of the main rivers in the state of Veracruz in Mexico. This GIS will also serve as a tool to monitor and evaluate river conditions over time and at different locations, determine sources of contamination, identify solutions to mitigate effects of contamination, and to present the results to interest groups.

This plan considered the acquisition of water quality monitoring equipment, training of a

group of environmental engineering students, and determining monitoring points along the rivers and the logistics accompanying monitoring at those points. The water quality data that was produced as a result of this project can be used as input data for a GIS, and will also be a source of information for other environmental and water resources agencies. Furthermore, this plan played and will continue playing an important role in educating environmental engineering students at the UV who will learn and benefit from this project.

The plan was successfully implemented at the UV and it included a set of methodologies

and guidelines to standardize the work to be performed by the students. It also made a very positive impact as it stimulated the interest of students and faculty to continue working on this project and in other similar projects in the long run.

Keywords: geographic information systems, decision support system, input data, water quality data, CONAGUA, CIATEJ, UV, monitoring points, monitoring plan, water quality parameters.

ACKNOWLEDGMENTS

This work and the opportunity I had to be part of it would not have been possible without

the help and support of my professor and advisor, Dr. E. James Nelson. I thank him for helping

open doors for me and for the development of this project, for his guidance, for trusting me, and

for his concern in water resources-related projects in developing countries.

I thank the Mosaic Foundation and the CEEN Department at BYU for their interest in

water resources-related projects and for providing the funds needed to purchase the equipment

for this project.

I thank my friend and colleague Dr. Gustavo Davila, researcher at CIATEJ, for the data

provided for this project, for the equipment and laboratory supplies donated, and for his

continuous support during the development of the project. I thank Dr. Miguel Morales, professor

at the University of Veracruz (UV), for being the link between BYU-CIATEJ and the UV, and

for his overall invaluable help and support at the UV. I also thank the amazing group of students

and professors at the UV who have been involved directly or indirectly in this project for

providing invaluable help and support during its implementation; without them, this project

would not have been possible.

I thank my parents for everything they do and have done for me, and for their

unconditional support. And last but not least, I thank God, knowing that words would never be

enough to express my gratitude.

v

TABLE OF CONTENTS

LIST OF TABLES ...................................................................................................................... vii

LIST OF FIGURES ..................................................................................................................... ix

1 Introduction ........................................................................................................................... 1

2 Geographic Information Systems (GIS) ............................................................................. 3

2.1 Importance of Geographic Information .......................................................................... 3

2.1.1 Components of a Geographic Information System ..................................................... 4

2.2 Applications of GIS ........................................................................................................ 5

2.3 Applications of GIS in Mexico ....................................................................................... 6

2.4 Applications of GIS in the Area of Study: Veracruz, Mexico ........................................ 7

2.4.1 Creation of a GIS-Based Decision Support System in the Area of Study .................. 7

3 Water Quality ........................................................................................................................ 9

3.1 Importance of Monitoring Water Quality ....................................................................... 9

3.2 Available Water Quality Data ....................................................................................... 11

3.3 Water Quality Index ...................................................................................................... 12

4 Methodology ........................................................................................................................ 17

4.1 The Need for a Systematic Plan .................................................................................... 17

4.2 Monitoring Points ......................................................................................................... 18

4.2.1 Location of Monitoring Points .................................................................................. 18

4.3 Water Quality Monitoring Equipment .......................................................................... 21

4.3.1 List and Description of the Equipment ..................................................................... 22

4.3.2 Operating Expenses .................................................................................................. 22

4.4 Training ......................................................................................................................... 25

4.5 Field and Laboratory Work ........................................................................................... 28

vi

4.5.1 Field Work and Logistics .......................................................................................... 28

4.5.2 Data Collection ......................................................................................................... 31

5 Data Analysis and Processing ............................................................................................ 35

5.1 Pre-Processing and Post-Processing ............................................................................. 35

5.2 Discussion of Results .................................................................................................... 35

5.3 Further Use of Data ....................................................................................................... 37

6 Academic Impact and Future Goals ................................................................................. 39

6.1 Continuity of the Project and Improvements ................................................................ 39

7 Conclusion ........................................................................................................................... 41

REFERENCES ............................................................................................................................ 43

Appendix A. Results Reported by the UV for the Tecolutla River ..................................... 45

Appendix B. Results Reported by the UV for the Cazones River ....................................... 91

Appendix C. Results Reported by the UV for the Tuxpan River ...................................... 121

Appendix D. Comparison of Results at Puente Alamo – Alamo Jugeras ......................... 137

Appendix E. Comparison of Results at Puente Alamo – Alamo ....................................... 143

Appendix F. Comparison of Results at Villa Lazaro Cardenas – Lazaro Cardenas ...... 149

vii

LIST OF TABLES

Table 3–1: Maximum Allowable Limits for Contaminants ...............................................10

Table 4–1: CONAGUA’s Monitoring Points ....................................................................19

Table 4–2: UV’s Monitoring Points ...................................................................................19

Table 4–3: Water Quality Monitoring Equipment for this Project .....................................23

Table 4–4: Template Used to Record the Results ..............................................................33

Table A–1: Results Reported by the UV for Puente Progreso de Zaragoza .......................45

Table A–2: Results Reported by the UV for Puente Las Lomas ........................................50

Table A–3: Results Reported by the UV for Puente Oriente Medio Dia ............................55

Table A–4: Results Reported by the UV for El Espinal .....................................................60

Table A–5: Results Reported by the UV for Bado San Gotardo ........................................65

Table A–6: Results Reported by the UV for Puente El Remolino .....................................70

Table A–7: Results Reported by the UV for Puente Tecolutla Entrada a Gtz Zamora ......75

Table A–8: Results Reported by the UV for Salida de Gutierrez Zamora .........................80

Table A–9: Results Reported by the UV for Bocana de Tecolutla .....................................85

Table B–1: Results Reported by the UV for San Marcos ...................................................91

Table B–2: Results Reported by the UV for Villa Lazaro Cardenas (La Uno) ..................96

Table B–3: Results Reported by the UV for Bocatoma ......................................................101

Table B–4: Results Reported by the UV for Puente Cazones 3 .........................................106

Table B–5: Results Reported by the UV for Puente Colgante ............................................111

Table B–6: Results Reported by the UV for Panga ............................................................116

Table C–1: Results Reported by the UV for Puente Alamo ...............................................121

Table C–2: Results Reported by the UV for Jardines de Tuxpan Residencial (Tuxpan 1) .......................................................................................................126

viii

Table C–3: Results Reported by the UV for Parque Ribereño (Tuxpan 2) ........................131

Table D–1: Comparison of Results at Puente Alamo – Alamo Jugureas ...........................137

Table E–1: Comparison of Results at Alamo – Puente Alamo ...........................................143

Table F–1: Comparison of Results at Lazaro Cardenas – Villa Lazaro Cardenas.............149

ix

LIST OF FIGURES

Figure 3–1: Cover Page of Documents Received from CONAGUA ..............................11

Figure 3–2: WQI for the Tuxpan River in 2003 ..............................................................13

Figure 3–3: Variations in the WQI for the Tuxpan River ................................................13

Figure 3–4: WQI for the Cazones River in 1999 .............................................................14

Figure 3–5: Variations in the WQI for the Cazones River ..............................................14

Figure 3–6: WQI for the Tecolutla River in 2002 ...........................................................15

Figure 3–7: Variations in the WQI for the Tecolutla River .............................................15

Figure 4–1: Monitoring Points in the Cazones River ......................................................20

Figure 4–2: Monitoring Points in the Tuxpan River ........................................................20

Figure 4–3: Monitoring Points in the Tecolutla River .....................................................21

Figure 4–4: HI 98185 Multiparameter Meter and Electrodes; Similar to the 98186 and 98188 .....................................................................................................24

Figure 4–5: Phosphate Meter and Turbidity Meter .........................................................24

Figure 4–6: Training Students in March 2010 .................................................................26

Figure 4–7: Training New Students in October 2011 ......................................................27

Figure 4–8: Styrofoam and Glass Bottles to Transport Samples to the Lab ....................29

Figure 4–9: A Student Bringing Water from the River ...................................................30

Figure 4–10: Students Working in the Field ......................................................................31

Figure 5–1: Comparison of DO Content for the Puente Alamo and Alamo Monitoring Points .........................................................................................37

Figure A–1: Temperature at Puente Progreso de Zaragoza ..............................................46

Figure A–2: TDS at Puente Progreso de Zaragoza ...........................................................46

Figure A–3: Turbidity at Puente Progreso de Zaragoza ...................................................46

Figure A–4: Resistivity at Puente Progreso de Zaragoza .................................................46

x

Figure A–5: Salinity at Puente Progreso de Zaragoza ......................................................47

Figure A–6: ORP at Puente Progreso de Zaragoza ...........................................................47

Figure A–7: Conductivity at Puente Progreso de Zaragoza ..............................................47

Figure A–8: pH at Puente Progreso de Zaragoza ..............................................................47

Figure A–9: Sulfates at Puente Progrezo de Zaragoza .....................................................48

Figure A–10: Chlorides at Puente Progreso de Zaragoza ...................................................48

Figure A–11: Phosphates at Puente Progreso de Zaragoza ................................................48

Figure A–12: Ammonia Nitrogen at Puente Progreso de Zaragoza ...................................48

Figure A–13: Nitrate Nitrogen at Puente Progreso de Zaragoza ........................................49

Figure A–14: Dissolved Oxygen at Puente Progreso de Zaragoza .....................................49

Figure A–15: BOD at Puente Progreso de Zaragoza ..........................................................49

Figure A–16: Temperature at Puente Las Lomas ...............................................................51

Figure A–17: TDS at Puente Las Lomas ............................................................................51

Figure A–18: Turbidity at Puente Las Lomas.....................................................................51

Figure A–19: Resistivity at Puente Las Lomas...................................................................51

Figure A–20: Salinity at Puente Las Lomas .......................................................................52

Figure A–21: ORP at Puente Las Lomas ............................................................................52

Figure A–22: Conductivity at Puente Las Lomas ...............................................................52

Figure A–23: pH at Puente Las Lomas ...............................................................................52

Figure A–24: Sulfates at Puente Las Lomas .......................................................................53

Figure A–25: Chlorides at Puente Las Lomas ....................................................................53

Figure A–26: Phosphates at Puente Las Lomas ..................................................................53

Figure A–27: Ammonia Nitrogen at Puente Las Lomas ....................................................53

Figure A–28: Nitrate Nitrogen at Puente Las Lomas .........................................................54

Figure A–29: Dissolved Oxygen at Puente Las Lomas ......................................................54

xi

Figure A–30: BOD at Puente Las Lomas ...........................................................................54

Figure A–31: Temperature at Puente Oriente Medio Dia ...................................................56

Figure A–32: TDS at Puente Oriente Medio Dia................................................................56

Figure A–33: Turbidity at Puente Oriente Medio Dia ........................................................56

Figure A–34: Resistivity at Puente Oriente Medio Dia ......................................................56

Figure A–35: Salinity at Puente Oriente Medio Dia ...........................................................57

Figure A–36: ORP at Puente Oriente Medio Dia ...............................................................57

Figure A–37: Conductivity at Puente Oriente Medio Dia ..................................................57

Figure A–38: pH at Puente Oriente Medio Dia ..................................................................57

Figure A–39: Sulfates at Puente Oriente Medio Dia ..........................................................58

Figure A–40: Chlorides at Puente Oriente Medio Dia ........................................................58

Figure A–41: Phosphates at Puente Oriente Medio Dia .....................................................58

Figure A–42: Ammonia Nitrogen at Puente Oriente Medio Dia ........................................58

Figure A–43: Nitrate Nitrogen at Puente Oriente Medio Dia .............................................59

Figure A–44: Dissolved Oxygen at Puente Oriente Medio Dia .........................................59

Figure A–45: BOD at Puente Oriente Medio Dia ...............................................................59

Figure A–46: Temperature at El Espinal ............................................................................61

Figure A–47: TDS at El Espinal .........................................................................................61

Figure A–48: Turbidity at El Espinal..................................................................................61

Figure A–49: Resistivity at El Espinal................................................................................61

Figure A–50: Salinity at El Espinal ....................................................................................62

Figure A–51: ORP at El Espinal .........................................................................................62

Figure A–52: Conductivity at El Espinal ............................................................................62

Figure A–53: pH at El Espinal ............................................................................................62

Figure A–54: Sulfates at El Espinal ....................................................................................63

xii

Figure A–55: Chlorides at El Espinal .................................................................................63

Figure A–56: Phosphates at El Espinal ...............................................................................63

Figure A–57: Ammonia Nitrogen at El Espinal .................................................................63

Figure A–58: Nitrate Nitrogen at El Espinal ......................................................................64

Figure A–59: Dissolved Oxygen at El Espinal ...................................................................64

Figure A–60: BOD at El Espinal ........................................................................................64

Figure A–61: Temperature at Bado San Gotardo ...............................................................66

Figure A–62: TDS at Bado San Gotardo ............................................................................66

Figure A–63: Turbidity at Bado San Gotardo .....................................................................66

Figure A–64: Resistivity at Bado San Gotardo ...................................................................66

Figure A–65: Salinity at Bado San Gotardo .......................................................................67

Figure A–66: ORP at Bado San Gotardo ............................................................................67

Figure A–67: Conductivity at Bado San Gotardo ...............................................................67

Figure A–68: pH at Bado San Gotardo ...............................................................................67

Figure A–69: Sulfates at Bado San Gotardo .......................................................................68

Figure A–70: Chlorides at Bado San Gotardo ....................................................................68

Figure A–71: Phosphates at Bado San Gotardo ..................................................................68

Figure A–72: Ammonia Nitrogen at Bado San Gotardo ....................................................68

Figure A–73: Nitrate Nitrogen at Bado San Gotardo .........................................................69

Figure A–74: Dissolved Oxygen at Bado San Gotardo ......................................................69

Figure A–75: BOD at Bado San Gotardo ...........................................................................69

Figure A–76: Temperature at Puente El Remolino .............................................................71

Figure A–77: TDS at Puente El Remolino .........................................................................71

Figure A–78: Turbidity at Puente El Remolino ..................................................................71

Figure A–79: Resistivity at Puente El Remolino ................................................................71

xiii

Figure A–80: Salinity at Puente El Remolino ....................................................................72

Figure A–81: ORP at Puente El Remolino .........................................................................72

Figure A–82: Conductivity at Puente El Remolino ............................................................72

Figure A–83: pH at Puente El Remolino ............................................................................72

Figure A–84: Sulfates at Puente El Remolino ....................................................................73

Figure A–85: Chlorides at Puente El Remolino .................................................................73

Figure A–86: Phosphates at Puente El Remolino ...............................................................73

Figure A–87: Ammonia Nitrogen at Puente El Remolino ..................................................73

Figure A–88: Nitrate Nitrogen at Puente El Remolino .......................................................74

Figure A–89: Dissolved Oxygen at Puente El Remolino ...................................................74

Figure A–90: BOD at Puente El Remolino .........................................................................74

Figure A–91: Temperature at Puente Tecolutla-Gutierrez Zam .........................................76

Figure A–92: TDS at Puente Tecolutla-Gutierrez Zam ......................................................76

Figure A–93: Turbidity at Puente Tecolutla-Gutierrez Zam ..............................................76

Figure A–94: Resistivity at Puente Tecolutla-Gutierrez Zam ............................................76

Figure A–95: Salinity at Puente Tecolutla-Gutierrez Zam .................................................77

Figure A–96: ORP at Puente Tecolutla-Gutierrez Zam ......................................................77

Figure A–97: Conductivity at Puente Tecolutla-Gutierrez Zam.........................................77

Figure A–98: pH at Puente Tecolutla-Gutierrez Zam .........................................................77

Figure A–99: Sulfates at Puente Tecolutla-Gutierrez Zam .................................................78

Figure A–100: Chlorides at Puente Tecolutla-Gutierrez Zam ..............................................78

Figure A–101: Phosphates at Puente Tecolutla-Gutierrez Zam ...........................................78

Figure A–102: Ammonia Nitrogen at Puente Tecolutla-Gutierrez Zam ..............................78

Figure A–103: Nitrate Nitrogen at Puente Tecolutla-Gutierrez Zam ...................................79

Figure A–104: Dissolved Oxygen at Puente Tecolutla-Gutierrez Zam ................................79

xiv

Figure A–105: BOD at Puente Tecolutla-Gutierrez Zam .....................................................79

Figure A–106: Temperature at Salida de Gutierrez Zamora ................................................81

Figure A–107: TDS at Salida de Gutierrez Zamora .............................................................81

Figure A–108: Turbidity at Salida de Gutierrez Zamora ......................................................81

Figure A–109: Resistivity at Salida de Gutierrez Zamora ....................................................81

Figure A–110: Salinity at Salida de Gutierrez Zamora ........................................................82

Figure A–111: ORP at Salida de Gutierrez Zamora .............................................................82

Figure A–112: Conductivity at Salida de Gutierrez Zamora ................................................82

Figure A–113: pH at Salida de Gutierrez Zamora ................................................................82

Figure A–114: Sulfates at Salida de Gutierrez Zamora ........................................................83

Figure A–115: Chlorides at Salida de Gutierrez Zamora .....................................................83

Figure A–116: Phosphates at Salida de Gutierrez Zamora ...................................................83

Figure A–117: Ammonia Nitrogen at Salida de Gutierrez Zamora ......................................83

Figure A–118: Nitrate Nitrogen at Salida de Gutierrez Zamora ...........................................84

Figure A–119: Dissolved Oxygen at Salida de Gutierrez Zamora .......................................84

Figure A–120: BOD at Salida de Gutierrez Zamora ............................................................84

Figure A–121: Temperature at Bocana de Tecolutla ............................................................86

Figure A–122: TDS at Bocana de Tecolutla .........................................................................86

Figure A–123: Turbidity at Bocana de Tecolutla .................................................................86

Figure A–124: Resistivity at Bocana de Tecolutla ...............................................................86

Figure A–125: Salinity at Bocana de Tecolutla ....................................................................87

Figure A–126: ORP at Bocana de Tecolutla .........................................................................87

Figure A–127: Conductivity at Bocana de Tecolutla ...........................................................87

Figure A–128: pH at Bocana de Tecolutla ...........................................................................87

Figure A–129: Sulfates at Bocana de Tecolutla ...................................................................88

xv

Figure A–130: Chlorides at Bocana de Tecolutla .................................................................88

Figure A–131: Phosphates at Bocana de Tecolutla ..............................................................88

Figure A–132: Ammonia Nitrogen at Bocana de Tecolutla .................................................88

Figure A–133: Nitrate Nitrogen at Bocana de Tecolutla ......................................................89

Figure A–134: Dissolved Oxygen at Bocana de Tecolutla ...................................................89

Figure A–135: BOD at Bocana de Tecolutla ........................................................................89

Figure B–1: Temperature at San Marcos ..........................................................................92

Figure B–2: TDS at San Marcos .......................................................................................92

Figure B–3: Turbidity at San Marcos ...............................................................................92

Figure B–4: Resistivity at San Marcos .............................................................................92

Figure B–5: Salinity at San Marcos ..................................................................................93

Figure B–6: ORP at San Marcos .......................................................................................93

Figure B–7: Conductivity at San Marcos ..........................................................................93

Figure B–8: pH at San Marcos..........................................................................................93

Figure B–9: Sulfates at San Marcos ..................................................................................94

Figure B–10: Chlorides at San Marcos ...............................................................................94

Figure B–11: Phosphates at San Marcos ............................................................................94

Figure B–12: Ammonia Nitrogen at San Marcos ...............................................................94

Figure B–13: Nitrate Nitrogen at San Marcos ....................................................................95

Figure B–14: Dissolved Oxygen at San Marcos .................................................................95

Figure B–15: BOD at San Marcos ......................................................................................95

Figure B–16: Temperature at Villa Lazaro Cardenas .........................................................97

Figure B–17: TDS at Villa Lazaro Cardenas ......................................................................97

Figure B–18: Turbidity at Villa Lazaro Cardenas ..............................................................97

Figure B–19: Resistivity at Villa Lazaro Cardenas ............................................................97

xvi

Figure B–20: Salinity at Villa Lazaro Cardenas .................................................................98

Figure B–21: ORP at Villa Lazaro Cardenas ......................................................................98

Figure B–22: Conductivity at Villa Lazaro Cardenas .........................................................98

Figure B–23: pH at Villa Lazaro Cardenas.........................................................................98

Figure B–24: Sulfates at Villa Lazaro Cardenas.................................................................99

Figure B–25: Chlorides at Villa Lazaro Cardenas ..............................................................99

Figure B–26: Phosphates at Villa Lazaro Cardenas ...........................................................99

Figure B–27: Ammonia Nitrogen at Villa Lazaro Cardenas ..............................................99

Figure B–28: Nitrate Nitrogen at Villa Lazaro Cardenas ...................................................100

Figure B–29: Dissolved Oxygen at Villa Lazaro Cardenas ................................................100

Figure B–30: BOD at Villa Lazaro Cardenas .....................................................................100

Figure B–31: Temperature at Bocatoma .............................................................................102

Figure B–32: TDS at Bocatoma ..........................................................................................102

Figure B–33: Turbidity at Bocatoma ..................................................................................102

Figure B–34: Resistivity at Bocatoma ................................................................................102

Figure B–35: Salinity at Bocatoma .....................................................................................103

Figure B–36: ORP at Bocatoma .........................................................................................103

Figure B–37: Conductivity at Bocatoma ............................................................................103

Figure B–38: pH at Bocatoma ............................................................................................103

Figure B–39: Sulfates at Bocatoma ....................................................................................104

Figure B–40: Chlorides at Bocatoma ..................................................................................104

Figure B–41: Phosphates at Bocatoma ...............................................................................104

Figure B–42: Ammonia Nitrogen at Bocatoma ..................................................................104

Figure B–43: Nitrate Nitrogen at Bocatoma .......................................................................105

Figure B–44: Dissolved Oxygen at Bocatoma ...................................................................105

xvii

Figure B–45: BOD at Bocatoma .........................................................................................105

Figure B–46: Temperature at Puente Cazones 3 .................................................................107

Figure B–47: TDS at Puente Cazones 3 .............................................................................107

Figure B–48: Turbidity at Puente Cazones 3 ......................................................................107

Figure B–49: Resistivity at Puente Cazones 3 ....................................................................107

Figure B–50: Salinity at Puente Cazones 3 ........................................................................108

Figure B–51: ORP at Puente Cazones 3 .............................................................................108

Figure B–52: Conductivity at Puente Cazones 3 ................................................................108

Figure B–53: pH at Puente Cazones 3 ................................................................................108

Figure B–54: Sulfates at Puente Cazones 3 ........................................................................109

Figure B–55: Chlorides at Puente Cazones 3 .....................................................................109

Figure B–56: Phosphates at Puente Cazones 3 ...................................................................109

Figure B–57: Ammonia Nitrogen at Puente Cazones 3 ......................................................109

Figure B–58: Nitrate Nitrogen at Puente Cazones 3 ...........................................................110

Figure B–59: Dissolved Oxygen at Puente Cazones 3 .......................................................110

Figure B–60: BOD at Puente Cazones 3.............................................................................110

Figure B–61: Temperature at Puente Colgante ...................................................................112

Figure B–62: TDS at Puente Colgante................................................................................112

Figure B–63: Turbidity at Puente Colgante ........................................................................112

Figure B–64: Resistivity at Puente Colgante ......................................................................112

Figure B–65: Salinity at Puente Colgante ...........................................................................113

Figure B–66: ORP at Puente Colgante ...............................................................................113

Figure B–67: Conductivity at Puente Colgante ..................................................................113

Figure B–68: pH at Puente Colgante ..................................................................................113

Figure B–69: Sulfates at Puente Colgante ..........................................................................114

xviii

Figure B–70: Chlorides at Puente Colgante ........................................................................114

Figure B–71: Phosphates at Puente Colgante .....................................................................114

Figure B–72: Ammonia Nitrogen at Puente Colgante ........................................................114

Figure B–73: Nitrate Nitrogen at Puente Colgante .............................................................115

Figure B–74: Dissolved Oxygen at Puente Colgante .........................................................115

Figure B–75: BOD at Puente Colgante ...............................................................................115

Figure B–76: Temperature at Panga ...................................................................................117

Figure B–77: TDS at Panga ................................................................................................117

Figure B–78: Turbidity at Panga.........................................................................................117

Figure B–79: Resistivity at Panga.......................................................................................117

Figure B–80: Salinity at Panga ...........................................................................................118

Figure B–81: ORP at Panga ................................................................................................118

Figure B–82: Conductivity at Panga ...................................................................................118

Figure B–83: pH at Panga ...................................................................................................118

Figure B–84: Sulfates at Panga ...........................................................................................119

Figure B–85: Chlorides at Panga ........................................................................................119

Figure B–86: Phosphates at Panga ......................................................................................119

Figure B–87: Ammonia Nitrogen at Panga ........................................................................119

Figure B–88: Nitrate Nitrogen at Panga .............................................................................120

Figure B–89: Dissolved Oxygen at Panga ..........................................................................120

Figure B–90: BOD at Panga ...............................................................................................120

Figure C–1: Temperature at Puente Alamo ......................................................................122

Figure C–2: TDS at Puente Alamo ...................................................................................122

Figure C–3: Turbidity at Puente Alamo ............................................................................122

Figure C–4: Resistivity at Puente Alamo..........................................................................122

xix

Figure C–5: Salinity at Puente Alamo ..............................................................................123

Figure C–6: ORP at Puente Alamo ...................................................................................123

Figure C–7: Conductivity at Puente Alamo ......................................................................123

Figure C–8: pH at Puente Alamo ......................................................................................123

Figure C–9: Sulfates at Puente Alamo ..............................................................................124

Figure C–10: Chlorides at Puente Alamo ...........................................................................124

Figure C–11: Phosphates at Puente Alamo .........................................................................124

Figure C–12: Ammonia Nitrogen at Puente Alamo ...........................................................124

Figure C–13: Nitrate Nitrogen at Puente Alamo ................................................................125

Figure C–14: Dissolved Oxygen at Puente Alamo .............................................................125

Figure C–15: BOD at Puente Alamo ..................................................................................125

Figure C–16: Temperature at Jardines de Tuxpan (Tuxpan 1) ...........................................127

Figure C–17: TDS at Jardines de Tuxpan (Tuxpan 1) ........................................................127

Figure C–18: Turbidity at Jardines de Tuxpan (Tuxpan 1) ................................................127

Figure C–19: Resistivity at Jardines de Tuxpan (Tuxpan 1) ..............................................127

Figure C–20: Salinity at Jardines de Tuxpan (Tuxpan 1) ...................................................128

Figure C–21: ORP at Jardines de Tuxpan (Tuxpan 1) ........................................................128

Figure C–22: Conductivity at Jardines de Tuxpan (Tuxpan 1)...........................................128

Figure C–23: pH at Jardines de Tuxpan (Tuxpan 1)...........................................................128

Figure C–24: Sulfates at Jardines de Tuxpan (Tuxpan 1) ...................................................129

Figure C–25: Chlorides at Jardines de Tuxpan (Tuxpan 1) ................................................129

Figure C–26: Phosphates at Jardines de Tuxpan (Tuxpan 1) .............................................129

Figure C–27: Ammonia Nitrogen at Jardines de Tuxpan(Tuxpan 1) .................................129

Figure C–28: Nitrate Nitrogen at Jardines de Tuxpan (Tuxpan 1) .....................................130

Figure C–29: Dissolved Oxygen at Jardines de Tuxpan (Tuxpan 1) ..................................130

xx

Figure C–30: BOD at Jardines de Tuxpan (Tuxpan 1) ...................................................130

Figure C–31: Temperature at Parque Ribereño (Tuxpan 2) ...............................................132

Figure C–32: TDS at Parque Ribereño (Tuxpan 2) ............................................................132

Figure C–33: Turbidity at Parque Ribereño (Tuxpan 2) .....................................................132

Figure C–34: Resistivity at Parque Ribereño (Tuxpan 2) ...................................................132

Figure C–35: Salinity at Parque Ribereño (Tuxpan 2) ....................................................133

Figure C–36: ORP at Parque Ribereño (Tuxpan 2) ............................................................133

Figure C–37: Conductivity at Parque Ribereño (Tuxpan 2) ...............................................133

Figure C–38: pH at Parque Ribereño (Tuxpan 2) ...............................................................133

Figure C–39: Sulfates at Parque Ribereño (Tuxpan 2) ....................................................134

Figure C–40: Chlorides at Parque Ribereño (Tuxpan 2) ...................................................134

Figure C–41: Phosphates at Parque Ribereño (Tuxpan 2) ..................................................134

Figure C–42: Ammonia Nitrogen at Parque Ribereño (Tuxpan 2) .....................................134

Figure C–43: Nitrate Nitrogen at Parque Ribereño (Tuxpan 2) .........................................135

Figure C–44: Dissolved Oxygen at Parque Ribereño (Tuxpan 2) ......................................135

Figure C–45: BOD at Parque Ribereño (Tuxpan 2) ...........................................................135

Figure D–1: Chlorides Comparison at Puente Alamo – Alamo Jugueras ........................137

Figure D–2: Conductivity Comparison at Puente Alamo – Alamo Jugueras ...................138

Figure D–3: Biochemical Oxygen Demand Comparison at Puente Alamo – Alamo Jugueras ........................................................................................................138

Figure D–4: Phosphates Comparison at Puente Alamo – Alamo Jugueras ......................139

Figure D–5: Ammonia Nitrogen Comparison at Puente Alamo – Alamo Jugueras .........139

Figure D–6: Nitrate Nitrogen Comparison at Puente Alamo – Alamo Jugueras ..............140

Figure D–7: Dissolved Oxygen Comparison at Puente Alamo – Alamo Jugueras ..........140

Figure D–8: pH Comparison at Puente Alamo – Alamo Jugueras ...................................141

Figure D–9: Total Dissolved Solids Comparison at Puente Alamo – Alamo Jugueras ....141

xxi

Figure D–10: Turbidity Comparison at Puente Alamo – Alamo Jugueras .........................142

Figure E–1: Chlorides Comparison at Puente Alamo – Alamo ........................................143

Figure E–2: Conductivity Comparison at Puente Alamo – Alamo ...................................144

Figure E–3: Biochemical Oxygen Demand Comparison at Puente Alamo – Alamo .......144

Figure E–4: Phosphates Comparison at Puente Alamo – Alamo .....................................145

Figure E–5: Ammonia Nitrogen Comparison at Puente Alamo – Alamo ........................145

Figure E–6: Nitrate Nitrogen Comparison at Puente Alamo – Alamo .............................146

Figure E–7: Dissolved Oxygen Comparison at Puente Alamo – Alamo ..........................146

Figure E–8: pH Comparison at Puente Alamo – Alamo ...................................................147

Figure E–9: Total Dissolved Solids Comparison at Puente Alamo – Alamo ...................147

Figure E–10: Turbidity Comparison at Puente Alamo – Alamo ........................................148

Figure F–1: Chlorides Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ...........149

Figure F–2: Conductivity Comparison at Villa Lazaro Cardenas – Lazaro Cardenas .....150

Figure F–3: Biochemical Oxygen Demand Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ............................................................................................150

Figure F–4: Phosphates Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ........151

Figure F–5: Ammonia Nitrogen Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ........................................................................................................151

Figure F–6: Nitrate Nitrogen Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ........................................................................................................152

Figure F–7: Dissolved Oxygen Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ........................................................................................................152

Figure F–8: pH Comparison at Puente Villa Lazaro Cardenas – Lazaro Cardenas ..........153

Figure F–9: Total Dissolved Solids Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ........................................................................................................153

Figure F–10: Turbidity Comparison at Villa Lazaro Cardenas – Lazaro Cardenas ...........154

xxii

1

1 INTRODUCTION

Geographic Information Systems (GIS) are setting new standards on how we manage

information in engineering and many other fields; they integrate information technology tools

with geographic tools to visualize and analyze data that aid in making educated decisions. The

amount and accuracy of information will determine the quality of the decisions we make in many

engineering and environmental fields. A GIS stores and manages geographic-related information

of any type including environmental and water quality information which can later be used as

part of a Decision Support System (DSS).

This project consists of the development and implementation of a water quality

monitoring plan to collect water quality data to assist the creation of a larger GIS which will be

used as a DSS at a watershed level for some of the main rivers in Veracruz, Mexico. The rivers

that will be monitored in this project are the Cazones River, the Tuxpan River, and the Tecolutla

River. The project will focus on gathering and monitoring water quality data which can later be

used as input data for the GIS previously mentioned.

This project considers the acquisition of water quality monitoring equipment that will be

used to gather data directly in the field and in the laboratory, training for students who will be

collecting the data, and the logistics involved in the work.

The objectives of this project are to develop a water quality monitoring plan that includes

fixed guidelines and methodologies to gather and process data; to train environmental

engineering students at the University of Veracruz and provide them with hands-on experience;

2

to provide reliable water quality data of the rivers that comprise the area of study so that it can be

used as input data for a GIS or for other applications; and to create an ongoing program

conducted by students and faculty members at the University of Veracruz (UV) to monitor water

quality in critical bodies of water and thus create a highly positive academic impact.

As mentioned previously, this water quality monitoring plan will also assist the creation

of a larger GIS which ultimately will serve as a tool to monitor and evaluate environmental and

water conditions over time at a watershed level. This GIS will also help to determine sources of

contamination, to develop action plans to mitigate the effects of contamination, to identify

technical solutions, and to present the results to groups of interest.

3

2 GEOGRAPHIC INFORMATION SYSTEMS (GIS)

Technology plays a crucial role in most decision making processes; nowadays,

Geographic Information Systems (GIS) are setting new standards on how we manage

information in engineering and in many other fields, and for this project it is important to

understand the importance and applications of GIS. GIS integrates information technology tools

with geographic tools which allow us to visualize, understand, use, and analyze data to make

educated decisions.

2.1 Importance of Geographic Information

Throughout history, geographic information has been used in countless applications all

over the world, and history has shown that knowledge and information will always give us a

significant advantage in any field.

Geographic information is usually represented in maps, which is something we owe to

cartography. Cartography is the discipline of map making and has always been a part of human

history due to our human need to represent and understand our surroundings. Cartography and

the use of geographic information have evolved from rudimentary two dimensional drawings to

comprehensive Geographic Information Systems that integrate computer hardware, software,

geographic tools, and large amounts of data.

The amount and accuracy of information determines the quality of the decisions we

make. A GIS stores and manages geographic related information of any type such as

4

environmental and water quality information that can later be used as part of a DSS. The use of a

DSS can be compared to putting all the needed information regarding an area of study on a table

in front of us so we can see the big picture and analyze every component individually as needed,

and then, make educated decisions regarding the area of study.

2.1.1 Components of a Geographic Information System

A GIS allows us to analyze every possible map and any type of information that could

not be represented graphically in a traditional map or earth model. Similar to a traditional map, a

GIS uses coordinate systems and scales to display the geographic data. It also allows us to

analyze data in many ways so we can reveal trends, relationships, patterns, etc. [1].

Basically the components of a GIS are computer hardware, software and spatial data.

Computer hardware refers to the computer in which a GIS operates and the software refers to the

software package that operates as a database management system.

The data within a GIS are stored in geodatabases. A geodatabase may contain datasets

which are smaller collections of data. Within a geodatabase there are layers or coverages of

information, and depending on the GIS program used these layers are known as feature classes

which are homogeneous collections of common features. A geodatabase may also contain raster

datasets and tables of information [1]. A map generated from a GIS is a group of feature classes

or layers of information overlapping each other in a similar way Computer-aided Design (CAD)

programs organize information.

Each geographic object in a layer is called a feature, and depending on what each object

represents in real life, it can use polygons, lines, or points. For instance, a city, a lake, or a

country can be represented using a polygon, a river can be represented using a line, and trees can

be represented using points. These objects collectively are called vector data.

5

Surfaces, on the other hand, represent a vast continue expanse that change continuously

from one location to another. Unlike features, surfaces have no distinct shape, rather they have

measurable values such as temperature, rainfall, depth, etc.; a common example of a surface used

within a GIS would be a raster dataset representing the elevations in the sea. While features use

vector data to represent geographic objects, surfaces use data known as raster data to represent

values that change from one location to another and have numeric values rather than shapes;

these numeric values are stored in a grid-like format in a raster dataset.

Features not only have shapes but also additional information regarding the object they

represent in real life. A GIS can store and manage any type of information regarding the area of

study and this information is stored in tables. A table contains different categories of

information, these categories are called attributes. Within a table, attributes are shown in

columns and each record of information for each feature is presented as a row within the table.

2.2 Applications of GIS

As mentioned before, a GIS is used to present information to aid the decision making

process in a variety of fields. The applications of GIS are too broad, from the creation of

professional maps to the prediction of flooding events and landslides when data and trends are

analyzed. GIS are used in many industries such as business, education, defense and intelligence,

public safety, transportation, utilities and communications, natural resources, water resources,

etc. In the field of water resources, GIS are used for watershed management, flood management,

groundwater, water quality, etc. [2].

The focus of this project is to develop a water quality monitoring plan that will generate

data that can be used in a GIS for the area of study. The resulting GIS will serve as a DSS for the

6

area of study. Similar projects have been developed over the years; an example of one of those

projects was the assessment of the state of the Yellowstone River’s ecosystem, the prediction of

its future conditions, and the distribution of data to decision makers.

The goals of this project were to develop best management practices for managing the

river and to collect geospatial data and produce a continuous terrain model of the river channel

floodplain. For this project the U.S. Army Corps of Engineers (USACE), Omaha District, and

the Yellowstone River Conservation District Council entered into an agreement to perform the

needed studies to assess the river conditions.

The obtained results included three specific scopes of work which were: scientific

analysis of hydraulics, hydrology, and geomorphology. In addition, some of the information

gathered would serve other purposes because it also included information about vegetation,

wetlands, water quality, etc.

This great task could not have been accomplished efficiently without the use of GIS. GIS

provided the tools needed to visualize the information gathered so the river conditions could be

assessed. This information would eventually be used in the decision making process for future

works in the river area [3].

2.3 Applications of GIS in Mexico

In Mexico there are government agencies and private companies working with GIS to

improve the country’s cartography, distribute geographic data, and analyze data for research

purposes. The government agencies working with GIS in Mexico are agencies similar to the U.S.

Geological Survey (USGS), or the National Geophysical Data Center (NGDC) which is a part of

National Oceanic & Atmospheric Administration (NOAA). In Mexico the main government

7

agencies working with GIS are the National Institute of Statistics and Geography (INEGI), and

the National Council on Science and Technology (CONACYT). Furthermore, there are also

some other agencies and research institutes that are part of CONACYT who are working with

GIS in the country.

2.4 Applications of GIS in the Area of Study: Veracruz, Mexico

The Center for Research and Applied Technology in Jalisco (CIATEJ) is part of

CONACYT, and is a research institute that is currently working in the development of a DSS at a

watershed level for controlling sources of contamination in the Tuxpan, Cazones, and Tecolutla

Rivers in Veracruz, Mexico. This DSS will be GIS-based and will contain hydrologic, land use,

soil type, and water quality data; with the latter being the focus of this project [4].

2.4.1 Creation of a GIS-Based Decision Support System in the Area of Study

The area of study comprises the watersheds for the Tuxpan, Cazones, and Tecolutla

Rivers. For each river, the GIS-based DSS will help determine the point and non-point sources of

contamination, manage the monitored water quality data, develop water quality models, evaluate

water quality conditions, aid in the development of action plans to mitigate contamination, and

present the results to groups of interest [4].

9

3 WATER QUALITY

Water quality can be defined as the physical, chemical, and biological characteristics of

the water. Depending on what a water stream or a water body is to be used for, different

regulations regarding water quality apply to it, e.g., a water stream used to cool down power

generators will have different water quality requirements than a water stream used for irrigation

purposes.

3.1 Importance of Monitoring Water Quality

The river-water in the area of study is mainly for public use and irrigation purposes;

therefore, its quality needs to be monitored constantly to ensure it meets the requirements

established by the official environmental regulations in Mexico and to detect when the water

quality is unsatisfactory.

Since the rivers in the area of study are considered by Mexican laws national waters, the

Official Mexican Standard (NOM) NOM-001-ECOL-1996 applies to them. This NOM

establishes the maximum permissible limits of contaminants and heavy metals as shown in Table

3–1 [5].

10

Table 3–1: Maximum Allowable Limits for Contaminants

Maximum allowable limits for basic contaminants and heavy metals for rivers

Parameter Irrigation Purposes

Public and Urban Use

Aquatic Life Protection

(mg/L) D.A. M.A. D.A. M.A. D.A. M.A.

Temperature (°C ) N.A. N.A. 40 40 40 40

Grease and Fat 15 25 15 25 15 25

Total Suspended Solids 150 200 75 125 40 60

BOD5 150 200 75 150 30 60

Total Nitrogen 40 60 40 60 15 25

Total Phosphorus 20 30 20 30 5 10

Arsenic 0.2 0.4 0.1 0.2 0.1 0.2

Cadmium 0.2 0.4 0.1 0.2 0.1 0.2

Cyanide 1 3 1 2 1 2

Copper 4 6 4 6 4 6

Chromium 1 1.5 0.5 1 0.5 1

Mercury 0.01 0.02 0.005 0.01 0.005 0.01

Nickel 2 4 2 4 2 4

Lead 0.5 1 0.2 0.4 0.2 0.4

Zinc 10 20 10 20 10 20

D.A. Daily Average

M.A. Monthly Average

N.A. Does not apply

For these rivers, the National Commission of Water (CONAGUA) has been monitoring

the following water quality parameters: Conductivity, Dissolved Oxygen, pH, Sulfates,

Turbidity, Chlorides, Biochemical Oxygen Demand, Phosphates, Ammonia Nitrogen, Nitrate

Nitrogen, Total Dissolved Solids.

For this project we monitored the same 11 physical and chemical water quality

parameters; this was also for the purpose of developing water quality indices for each river to

determine the overall conditions of the rivers.

3.2 Av

F

Cazones

project,

period, a

develop

documen

vailable Wat

rom 1999 t

River, and A

CONAGUA

and these da

a continuou

nts received f

Figu

ter Quality

to 2008 CO

Actopan Riv

A provided

ata served a

us plan to m

from CONA

ure 3–1: C

Data

ONAGUA m

ver, at differ

documents

as a referenc

monitor wate

AGUA.

Cover Page of

11

monitored th

rent location

containing

ce since one

er quality. F

f Documents R

he water qu

ns along the

water quali

e of the obj

Figure 3–1 s

Received from

uality in the

rivers. Whe

ity data col

jectives of t

shows the c

m CONAGUA

e Tuxpan R

en we started

llected over

this project

over page o

River,

d this

r that

is to

of the

12

3.3 Water Quality Index

A Water Quality Index (WQI) is a weighted average that comprises a number of water

quality parameters into one single number. This index was developed by the National Sanitation

Foundation (NSF) as a method to evaluate the overall water quality conditions in a water body.

The WQI is calculated by using the following common water quality parameters: dissolved

oxygen, fecal coliform, pH, BOD5, total phosphorus, nitrates, turbidity, temperature, and total

dissolved solids. The values in a WQI range from 0 – 100 and these values express the overall

water quality conditions. Values in the range 90 – 100 express excellent conditions, 70 – 90

express good conditions, 50 – 70 express medium conditions, 25 – 50 express bad conditions,

and values in the range 0 – 25 express poor conditions. [4]

With the data provided by CONAGUA, CIATEJ produced a WQI for each monitoring

point for the 1999-2008 periods. These WQI were created using the methodology proposed by

the NSF and online tools. CIATEJ also delineated the contributing watershed for each river using

Digital Elevation Maps (DEM) and the Watershed Management System (WMS) program to

present the information to groups of interest [4]. Figure 3–2 to Figure 3–7 show the WQI

CIATEJ calculated at each monitoring point along the rivers and their variations with time.

Figure 3

Figure 3–3:

3–2: WQI

Variation

13

I for the Tuxp

ns in the WQI

pan River in 2

I for the Tuxpa

2003

an River

Figure 3

Figure 3–5:

3–4: WQI

Variation

14

I for the Cazo

ns in the WQI

ones River in 1

for the Cazon

1999

nes River

Figure 3–

Figure 3–7:

–6: WQI

Variations

15

for the Tecol

s in the WQI f

lutla River in 2

for the Tecolu

2002

utla River

17

4 METHODOLOGY

The focus of this project is the development of a water quality monitoring plan. This plan

consists of the methodology followed to produce data that can be used in a GIS or other database

management system.

4.1 The Need for a Systematic Plan

In order to develop an efficient monitoring program, a methodology must be followed to

minimize errors and to standardize operations. This will also help to reproduce this plan in other

institutions or to monitor water quality in other water bodies and to ensure homogeneity of

results despite the high rotation of students working on similar projects.

A plan was first presented at the UV in March of 2010 as part of the activities of the

Mexico Engineering Study Abroad (MESA) program. When the plan was presented, we knew

what water quality parameters were going to be monitored and where the monitoring points were

but we were not sure how we would actually implement the plan because we did not know the

area; as time went by we made some changes and the logistics also had to be worked out.

In July 2010 and March 2011 I visited the students at the UV to follow up. In July 2010 I

went by myself and joined them for a day of field work and in March 2011 I accompanied

personnel from CIATEJ and joined the students in three days of field work. During those visits I

noticed that they were doing things differently and that there were new students working in the

program who didn’t know how to use the equipment. I also started noticing inconsistencies in the

18

data they were reporting periodically. This made evident the need for a standardized

methodology of work similar to the methodologies followed at the Civil and Environmental

Engineering (CEEN) department at Brigham Young University (BYU) for monitoring water

quality in water bodies like Deer Creek in Utah [6].

4.2 Monitoring Points

The criteria to select monitoring points for this project was to select points that would

represent the overall conditions of the water quality in the rivers; some of these points are located

upstream right before communities with a population above twenty-five hundred people, and

some points are downstream right before the same communities, and some points are located in

between communities. This was to help determine how the water quality varies along the river in

the upstream and downstream directions. Also, the location for some points is similar to the

location of some of CONAGUA’s monitoring points, and this was so that we could have a

reference to compare the results and monitor the variations in water quality with time.

4.2.1 Location of Monitoring Points

CONAGUA has 9 monitoring points in the area of study, 4 points along the Tuxpan

River, 3 points along the Cazones River, and 2 points along the Tecolutla River; the names and

coordinates of these points are shown in Table 4–1. For this project, 18 monitoring points were

selected, 3 points along the Tuxpan River, 6 points along the Cazones River, and 9 points along

the Tecolutla River. For each river, the points are numbered from the upstream to downstream

direction. Table 4–2 shows the names and coordinates of the monitoring points selected for this

project and Figure 4–1 to Figure 4–3 show the aerial view of the location of these points.

19

Table 4–1: CONAGUA’s Monitoring Points

MONITORING POINT LATITUDE LONGITUDE

RIO CAZONES Lazaro Cardenas 20° 26' 43.87"N 97° 42' 8.74"W Puente Cazones (Est Hidrometrica) 20° 32' 35.71"N 97° 28' 31.04"W Panga Cazones 20°36' 6.91'' N 97° 25' 58.47''W

RIO TUXPAN Barra de Tuxpan 20° 58' 21.36"N 97° 18' 10.98"W El Suchilt 20° 55' 0.87"N 97° 33' 56.48" N Alamo 20° 55' 14.8" N 97° 38' 30.69" NAlamo (Jugueras) 20°54'54'' N 97°42'7'' N

RIO TECOLUTLA Puente Tecolutla 20° 26' 11" N 97° 04' 57" N Barra de Tecolutla 20° 28' 20.06" N 97° 00' 04.68" N

Table 4–2: UV’s Monitoring Points

MONITORING POINT LATITUDE LONGITUDE

RIO CAZONES San Marcos 20°27'11.90"N 97°43'58.00"W Villa Lazaro Cardenas (La Uno) 20°26'46.91"N 97°42'9.78"W Bocatoma 20°29'2.76"N 97°32'46.20"W Puente Cazones 3 20°38'8.66"N 97°23'57.07"W Puente Colgante 20°42'22.73"N 97°18'49.25"W Panga 20°42'37.02"N 97°14'22.69"W

RIO TUXPAN Puente Alamo 20°55'42.27"N 97°40'47.67"W Jardines de Tuxpan Residencial (Tuxpan 1) 20°56'33.87"N 97°25'4.93"W Parque Ribereño (Tuxpan 2) 20°56'53.54"N 97°21'15.72"W

RIO TECOLUTLA Puente Progreso de Zaragoza 20°16'21.97"N 97°42'16.86"W Puente Las Lomas 20°15'52.62"N 97°36'4.89"W Puente Oriente Medio Dia 20°16'28.28"N 97°29'16.75"W El Espinal 20°15'6.99"N 97°23'35.10"W Bado San Gotardo 20°17'58.15"N 97°17'37.64"W Puente El Remolino 20°23'53.50"N 97°14'20.93"W Puente Tecolutla-Entrada a Gtz Zamora 20°26'12.96"N 97° 5'2.42"W Salida de Gutierrez Zamora 20°28'51.36"N 97° 4'0.49"W Bocana de Tecolutla 20°28'28.51"N 97° 0'12.45"W

Figure 4–1

Figure 4–2

1: Monito

2: Monito

20

oring Points in

oring Points in

n the Cazones

n the Tuxpan

River

River

4.3 Wa

T

planning

operate

environm

would al

we origin

budget o

some mu

ater Quality

The selection

out the pro

since the e

mental equip

low us to mo

nally contem

f about $5,0

ulti-paramete

Figure 4–3

y Monitorin

n of equipm

oject in Janu

nd users w

pment. Anot

onitor all the

mplated buyi

000.00 dollar

er probes, bu

: Monito

ng Equipme

ment for this

uary 2010, w

would be stu

her consider

e parameters

ing was proh

rs. The type

ut that kind o

21

ring Points in

nt

s project wa

we needed to

udents with

ration was c

s or at least m

hibitively ex

of equipme

of equipment

n the Tecolutla

as an impor

o find equip

h little or n

cost, we wa

most of them

xpensive con

ent we origin

t was too ex

a River

rtant task. W

pment that w

no experienc

anted to find

m, but most

nsidering we

nally wanted

xpensive for t

When we st

would be ea

ce working

d equipment

of the equip

e had an ori

d to purchase

this project.

tarted

asy to

with

t that

pment

iginal

e was

22

4.3.1 List and Description of the Equipment

After considering and evaluating different options for water quality monitoring

equipment, we decided to buy equipment from the company HANNA, which is a company that

offers environmental and laboratory equipment at more affordable prices in comparison to some

leading companies like HACH or YSI. Table 4–3 shows a list of the equipment we bought for

this project and a brief description of it while Figure 4–4 and Figure 4–5 show the type

equipment we bought.

4.3.2 Operating Expenses

This water quality monitoring program is an ongoing project which makes it important to

consider the operating expenses in the long run. Buying the equipment was just an initial

expense, the equipment was purchased through a grant donation from The Mosaic Foundation

and it was later donated to the UV for ongoing and future work [7]. Upon receiving the

equipment, the team at the UV began being fully responsible for it and all the associated

expenses when using the equipment. At first, this was a concern since the university would have

to absorb all of the expenses; however, CIATEJ has supported this project by donating

laboratory equipment such as plastic and glass laboratory bottles and standards to calibrate the

equipment.

After over a year and a half since we started the project, the engineering department at

the UV has received support and resources from CIATEJ and the UV to continue working with

this project.

23

Tab

le 4

–3:

W

ater

Qu

alit

y M

onit

orin

g E

qu

ipm

ent

for

this

Pro

ject

Pri

ce

$ 77

5.0

0

$ 83

5.0

0

$ 72

5.4

0

$ 90

9.0

0

$ 43

3.0

0

$ 49

3.0

0

$ 42

4.0

0

$ 57

0.0

0

$ 17

9.0

0

$ 11

2.0

0

$

15.0

0

$

15.0

0

$

15.0

0

$

15.0

0

$

14.0

0

$

14.0

0

$

26.0

0

$

57.0

0

$

32.0

0

$

77.0

0

$

59.0

0

$ 5

,794

.40

Des

crip

tio

n, p

ara

met

ers

it m

easu

res

Por

tabl

e m

eter

and

pro

bes

to m

easu

re c

ond

uctiv

ity, T

DS

, sal

inity

, res

istiv

ity.

Dis

solv

ed O

xyge

n a

nd B

OD

Met

er. I

t als

o m

easu

res

tem

pera

ture

an

d b

arom

etric

pr

essu

re.

Tur

bidi

ty m

eter

pH, O

RP

, and

Ion-

Se

lect

ive

(IS

E)

mul

ti se

nsor

met

er

Am

mon

ia IS

E e

lect

rode

. It i

s us

ed w

ith th

e H

I981

85 m

eter

and

it m

easu

res

amm

oniu

m

Chl

orid

e IS

E e

lect

rode

. It i

s us

ed w

ith th

e H

I981

85

met

er a

nd

it m

easu

res

chlo

ride

ions

Lea

d/S

ulfa

te I

SE

ele

ctro

de.

It is

use

d w

ith th

e H

I98

185

met

er a

nd it

me

asu

res

lead

/sul

fate

ions

Nitr

ate

ISE

ele

ctro

de. I

t is

used

with

the

HI9

818

5 m

eter

and

it m

easu

res

nitr

ates

Pho

spha

te, l

ow

ran

ge,

pho

tom

eter

OR

P e

lect

rod

e.

It is

use

d to

mea

sure

OR

P u

sing

the

HI9

8185

Zer

o ox

yge

n ca

libra

tion

solu

tion

for

the

HI9

818

6, 5

00m

l

141

3 µ

S/c

m E

C c

alib

ratio

n so

lutio

n fo

r th

e H

I981

88, 5

00

ml

128

80 µ

S/c

m E

C c

alib

ratio

n so

lutio

n fo

r th

e H

I981

88,

500

ml

Gen

era

l Pur

po

se C

lean

ing

So

lutio

n fo

r el

ectr

odes

and

pro

bes

4.01

pH

Buf

fer

calib

ratio

n so

lutio

n fo

r th

e H

I981

85

7.01

pH

Buf

fer

calib

ratio

n so

lutio

n fo

r th

e H

I981

85

Rea

gent

kit

for

the

HI9

3713

pho

spha

te m

ete

r, 1

00 te

sts

0.1

M A

mm

onia

sta

nda r

d to

cal

ibra

te th

e H

I410

1

0.1

M C

hlor

ide

stan

dard

to c

alib

rate

the

HI4

107

0.1

M S

ulfa

te s

tand

ard

to c

alib

rate

the

HI4

112

0.1

M N

itrat

e st

and

ard

to c

alib

rate

the

HI4

10

3

To

tal

Eq

uip

men

t

HI 9

818

8 -

EC

/Res

ist/T

DS

/Na

Cl M

eter

HI 9

818

6 -

DO

and

BO

D M

ete

r

HI 9

870

3 -

Tur

bidi

ty m

eter

HI 9

818

5 -

Mul

tipar

amet

er m

ete

r

HI 4

101

- A

mm

onia

ISE

ele

ctro

de

HI4

107

- C

hlor

ide

ISE

ele

ctro

de

HI4

112

- S

ulfa

te IS

E e

lect

rod

e

HI4

113

- N

itrat

e IS

E e

lect

rod

e

HI 9

371

3 -

Pho

spha

te (

LR

) ph

otom

eter

HI 3

230B

- O

RP

ele

ctro

de

HI7

040L

- Z

ero

Oxy

gen

solu

tion

HI7

031L

- 1

41

3 µ

S/c

m E

C s

olut

ion

HI7

0310

- 1

28

80 µ

S/c

m E

C s

olut

ion

HI7

037L

- G

ener

al P

urpo

se C

lea

nin

g S

olut

ion

HI7

004L

- 4

.01

pH

Buf

fer

Sol

utio

n

HI7

007L

- 7

.01

pH

Buf

fer

Sol

utio

n

HI9

3713

-01

- P

hosp

hate

LR

rea

gen

t kit

HI4

001-

01 -

0.1

M A

mm

onia

sta

ndar

d

HI4

007-

01 -

0.1

M C

hlor

ide

stan

dar

d

HI4

012-

21 -

0.1

M S

ulfa

te s

tand

ard

HI4

013-

01 -

0.1

M N

itrat

e st

anda

rd

Figuure 4–4: HHI 98185 Mul

Figure 4–

ltiparameter M

5: Phosp

24

Meter and Ele

hate Meter an

ectrodes; Simi

nd Turbidity M

ilar to the 981

Meter

86 and 98188

25

4.4 Training

Training is an essential part of this program, especially because one of the main

objectives of this project is to train Environmental Engineering students at UV on how to operate

water quality monitoring equipment and implement an ongoing program to collect water quality

data.

Before our first visit in March 2010, our BYU team spent time learning how to use the

equipment because we would train a group of students at the UV. During our first visit we spent

some hours on our first day training students before heading to the field and we also spent time

training them in the field; Figure 4–7 is a picture taken on our first day in the field while training

students. In March 2011, one year later, there were new students working on this project who

were not familiar with GIS, monitoring water quality, or using water quality monitoring

equipment so I gave them a presentation about GIS and trained them on how to use the

equipment.

It is worth mentioning that most of the UV students involved in this project did not have

previous experience operating water quality monitoring equipment but they showed full interest

as they were taught how to use it. These students were also volunteers who found the time to

work on the project between their classes or on their spare time. Likewise, some of the professors

working with the group of students involved in the project were taught how to use the equipment

and they were also able to work off the clock.

D

would be

students

quality, t

applicatio

manuals

D

to use th

collecting

in March

During that v

e expected

joining the

the use of G

ons besides

for the equip

During our la

he equipment

g could be u

h 2011 have

Figure

visit it becam

almost ever

team we w

GIS, and that

school. Als

pment.

ast visit in O

t and had a

used for furt

been active

4–6: Tra

me evident th

ry semester.

would make

the informa

so, I helped

ctober 2011

better under

ther applicat

ely involved

26

aining Student

here was a n

We determ

them aware

ation they w

them transla

, I noticed th

rstanding of

tions. Furthe

in it and th

ts in March 20

need to train

mined that e

e of the imp

would gather

ate importan

hat students

f the project

ermore, stud

hey were help

010

n new studen

every time t

portance of m

could later

nt informati

were more c

and how th

ents who joi

ping the new

nts since rot

there where

monitoring w

be used for

on from the

confident on

he data they

ined the pro

wcomers on

tation

e new

water

other

e user

n how

were

ogram

their

first day.

joined in

T

program

working

when cal

the data c

Figure 4–7

October 20

The standard

would help

on, use and

librating and

collected in t

is a picture

11.

Figure 4–7

d for training

p new stude

d application

d using the e

the field and

of two stude

7: Trainin

g in this pro

ents become

ns of GIS, w

equipment. A

d in the lab u

27

ents who join

ng New Stude

ogram is tha

e aware of

water quality

Also, they m

using the tem

ned in Marc

ents in Octobe

at students w

the importa

in water bo

must teach n

mplates that w

h 2010 and t

r 2011

who have be

ance of the

odies, and ov

new students

were created

two who rec

een longer in

project they

verall proce

s how to ma

d for this pro

cently

n this

y are

dures

anage

oject.

28

4.5 Field and Laboratory Work

For this project it is important to combine field and laboratory work to produce reliable

results. Logistics also play an important role when combining field and laboratory work. We

established that monitoring campaigns would be done every three months so we can obtain data

during different seasons of the year.

Many of the changes we implemented at the UV were made after the work methodologies

followed at BYU when monitoring water quality in places like Deer Creek.

4.5.1 Field Work and Logistics

Most of the work for this project is performed in the field; therefore, it is very important

to be efficient in order to optimize the time spent in the field. In March of 2010 we did a rough

estimate of driving distances and times to cover all the points but we didn’t know the area and

the conditions of the roads, also we didn’t take into account that working with inexperienced

students would require more time.

When we started working on this program we would go to the first monitoring point,

measure all of the parameters there, then go to the next point measure all of the parameters and

do the same for all the points. Starting in March 2011 we changed this and decided to measure in

the field the parameters that needed to be measured in-situ and take samples back to the

laboratory to measure the rest of the parameters.

We established this as a standard of work. We bought about ten one-liter plastic bottles

on March 2011 to transport the samples back to the laboratory at the UV; however, these bottles

were not laboratory bottles, they were just plastic bottles we bought at a local store. In October

2011 CIATEJ donated about 20 laboratory plastic bottles, half dark glass bottles, half incubation

bottles fo

transport

picture o

analyzed

T

including

when mo

which re

samples

field and

for the BOD

ting and pro

of one of the

d.

Figure 4

The field wor

g a faculty m

onitoring the

equires that

to the lab to

d lab work to

D5 test, plus

ocessing the

e Styrofoam

4–8: Styr

rk methodol

member or t

e Tecolutla

all particip

o be analyze

become pro

s 2 styrofoa

samples in

coolers con

ofoam and Gl

ogy we defi

eam leader t

River); divi

pants becom

ed by a seco

oficient at bo

29

am coolers.

a more reli

taining samp

lass Bottles to

ined consists

to supervise

iding the wo

me familiar

ond team of

oth.

These new

iable and ef

ples that wo

Transport Sa

s of working

e the work; l

ork at every

with using

students. Th

bottles and

fficient way.

ould be taken

amples to the L

g in groups o

leaving the U

y point to b

the equipm

hese teams a

d coolers ar

. Figure 4–8

n to the lab

Lab

of about 5 p

UV at 7am

be more effic

ment; and ta

alternate bet

re for

8 is a

to be

eople

(5am

cient,

aking

tween

A

bottles th

coolers t

temperatu

Spring-S

bucket is

take wate

the bottle

water fro

analyzing

At every field

hey take with

to transport

ure in the ar

ummer; and

s that we tos

er from the b

es and take t

om the river

g water from

d trip studen

h them depen

the bottles

rea of study

d a bucket a

ss it to the ri

bucket to an

them to the l

to be analyz

m the river.

Figure 4–9:

nts take plas

nds on how

and one bag

y ranges betw

and a rope t

iver and fill

nalyze it, then

lab. Figure 4

zed, and Figu

A Stude

30

stic and glas

many points

g of ice to

ween 60 and

o take wate

it up with w

n the proces

4–9 is a pictu

ure 4–10 is a

ent Bringing W

ss bottles to

s are in the r

keep the bo

d 85 during

er from the r

water and the

ss is repeated

ure of a stud

a picture of

Water from th

take sample

river plus one

ottles cool s

Fall and 85

rivers. What

en bring it b

d and we tak

dent bringing

students wo

he River

es, the numb

e; two Styro

since the av

5 and 105 d

t we do wit

back to shore

ke water to f

g a bucket fu

orking in the

ber of

ofoam

erage

during

th the

e and

fill up

full of

e field

4.5.2 D

W

the resul

students

results. T

next field

use of th

mg/L TD

looking a

In

reported,

Data Collect

When we sta

lts obtained

made some

These discre

d trip they w

he equipment

DS when the

at the previo

n order to r

, I prepared

Figur

ion

rted the proj

at every fie

modification

pancies wer

would report

t they would

e previous r

us readings

reduce incon

a series of s

re 4–10: St

ject we prep

eld trip; how

ns to them w

re that they r

t the same p

d take incon

reading for t

they would m

nsistencies a

spreadsheets

31

tudents Worki

pared some t

wever, those

which resulte

reported som

parameters i

nsistent readi

that same po

miss that som

and to ensur

that contain

ing in the Fiel

templates fo

e templates

ed in some d

me paramete

in different u

ings, i.e. the

oint was 68

mething had

ure better qu

n the values

ld

or the studen

were not us

discrepancie

ers in some

units or due

ey would tak

85.3 mg/L T

d gone wrong

uality in the

from the pr

nts to write d

sed properly

es when repo

units and fo

e to inapprop

ke a reading

TDS, and wi

g.

e way result

revious field

down

y and

orting

or the

priate

g 1.83

ithout

ts are

d trips

32

and graphs that update automatically once new values are entered. This is a practical and easy

way to see if the values reported are consistent and to see if they follow a trend. From these

spreadsheets students can print out a template to take with them and easily detect possible

inconsistencies when the readings vary dramatically from the previous field trip at the same

point. This new template also indicates the units in which each parameter must be measured.

Table 4–4 is the template used to collect data for this project and Appendix A through Appendix

C show all the actual data recorded and reported by the UV for each of the monitoring points.

33

Table 4–4: Template Used to Record the Results

Rio: Latitud Longitud

# punto: Coordenadas:Nombre de punto de Monitoreo:

Fecha

Hora

Temperatura (°C)

SDT (ppm)

Turbiedad (FTU)

Resistividad (KΩ)

Salinidad (%)

ORP (mV)

Conductividad (µS)

pH (Unidades de pH)

Sulfatos (mg/L)

Cloruros (ppm)

Fosfatos (ppm)

Nitrogeno Amoniacal, N- NH3 (mg/L)

Nitrogeno de Nitratos, N- NO3-

(mg/L)

Oxigeno Disuelto, OD (mg/L)

DBO (mg/L)

Coliformes Totales

Coliformes Fecales

Plomo (µg/L)

Arsenico (ppb)

Dureza (ppm)

Hierro (ppm)

Manganeso (mg/L)

Aluminio (mg/L)

Cromo (mg/L)

35

5 DATA ANALYSIS AND PROCESSING

5.1 Pre-Processing and Post-Processing

Since one of the objectives of this project is to produce data that can be used as input data

in a GIS and further applications, the data collected at the field and in the lab needs to be

analyzed to detect inconsistencies. The use of a template helps to reduce inconsistencies because

it shows the units in which each parameter must be measured and reported. The equipment used

for this project allows the user to choose the display units and a common mistake was that some

readings were reported in parts per million (ppm) or mg/L one time and the next time they were

reported in parts per billion (ppb), such was the case when reporting chlorides content. Another

error was reporting conductivity in units of micro-siemens (µS/cm) one time and then using

milli-siemens (mS/cm), or reporting resistivity in micro-ohms (µΩ) one time and then milli-

ohms the next time (mΩ).

Once the data were collected I made corrections where it was easy to see that the wrong

units were used e.g., when reporting using units of ppb instead of ppm; however, some values

remain as they were reported even when they might be inconsistent.

5.2 Discussion of Results

The data collected so far represent a year and a half of work, and six monitoring trips.

The data collected might have inconsistencies or might not be complete; the main reasons for

36

these inconsistencies are most likely inadequate use of the equipment, lack of calibration of the

equipment, and lack of maintenance of the equipment.

Due to the rotation of personnel working on this project at the UV, some students didn’t

really know how to use the equipment and they may have not used it properly which affects the

quality of the results, also with time some of the standards used for calibration got contaminated

or are about to expire which produces inaccurate calibration, and finally, since we bought the

equipment in March 2010 it has not received any type of maintenance even when it is

recommended to give the equipment maintenance at least every six months, and this also affects

the quality of the results.

However, in order to evaluate the consistency of the results produced I took some random

points and compared the results reported by CONAGUA from three different years with the

results we are reporting over a period of one year. The points I am comparing are Puente Alamo

which is one our points with Alamo-Jugueras and Alamo which are two points monitored by

CONAGUA. These points are within a distance of 5 kilometers from each other; Alamo-

Jugueras is about 4 km upstream of Puente Alamo and Alamo is about 5 km downstream of

Puente Alamo. The time periods used for the comparisons are about a year starting during the

Spring and going to the next Spring the following year. For these points the periods compared

are: Spring 2004 – Spring 2005 for Alamo-Jugueras, Spring 2006 – Spring 2007 for Alamo-

Jugureas, and Spring 2010 – Spring 2011 for Alamo.

A total of 10 parameters were analyzed to determine how consistent the values were in

comparison to values reported in previous years for the same place. Figure 3–1 shows the

variations in Dissolved Oxygen for the previously mentioned monitoring points and periods, this

graph shows that most values are within a ±3 unit margin which can be used to consider that the

37

values reported by the UV are valid. A similar analysis was performed for the Lazaro Cardenas

monitoring points in the Tecolutla River. Appendix D through Appendix F contains the complete

results of these analyses and they show that most results are within a reasonable margin.

However, there are results for some other points that might be inconsistent due to the reasons

previously mentioned.

Figure 5–1: Comparison of DO Content for the Puente Alamo and Alamo Monitoring Points

5.3 Further Use of Data

As mentioned before, the data produced can be used as input data for a GIS, it also can be

stored in a database that can be shared with students, research organizations, other universities,

etc. The data can be shared and operated in a similar way the Consortium of Universities for the

Advancement of Hydrologic Science, Inc. (CUAHSI) shares and manages data. The data can

also be used in database management software like ArcHydro and/or shared using servers like

0.00

2.00

4.00

6.00

8.00

10.00

12.00

16‐Feb

18‐Mar

17‐Apr

18‐May

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐Mar

18‐Apr

19‐May

Dissolved

Oxygen, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

38

the CUAHSI Hydrologic Information System (HIS) [8]. It can also be used as input data for

water quality computer models like QUAL2K to perform water quality simulations. Further

sharing of the data and its use for modeling purposes are out of the scope of this project.

39

6 ACADEMIC IMPACT AND FUTURE GOALS

This is an ongoing project that had a positive impact at the UV already and it will

continue to benefit students working on environmental projects and not only on this particular

project.

One of the objectives of this project is to train environmental engineering students at the

UV and provide them with hands-on experience, this objective has been achieved and it is a goal

from now on to continue training new students and teach them how to combine the type of

information gathered in a project like this and use data management tools like GIS.

6.1 Continuity of the Project and Improvements

The project has been active for at least 18 months to this day and it is expected to

continue for as long and it is needed to monitor the water quality in the rivers comprising the

area of study. Also, having water quality monitoring equipment will benefit environmental

engineering students during their learning process at school since many of them will work on

similar environmental projects during their careers.

As mentioned earlier, financial constraints were a concern to give continuity to this

project, year and a half after having started it still is a concern; however, the positive response of

students, who so far have been volunteers, and the positive response of professors who have been

willing to work off the clock with the students, has shown school officials that it is worth

investing in projects like this one.

40

During my last visit in October 2011 I was informed that the school had recently

purchased two multiparameter probes more advanced than the ones we donated. These two new

probes will be used for this same project and for other environmental projects that the

engineering department may have students involved in. This is a remarkable achievement

considering that the school is run on a tight budget with state funds. Before we started this

project their environmental laboratory had some limited equipment and now they have the

equipment we donated plus two HI 9828 multiparameter probes by HANNA Instruments. These

new probes measure various water quality parameters and are easier to use and calibrate. They

have a cost of around $2,000.00 dollars which was absorbed by the school. Furthermore, the

school will send in the equipment we donated for maintenance so that it can be in optimum

conditions by the time they resume the field work

In addition to the equipment purchased by the school, Dr. Gustavo Davila, CIATEJ

researcher, donated additional laboratory equipment such as laboratory glass and plastic bottles

and containers, and calibration standards for the existing equipment. Dr. Davila has also been a

great support to the UV and during our last visit he had the students and professors analyze

samples to detect the content of heavy metals and coli forms which from now on are new water

quality parameters that will also be monitored; Dr. Davila also donated some equipment to the

UV to monitor these new parameters.

The achievements in this project show that it has been a successful project, and it also

shows that it created a very positive academic impact at the UV.

41

7 CONCLUSION

This project started in January 2010 with its first planning stage and the initial field trips

in March 2010. It started as part of the activities of the MESA 2010 program at BYU going

alongside a development of a larger GIS project conducted by CIATEJ, with time this project

evolved into an ongoing field monitoring project involving and training students at the UV who

benefit from the results produced as they may use them for further applications.

The objectives of this project were accomplished as we developed and implemented a

water quality monitoring plan for the Cazones River, Tuxpan River, and the Tecolutla River in

Veracruz, Mexico, and the data produced can be used as input data for a GIS that will be used as

a DSS at a watershed level for the area of study. We trained environmental engineering students

at the UV on monitoring water quality and applications of GIS, and also provided them with

hands-on experience. We produced water quality data of the rivers that comprise the area and it

can be used for future projects and research activities. And finally we created an ongoing

program conducted by students and faculty members at the UV to monitor water quality in water

bodies which made a highly positive academic impact.

This project gave me the opportunity to work on a real-life application of engineering that

will produce results even in the long run and thus it will continue making a positive impact. It

also gave me the opportunity to develop technical and leadership skills as I worked coordinating

activities both in the field and in the lab and also here at BYU and in Mexico at the UV.

43

REFERENCES

[1] Ormsby T., Napoleon E., Burke R., Groessl C., and Feaster L., (2004) Getting to know ArcGIS desktop, ESRI Press.

[2] www.gis.com/content/what-gis [3] www.esri.com/library/ [4] Davila, G., (2011). “Desarrollo de un sistema de soporte para la toma de decisiones a nivel

cuenca para el control de la contaminación en los ríos Tuxpan, Cazones y Tecolutla en el estado de Veracruz. Informe Tecnico Segunda Etapa”, CIATEJ

[5] www.ingenieria.unam.mx/~enriquecv/TAR/normas_TAR.html [6] http://deercreek.groups.et.byu.net/ [7] www.mosaicfound.org/home/home.php

[8] www.cuahsi.org

45

Appendix A. Results Reported by the UV for the Tecolutla River

Table A–1: Results Reported by the UV for Puente Progreso de Zaragoza

Rio: Tecolutla Latitud Longitud

# punto: 1 Coordenadas: 20°16'21.97"N 97°42'16.86"WNombre de punto de Monitoreo: Puente Progreso de Zaragoza

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 8:47 AM 7:10 AM 8:47 AM 7:45 AM

Temperatura (°C) 26.0 28.1 27.0 21.4

SDT (ppm) 109.00 97.30 78.09 67.18 73.20 53.87

Turbiedad (FTU) 5.65 8.65 11.56 1.66 7.49 8.60

Resistividad (KΩ)

4.60 6.34 10.90 6.87 9.35

Salinidad (%) 0.40 0.30 0.20 0.07 0.20

ORP (mV) 47.00 97.60 121.70 23.87

Conductividad (µS)

216.00 157.62 142.10 138.40 109.10

pH (Unidades de pH)

7.45 7.15 6.97 7.23

Sulfatos (mg/L) 1.17E-01 1.18E-01 2.07E-01 6.25E-01

Cloruros (ppm) 1.40 3.04 4.66 12.50

Fosfatos (ppm) 0.17 0.12 0.02 0.14 0.24 0.21

Nitrogeno Amoniacal, N- NH3 (mg/L)

16.60

Nitrogeno de Nitratos, N- NO3-

(mg/L)3.70 15.20 23.30

Oxigeno Disuelto, OD (mg/L)

9.82 9.43 9.70 8.21 7.15 8.10

DBO (mg/L) 1.35 53.17 5.65 7.13 3.33 5.10

Coliformes Totales

17.00

Coliformes Fecales

28.00

Plomo (µg/L) 2.00

Arsenico (ppb) 10.00

Dureza (ppm) 50.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.00

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

46

Figure A–1: Temperature at Puente Progreso de Zaragoza

Figure A–2: TDS at Puente Progreso de Zaragoza

Figure A–3: Turbidity at Puente Progreso de Zaragoza

Figure A–4: Resistivity at Puente Progreso de Zaragoza

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

47

Figure A–5: Salinity at Puente Progreso de Zaragoza

Figure A–6: ORP at Puente Progreso de Zaragoza

Figure A–7: Conductivity at Puente Progreso de Zaragoza

Figure A–8: pH at Puente Progreso de Zaragoza

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salinity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

VDate

0.00

50.00

100.00

150.00

200.00

250.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

6.90

7.00

7.10

7.20

7.30

7.40

7.50

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

48

Figure A–9: Sulfates at Puente Progrezo de Zaragoza

Figure A–10: Chlorides at Puente Progreso de Zaragoza

Figure A–11: Phosphates at Puente Progreso de Zaragoza

Figure A–12: Ammonia Nitrogen at Puente Progreso de Zaragoza

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

49

Figure A–13: Nitrate Nitrogen at Puente Progreso de Zaragoza

Figure A–14: Dissolved Oxygen at Puente Progreso de Zaragoza

Figure A–15: BOD at Puente Progreso de Zaragoza

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, mg/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

50

Table A–2: Results Reported by the UV for Puente Las Lomas

Rio: Tecolutla Latitud Longitud

# punto: 2 Coordenadas: 20°15'52.62"N 97°36'4.89"WNombre de punto de Monitoreo: Puente Las Lomas

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 10:36 AM 9:03 AM 10:36 AM 8:10 AM 10:42 AM

Temperatura (°C) 26.0 28.2 28.0 23.3

SDT (ppm) 118.70 104.73 80.61 80.49 72.90 66.33

Turbiedad (FTU) 2.35 5.41 7.72 0.65 7.02 9.33

Resistividad (KΩ)

4.24 5.99 6.39 6.85 7.49

Salinidad (%) 0.40 0.30 0.30 0.07 0.20

ORP (mV) 117.20 98.32 129.80 19.03

Conductividad (µS)

232.70 165.36 162.40 146.07 133.10

pH (Unidades de pH)

7.60 7.52 7.50 8.11 7.23

Sulfatos (mg/L) 5.91E-01 1.90E-02 1.83E-01 2.77E-02

Cloruros (ppm) 5.21 3.91 14.70 10.97

Fosfatos (ppm) 0.23 0.20 0.11 0.06 0.20 0.20

Nitrogeno Amoniacal, N- NH3 (mg/L)

15.00

Nitrogeno de Nitratos, N- NO3-

(mg/L)3.40 14.17 24.40

Oxigeno Disuelto, OD (mg/L)

10.00 9.46 9.48 8.03 6.73 8.59

DBO (mg/L) 2.56 58.47 4.64 8.03 7.59 5.60

Coliformes Totales

13.00

Coliformes Fecales

30.00

Plomo (µg/L) 1.00

Arsenico (ppb) 0.00

Dureza (ppm) 120.00

Hierro (ppm) 0.15

Manganeso (mg/L)

0.10

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

51

Figure A–16: Temperature at Puente Las Lomas

Figure A–17: TDS at Puente Las Lomas

Figure A–18: Turbidity at Puente Las Lomas

Figure A–19: Resistivity at Puente Las Lomas

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tem

p, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

52

Figure A–20: Salinity at Puente Las Lomas

Figure A–21: ORP at Puente Las Lomas

Figure A–22: Conductivity at Puente Las Lomas

Figure A–23: pH at Puente Las Lomas

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

7.10

7.20

7.30

7.40

7.50

7.60

7.70

7.80

7.90

8.00

8.10

8.20

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

53

Figure A–24: Sulfates at Puente Las Lomas

Figure A–25: Chlorides at Puente Las Lomas

Figure A–26: Phosphates at Puente Las Lomas

Figure A–27: Ammonia Nitrogen at Puente Las Lomas

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

54

Figure A–28: Nitrate Nitrogen at Puente Las Lomas

Figure A–29: Dissolved Oxygen at Puente Las Lomas

Figure A–30: BOD at Puente Las Lomas

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

55

Table A–3: Results Reported by the UV for Puente Oriente Medio Dia

Rio: Tecolutla Latitud Longitud

# punto: 3 Coordenadas: 20°16'28.28"N 97°29'16.75"WNombre de punto de Monitoreo: Puente Oriente Medio Dia

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 11:52 AM 10:15 AM 11:52 AM 9:05 AM 11:37 AM

Temperatura (°C) 26.6 28.2 30.9 25.7

SDT (ppm) 140.10 120.48 103.00 85.58 90.06 86.78

Turbiedad (FTU) 10.30 6.90 5.30 0.22 9.25 56.00

Resistividad (KΩ)

3.53 5.08 5.97 5.53 5.82

Salinidad (%) 0.50 0.40 0.30 0.08 0.30

ORP (mV) 116.40 83.80 92.30 9.00

Conductividad (µS)

285.05 208.56 171.30 178.07 172.67

pH (Unidades de pH)

8.25 7.98 7.85 8.19 7.49

Sulfatos (mg/L) 4.13E-01 1.16E-01 2.60E-01 8.50E-02

Cloruros (ppm) 9.13 2.94 18.40 14.67

Fosfatos (ppm) 0.16 0.31 0.13 0.10 0.17 0.29

Nitrogeno Amoniacal, N- NH3 (mg/L)

6.10

Nitrogeno de Nitratos, N- NO3-

(mg/L)1.40 10.35 24.60

Oxigeno Disuelto, OD (mg/L)

10.66 9.56 9.75 7.46 6.67 7.85

DBO (mg/L) 3.86 62.77 5.53 7.57 6.75 18.60

Coliformes Totales

82.00

Coliformes Fecales

119.00

Plomo (µg/L) 5.00

Arsenico (ppb) 0.00

Dureza (ppm) 120.00

Hierro (ppm) 0.15

Manganeso (mg/L)

0.10

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

56

Figure A–31: Temperature at Puente Oriente Medio Dia

Figure A–32: TDS at Puente Oriente Medio Dia

Figure A–33: Turbidity at Puente Oriente Medio Dia

Figure A–34: Resistivity at Puente Oriente Medio Dia

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

57

Figure A–35: Salinity at Puente Oriente Medio Dia

Figure A–36: ORP at Puente Oriente Medio Dia

Figure A–37: Conductivity at Puente Oriente Medio Dia

Figure A–38: pH at Puente Oriente Medio Dia

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

7.40

7.50

7.60

7.70

7.80

7.90

8.00

8.10

8.20

8.30

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

58

Figure A–39: Sulfates at Puente Oriente Medio Dia

Figure A–40: Chlorides at Puente Oriente Medio Dia

Figure A–41: Phosphates at Puente Oriente Medio Dia

Figure A–42: Ammonia Nitrogen at Puente Oriente Medio Dia

0.00E+00

5.00E‐02

1.00E‐01

1.50E‐01

2.00E‐01

2.50E‐01

3.00E‐01

3.50E‐01

4.00E‐01

4.50E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

59

Figure A–43: Nitrate Nitrogen at Puente Oriente Medio Dia

Figure A–44: Dissolved Oxygen at Puente Oriente Medio Dia

Figure A–45: BOD at Puente Oriente Medio Dia

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

60

Table A–4: Results Reported by the UV for El Espinal

Rio: Tecolutla Latitud Longitud

# punto: 4 Coordenadas: 20°15'6.99"N 97°23'35.10"WNombre de punto de Monitoreo: El Espinal

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 11:40 AM 1:20 PM 10:00 AM 12:35 PM

Temperatura (°C) 32.0 32.1 28.3

SDT (ppm) 183.35 110.80 130.40 138.83

Turbiedad (FTU) 6.57 1.55 19.30 46.50

Resistividad (KΩ)

2.75 5.58 3.83 3.59

Salinidad (%) 0.70 0.40 0.50 0.50

ORP (mV) 113.83 114.80 45.70

Conductividad (µS)

365.86 221.00 259.90 272.77

pH (Unidades de pH)

6.75 8.24 8.00

Sulfatos (mg/L) 6.48E-01 4.63E-01 1.28E-01

Cloruros (ppm) 18.50 19.90 11.80

Fosfatos (ppm) 0.06 0.10 0.23 0.36

Nitrogeno Amoniacal, N- NH3 (mg/L)

Nitrogeno de Nitratos, N- NO3-

(mg/L)27.60

Oxigeno Disuelto, OD (mg/L)

11.33 10.57 11.42 6.70

DBO (mg/L) 0.73 10.82 11.41 15.00

Coliformes Totales

40.00

Coliformes Fecales

121.00

Plomo (µg/L) 1.00

Arsenico (ppb) 30.00

Dureza (ppm) 120.00

Hierro (ppm) 0.15

Manganeso (mg/L)

0.12

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.20

61

Figure A–46: Temperature at El Espinal

Figure A–47: TDS at El Espinal

Figure A–48: Turbidity at El Espinal

Figure A–49: Resistivity at El Espinal

28.0

28.5

29.0

29.5

30.0

30.5

31.0

31.5

32.0

32.5

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

62

Figure A–50: Salinity at El Espinal

Figure A–51: ORP at El Espinal

Figure A–52: Conductivity at El Espinal

Figure A–53: pH at El Espinal

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

63

Figure A–54: Sulfates at El Espinal

Figure A–55: Chlorides at El Espinal

Figure A–56: Phosphates at El Espinal

Figure A–57: Ammonia Nitrogen at El Espinal

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

64

Figure A–58: Nitrate Nitrogen at El Espinal

Figure A–59: Dissolved Oxygen at El Espinal

Figure A–60: BOD at El Espinal

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

65

Table A–5: Results Reported by the UV for Bado San Gotardo

Rio: Tecolutla Latitud Longitud

# punto: 5 Coordenadas: 20°17'58.15"N 97°17'37.64"WNombre de punto de Monitoreo: Bado San Gotardo

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 1:20 PM 12:55 PM 2:50 PM 1:37 PM

Temperatura (°C) 26.5 31.2 35.9 25.7

SDT (ppm) 151.30 109.87 94.07 75.10 78.05 70.02

Turbiedad (FTU) 459.50 12.93 6.82 0.52 19.20 51.93

Resistividad (KΩ)

3.28 5.32 6.90 6.42 7.12

Salinidad (%) 0.50 0.40 0.30 0.30 0.30

ORP (mV) 75.80 86.43 122.10 54.00

Conductividad (µS)

264.25 188.06 150.20 150.47 137.43

pH (Unidades de pH)

7.90 7.28 6.65 8.67 8.30

Sulfatos (mg/L) 5.91E-01 3.55E-01 3.71E-01 1.19E-01

Cloruros (ppm) 12.70 3.26 28.20 7.05

Fosfatos (ppm) 0.23 0.35 0.16 0.23 0.27 0.23

Nitrogeno Amoniacal, N- NH3 (mg/L)

22.50

Nitrogeno de Nitratos, N- NO3-

(mg/L)5.10 16.57 25.80

Oxigeno Disuelto, OD (mg/L)

9.21 8.77 10.33 10.93 9.54 7.56

DBO (mg/L) 0.58 69.00 5.91 10.93 9.00 16.10

Coliformes Totales

42.00

Coliformes Fecales

120.00

Plomo (µg/L) 6.00

Arsenico (ppb) 30.00

Dureza (ppm) 120.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.05

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

66

Figure A–61: Temperature at Bado San Gotardo

Figure A–62: TDS at Bado San Gotardo

Figure A–63: Turbidity at Bado San Gotardo

Figure A–64: Resistivity at Bado San Gotardo

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, p

pm

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

67

Figure A–65: Salinity at Bado San Gotardo

Figure A–66: ORP at Bado San Gotardo

Figure A–67: Conductivity at Bado San Gotardo

Figure A–68: pH at Bado San Gotardo

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

68

Figure A–69: Sulfates at Bado San Gotardo

Figure A–70: Chlorides at Bado San Gotardo

Figure A–71: Phosphates at Bado San Gotardo

Figure A–72: Ammonia Nitrogen at Bado San Gotardo

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, p

pm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

69

Figure A–73: Nitrate Nitrogen at Bado San Gotardo

Figure A–74: Dissolved Oxygen at Bado San Gotardo

Figure A–75: BOD at Bado San Gotardo

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

70

Table A–6: Results Reported by the UV for Puente El Remolino

Rio: Tecolutla Latitud Longitud

# punto: 6 Coordenadas: 20°23'53.50"N 97°14'20.93"WNombre de punto de Monitoreo: Puente El Remolino

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 2:50 PM 2:02 PM 4:35 PM 2:30 PM

Temperatura (°C) 26.7 30.4 38.0 26.6

SDT (ppm) 151.30 126.07 113.50 75.70 83.00 78.69

Turbiedad (FTU) 459.50 8.09 5.10 1.73 26.43 44.66

Resistividad (KΩ)

3.28 4.40 6.73 6.00 6.53

Salinidad (%) 0.60 0.40 0.30 0.30 0.30

ORP (mV) 40.20 98.80 116.30 65.75

Conductividad (µS)

304.30 227.00 151.20 166.60 157.37

pH (Unidades de pH)

7.90 7.43 7.12 8.84 8.00

Sulfatos (mg/L) 3.04E-01 1.40E-01 4.36E-01 1.77E-02

Cloruros (ppm) 16.06 10.76 25.30 7.53

Fosfatos (ppm) 0.07 0.43 0.04 0.21 0.23 0.22

Nitrogeno Amoniacal, N- NH3 (mg/L)

17.80

Nitrogeno de Nitratos, N- NO3-

(mg/L)3.10 16.57 27.00

Oxigeno Disuelto, OD (mg/L)

9.21 9.45 10.43 11.68 6.62 8.15

DBO (mg/L) 0.51 63.67 3.39 11.56 6.53 14.00

Coliformes Totales

41.00

Coliformes Fecales

99.00

Plomo (µg/L) 0.00

Arsenico (ppb) 30.00

Dureza (ppm) 120.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.10

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

71

Figure A–76: Temperature at Puente El Remolino

Figure A–77: TDS at Puente El Remolino

Figure A–78: Turbidity at Puente El Remolino

Figure A–79: Resistivity at Puente El Remolino

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

72

Figure A–80: Salinity at Puente El Remolino

Figure A–81: ORP at Puente El Remolino

Figure A–82: Conductivity at Puente El Remolino

Figure A–83: pH at Puente El Remolino

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

73

Figure A–84: Sulfates at Puente El Remolino

Figure A–85: Chlorides at Puente El Remolino

Figure A–86: Phosphates at Puente El Remolino

Figure A–87: Ammonia Nitrogen at Puente El Remolino

0.00E+00

5.00E‐02

1.00E‐01

1.50E‐01

2.00E‐01

2.50E‐01

3.00E‐01

3.50E‐01

4.00E‐01

4.50E‐01

5.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

74

Figure A–88: Nitrate Nitrogen at Puente El Remolino

Figure A–89: Dissolved Oxygen at Puente El Remolino

Figure A–90: BOD at Puente El Remolino

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

75

Table A–7: Results Reported by the UV for Puente Tecolutla Entrada a Gtz Zamora

Rio: Tecolutla Latitud Longitud

# punto: 7 Coordenadas: 20°26'12.96"N 97° 5'2.42"WNombre de punto de Monitoreo: Puente Tecolutla_Entrada a Gtz Zamora

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 4:35 PM 3:20 PM 5:15 PM 1:50 PM 4:03 PM

Temperatura (°C) 26.8 30.5 34.8 27.3

SDT (ppm) 163.80 137.23 138.13 81.96 74.37 81.44

Turbiedad (FTU) 82.00 11.24 11.53 6.38 43.72 20.71

Resistividad (KΩ)

3.05 3.61 6.10 5.61 6.23

Salinidad (%) 0.60 0.50 0.30 0.30 0.30

ORP (mV) 173.05 115.40 131.20 2.37

Conductividad (µS)

329.00 275.16 163.20 178.07 165.00

pH (Unidades de pH)

7.80 7.53 7.39 8.67 8.02

Sulfatos (mg/L) 2.14E-01 2.43E-01 6.32E-01 4.81E-02

Cloruros (ppm) 39.25 7.56 23.60 16.73

Fosfatos (ppm) 0.39 0.27 0.18 0.09 0.28 0.21

Nitrogeno Amoniacal, N- NH3 (mg/L)

13.80

Nitrogeno de Nitratos, N- NO3-

(mg/L)4.00 11.77 23.70

Oxigeno Disuelto, OD (mg/L)

7.14 8.33 9.97 8.20 6.67 7.41

DBO (mg/L) 0.76 63.00 3.40 8.38 6.76 8.19

Coliformes Totales

272.00

Coliformes Fecales

134.00

Plomo (µg/L) 3.00

Arsenico (ppb) 0.00

Dureza (ppm) 120.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.00

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

76

Figure A–91: Temperature at Puente Tecolutla-Gutierrez Zamora

Figure A–92: TDS at Puente Tecolutla-Gutierrez Zamora

Figure A–93: Turbidity at Puente Tecolutla-Gutierrez Zamora

Figure A–94: Resistivity at Puente Tecolutla-Gutierrez Zamora

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, p

pm

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

77

Figure A–95: Salinity at Puente Tecolutla-Gutierrez Zamora

Figure A–96: ORP at Puente Tecolutla-Gutierrez Zamora

Figure A–97: Conductivity at Puente Tecolutla-Gutierrez Zamora

Figure A–98: pH at Puente Tecolutla-Gutierrez Zamora

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

7.20

7.40

7.60

7.80

8.00

8.20

8.40

8.60

8.80

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

78

Figure A–99: Sulfates at Puente Tecolutla-Gutierrez Zamora

Figure A–100: Chlorides at Puente Tecolutla-Gutierrez Zamora

Figure A–101: Phosphates at Puente Tecolutla-Gutierrez Zamora

Figure A–102: Ammonia Nitrogen at Puente Tecolutla-Gutierrez Zamora

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, p

pm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

79

Figure A–103: Nitrate Nitrogen at Puente Tecolutla-Gutierrez Zamora

Figure A–104: Dissolved Oxygen at Puente Tecolutla-Gutierrez Zamaro

Figure A–105: BOD at Puente Tecolutla-Gutierrez Zamora

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

80

Table A–8: Results Reported by the UV for Salida de Gutierrez Zamora

Rio: Tecolutla Latitud Longitud

# punto: 8 Coordenadas: 20°28'51.36"N 97° 4'0.49"WNombre de punto de Monitoreo: Salida de Gutierrez Zamora

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 5:15 PM 4:20 PM 5:54 PM 2:20 PM 4:38 PM

Temperatura (°C) 27.0 27.1 34.1

SDT (ppm) 290.30 218.28 142.60 31.89 249.50 81.94

Turbiedad (FTU) 64.50 10.10 7.94 6.15 33.86 16.76

Resistividad (KΩ)

1.74 3.54 146.00 2000.00 6.12

Salinidad (%) 0.90 0.50 228.00 9.00 3.50

ORP (mV) 37.45 134.43 76.90 10.50

Conductividad (µS)

584.40 281.90 64.12 500.00 163.97

pH (Unidades de pH)

7.80 7.62 7.60 7.80 7.90

Sulfatos (mg/L) 1.69E-01 1.56E-01 3.22E-01 7.54E-02

Cloruros (ppm) 120.00 15.50 58.10 311.33

Fosfatos (ppm) 0.25 0.20 0.13 0.04 0.33 0.18

Nitrogeno Amoniacal, N- NH3 (mg/L)

14.30

Nitrogeno de Nitratos, N- NO3-

(mg/L)3.10 11.77 96.30

Oxigeno Disuelto, OD (mg/L)

7.80 8.63 10.76 6.40 6.02 7.89

DBO (mg/L) 0.54 59.00 5.28 6.75 6.20

Coliformes Totales

36.00

Coliformes Fecales

46.00

Plomo (µg/L) 3.00

Arsenico (ppb) 0.00

Dureza (ppm) 120.00

Hierro (ppm) 0.15

Manganeso (mg/L)

0.00

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

81

Figure A–106: Temperature at Salida de Gutierrez Zamora

Figure A–107: TDS at Salida de Gutierrez Zamora

Figure A–108: Turbidity at Salida de Gutierrez Zamora

Figure A–109: Resistivity at Salida de Gutierrez Zamora

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

500.00

1000.00

1500.00

2000.00

2500.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

82

Figure A–110: Salinity at Salida de Gutierrez Zamora

Figure A–111: ORP at Salida de Gutierrez Zamora

Figure A–112: Conductivity at Salida de Gutierrez Zamora

Figure A–113: pH at Salida de Gutierrez Zamora

0.00

50.00

100.00

150.00

200.00

250.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

7.55

7.60

7.65

7.70

7.75

7.80

7.85

7.90

7.95

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

83

Figure A–114: Sulfates at Salida de Gutierrez Zamora

Figure A–115: Chlorides at Salida de Gutierrez Zamora

Figure A–116: Phosphates at Salida de Gutierrez Zamora

Figure A–117: Ammonia Nitrogen at Salida de Gutierrez Zamora

0.00E+00

5.00E‐02

1.00E‐01

1.50E‐01

2.00E‐01

2.50E‐01

3.00E‐01

3.50E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

84

Figure A–118: Nitrate Nitrogen at Salida de Gutierrez Zamora

Figure A–119: Dissolved Oxygen at Salida de Gutierrez Zamora

Figure A–120: BOD at Salida de Gutierrez Zamora

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

85

Table A–9: Results Reported by the UV for Bocana de Tecolutla

Rio: Tecolutla Latitud Longitud

# punto: 9 Coordenadas: 20°28'28.51"N 97° 0'12.45"WNombre de punto de Monitoreo: Bocana de Tecolutla

Fecha 23-Apr-10 7-Jul-10 15-Oct-10 25-Mar-11 27-May-11 12-Oct-11

Hora 5:54 PM 5:02 PM 5:20 PM

Temperatura (°C) 27.2 28.4 28.4 32.8 26.5

SDT (ppm) 212.10 685.30 1.83 1.20 249.40

Turbiedad (FTU) 17.95 12.55 6.77 4.62 13.66 18.37

Resistividad (KΩ)

2.36 273.00 418.00 80.40 28.00

Salinidad (%) 7.80 6.80 117.50 23.40 66.60

ORP (mV) 56.36 124.33 123.90 42.43

Conductividad (µS)

18.95 3.63 2.40 12.47 17.88

pH (Unidades de pH)

7.73 7.65 8.61 7.80

Sulfatos (mg/L) 6.13E-01 4.39E-01 1.05E+00 4.68E-01

Cloruros (ppm) 1.25 1.98 44.70 4.75

Fosfatos (ppm) 0.22 0.16 0.19 0.04 0.18 0.18

Nitrogeno Amoniacal, N- NH3 (mg/L)

12.90

Nitrogeno de Nitratos, N- NO3-

(mg/L)2.90 12.30 32.90

Oxigeno Disuelto, OD (mg/L)

8.28 9.07 10.87 9.81 6.72 7.88

DBO (mg/L) 0.62 73.33 5.46 9.79 6.76

Coliformes Totales

29.00

Coliformes Fecales

44.00

Plomo (µg/L) 1.00

Arsenico (ppb) 0.00

Dureza (ppm) 250.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.05

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.20

86

Figure A–121: Temperature at Bocana de Tecolutla

Figure A–122: TDS at Bocana de Tecolutla

Figure A–123: Turbidity at Bocana de Tecolutla

Figure A–124: Resistivity at Bocana de Tecolutla

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

87

Figure A–125: Salinity at Bocana de Tecolutla

Figure A–126: ORP at Bocana de Tecolutla

Figure A–127: Conductivity at Bocana de Tecolutla

Figure A–128: pH at Bocana de Tecolutla

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

7.60

7.80

8.00

8.20

8.40

8.60

8.80

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH , pH units

Date

88

Figure A–129: Sulfates at Bocana de Tecolutla

Figure A–130: Chlorides at Bocana de Tecolutla

Figure A–131: Phosphates at Bocana de Tecolutla

Figure A–132: Ammonia Nitrogen at Bocana de Tecolutla

0.00E+00

2.00E‐01

4.00E‐01

6.00E‐01

8.00E‐01

1.00E+00

1.20E+00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

89

Figure A–133: Nitrate Nitrogen at Bocana de Tecolutla

Figure A–134: Dissolved Oxygen at Bocana de Tecolutla

Figure A–135: BOD at Bocana de Tecolutla

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

91

Appendix B. Results Reported by the UV for the Cazones River

Table B–1: Results Reported by the UV for San Marcos

Rio: Cazones Latitud Longitud

# punto: 1 Coordenadas: 20°27'11.90"N 97°43'58.00"WNombre de punto de Monitoreo: San Marcos

Fecha 25-Apr-10 8-Jul-10 5-Oct-10 23-Mar-11 27-May-11 11-Oct-11

Hora 8:25 AM 8:00 AM

Temperatura (°C)

SDT (ppm) 139.10 62.45 1.47 822.80

Turbiedad (FTU) 16.74 7.32 0.23 6.80

Resistividad (KΩ)

7.15 7.95 3.39 0.61

Salinidad (%) 0.50 0.20 5.50 3.10

ORP (mV) 100.40 128.95 124.40

Conductividad (µS)

277.20 125.00 2.96 1.62

pH (Unidades de pH)

7.90 6.45 6.10

Sulfatos (mg/L) 6.18E-01 1.87E+00 4.86E+00

Cloruros (ppm) 6.18 3.65 11.50

Fosfatos (ppm) 0.13 0.58 0.02 0.17

Nitrogeno Amoniacal, N- NH3 (mg/L)

15.90

Nitrogeno de Nitratos, N- NO3-

(mg/L)3.60

Oxigeno Disuelto, OD (mg/L)

8.46 9.46 7.76 7.85

DBO (mg/L) 5.74 7.78

Coliformes Totales

56.00

Coliformes Fecales

43.00

Plomo (µg/L) 3.00

Arsenico (ppb) 0.00

Dureza (ppm) 120.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.00

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.20

92

Figure B–1: Temperature at San Marcos

Figure B–2: TDS at San Marcos

Figure B–3: Turbidity at San Marcos

Figure B–4: Resistivity at San Marcos

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

93

Figure B–5: Salinity at San Marcos

Figure B–6: ORP at San Marcos

Figure B–7: Conductivity at San Marcos

Figure B–8: pH at San Marcos

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, pH units

Date

94

Figure B–9: Sulfates at San Marcos

Figure B–10: Chlorides at San Marcos

Figure B–11: Phosphates at San Marcos

Figure B–12: Ammonia Nitrogen at San Marcos

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

95

Figure B–13: Nitrate Nitrogen at San Marcos

Figure B–14: Dissolved Oxygen at San Marcos

Figure B–15: BOD at San Marcos

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

96

Table B–2: Results Reported by the UV for Villa Lazaro Cardenas (La Uno)

Rio: Cazones Latitud Longitud

# punto: 2 Coordenadas: 20°26'46.91"N 97°42'9.78"WNombre de punto de Monitoreo: Villa Lazaro Cardenas (La Uno)

Fecha 25-Apr-10 8-Jul-10 5-Oct-10 23-Mar-11 27-May-11 13-Oct-11

Hora 10:03 AM 9:40 AM 10:10 AM

Temperatura (°C) 25.0

SDT (ppm) 146.70 123.23 70.22 101.70 78.85

Turbiedad (FTU) 14.21 13.48 11.72 0.30 9.03

Resistividad (KΩ)

3.39 7.51 4.91 6.34

Salinidad (%) 0.50 0.30 0.40 0.30

ORP (mV) 113.40 109.05 126.60

Conductividad (µS)

292.30 139.25 214.10 157.00

pH (Unidades de pH)

7.20 6.88 6.15 7.10

Sulfatos (mg/L) 7.34E-01 2.32E+00 4.86E-01

Cloruros (ppm) 7.34 2.33 3.49

Fosfatos (ppm) 0.14 0.34 0.12 0.02 0.02

Nitrogeno Amoniacal, N- NH3 (mg/L)

3.00

Nitrogeno de Nitratos, N- NO3-

(mg/L)0.70 15.40

Oxigeno Disuelto, OD (mg/L)

9.48 9.96 9.44 7.38 7.83

DBO (mg/L) 8.64 5.59 1.58

Coliformes Totales

Coliformes Fecales

Plomo (µg/L) 3.00

Arsenico (ppb) 0.00

Dureza (ppm) 120.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.00

Aluminio (mg/L) 0.01

Cromo (mg/L) 0.00

97

Figure B–16: Temperature at Villa Lazaro Cardenas

Figure B–17: TDS at Villa Lazaro Cardenas

Figure B–18: Turbidity at Villa Lazaro Cardenas

Figure B–19: Resistivity at Villa Lazaro Cardenas

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

98

Figure B–20: Salinity at Villa Lazaro Cardenas

Figure B–21: ORP at Villa Lazaro Cardenas

Figure B–22: Conductivity at Villa Lazaro Cardenas

Figure B–23: pH at Villa Lazaro Cardenas

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

108.00

110.00

112.00

114.00

116.00

118.00

120.00

122.00

124.00

126.00

128.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

6.00

6.20

6.40

6.60

6.80

7.00

7.20

7.40

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, pH units

Date

99

Figure B–24: Sulfates at Villa Lazaro Cardenas

Figure B–25: Chlorides at Villa Lazaro Cardenas

Figure B–26: Phosphates at Villa Lazaro Cardenas

Figure B–27: Ammonia Nitrogen at Villa Lazaro Cardenas

0.00E+00

5.00E‐01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

100

Figure B–28: Nitrate Nitrogen at Villa Lazaro Cardenas

Figure B–29: Dissolved Oxygen at Villa Lazaro Cardenas

Figure B–30: BOD at Villa Lazaro Cardenas

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

101

Table B–3: Results Reported by the UV for Bocatoma

Rio: Cazones Latitud Longitud

# punto: 3 Coordenadas: 20°29'2.76"N 97°32'46.20"WNombre de punto de Monitoreo: Bocatoma

Fecha 25-Apr-10 8-Jul-10 5-Oct-10 23-Mar-11 27-May-11 13-Oct-11

Hora 10:30 AM 12:30 PM

Temperatura (°C) 25.3

SDT (ppm) 168.37 73.49 98.68 87.21

Turbiedad (FTU) 11.16 20.87 54.00 7.17

Resistividad (KΩ)

6.81 4.99 5.78

Salinidad (%) 0.30 0.40 0.30

ORP (mV) 123.75 121.70

Conductividad (µS)

151.80 201.12 173.55

pH (Unidades de pH)

7.43 6.20 7.70

Sulfatos (mg/L) 1.25E-02 1.00E-02

Cloruros (ppm) 3.78 3.36

Fosfatos (ppm) 0.61 0.31 0.26 0.21

Nitrogeno Amoniacal, N- NH3 (mg/L)

Nitrogeno de Nitratos, N- NO3-

(mg/L)19.43

Oxigeno Disuelto, OD (mg/L)

8.93 9.55 5.59 8.48

DBO (mg/L) 6.24 6.63 5.81

Coliformes Totales

55.00

Coliformes Fecales

51.00

Plomo (µg/L)

Arsenico (ppb) 30.00

Dureza (ppm)

Hierro (ppm) 0.00

Manganeso (mg/L)

0.00

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

102

Figure B–31: Temperature at Bocatoma

Figure B–32: TDS at Bocatoma

Figure B–33: Turbidity at Bocatoma

Figure B–34: Resistivity at Bocatoma

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

103

Figure B–35: Salinity at Bocatoma

Figure B–36: ORP at Bocatoma

Figure B–37: Conductivity at Bocatoma

Figure B–38: pH at Bocatoma

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

121.50

122.00

122.50

123.00

123.50

124.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, pH units

Date

104

Figure B–39: Sulfates at Bocatoma

Figure B–40: Chlorides at Bocatoma

Figure B–41: Phosphates at Bocatoma

Figure B–42: Ammonia Nitrogen at Bocatoma

0.00E+00

2.00E‐03

4.00E‐03

6.00E‐03

8.00E‐03

1.00E‐02

1.20E‐02

1.40E‐02

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

3.30

3.35

3.40

3.45

3.50

3.55

3.60

3.65

3.70

3.75

3.80

3.85

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

105

Figure B–43: Nitrate Nitrogen at Bocatoma

Figure B–44: Dissolved Oxygen at Bocatoma

Figure B–45: BOD at Bocatoma

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

5.70

5.80

5.90

6.00

6.10

6.20

6.30

6.40

6.50

6.60

6.70

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

106

Table B–4: Results Reported by the UV for Puente Cazones 3

Rio: Cazones Latitud Longitud

# punto: 4 Coordenadas: 20°38'8.66"N 97°23'57.07"WNombre de punto de Monitoreo: Puente Cazones 3

Fecha 25-Apr-10 8-Jul-10 5-Oct-10 23-Mar-11 27-May-11 13-Oct-11

Hora 2:00 PM 11:15 AM 3:12 PM

Temperatura (°C)

SDT (ppm) 157.50 117.85 163.80 1.22

Turbiedad (FTU) 9.85 22.00 4.38 15.51

Resistividad (KΩ)

3.16 4.32 3.08 0.42

Salinidad (%) 0.60 0.40 0.60 4.50

ORP (mV) 54.50 171.85 82.60

Conductividad (µS)

315.10 225.10 324.70 3397.00

pH (Unidades de pH)

7.30 6.70 6.70

Sulfatos (mg/L) 1.16E-01 1.35E-01 2.02E-01

Cloruros (ppm) 7.45 45.55 13.30

Fosfatos (ppm) 0.30 0.27 1.37 0.54

Nitrogeno Amoniacal, N- NH3 (mg/L)

28.80

Nitrogeno de Nitratos, N- NO3-

(mg/L)6.50

Oxigeno Disuelto, OD (mg/L)

9.84 8.10 11.40 6.97

DBO (mg/L) 5.15 11.61

Coliformes Totales

35.00

Coliformes Fecales

33.00

Plomo (µg/L)

Arsenico (ppb) 0.00

Dureza (ppm)

Hierro (ppm) 0.00

Manganeso (mg/L)

0.00

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

107

Figure B–46: Temperature at Puente Cazones 3

Figure B–47: TDS at Puente Cazones 3

Figure B–48: Turbidity at Puente Cazones 3

Figure B–49: Resistivity at Puente Cazones 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

108

Figure B–50: Salinity at Puente Cazones 3

Figure B–51: ORP at Puente Cazones 3

Figure B–52: Conductivity at Puente Cazones 3

Figure B–53: pH at Puente Cazones 3

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

6.60

6.70

6.80

6.90

7.00

7.10

7.20

7.30

7.40

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, pH units

Date

109

Figure B–54: Sulfates at Puente Cazones 3

Figure B–55: Chlorides at Puente Cazones 3

Figure B–56: Phosphates at Puente Cazones 3

Figure B–57: Ammonia Nitrogen at Puente Cazones 3

0.00E+00

5.00E‐02

1.00E‐01

1.50E‐01

2.00E‐01

2.50E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

110

Figure B–58: Nitrate Nitrogen at Puente Cazones 3

Figure B–59: Dissolved Oxygen at Puente Cazones 3

Figure B–60: BOD at Puente Cazones 3

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

111

Table B–5: Results Reported by the UV for Puente Colgante

Rio: Cazones Latitud Longitud

# punto: 5 Coordenadas: 20°42'22.73"N 97°18'49.25"WNombre de punto de Monitoreo: Puente Colgante

Fecha 25-Apr-10 8-Jul-10 5-Oct-10 23-Mar-11 27-May-11 13-Oct-11

Hora 11:40 AM 4:25 PM

Temperatura (°C) 25.7

SDT (ppm) 187.30 186.45 121.15 166.20 111.90

Turbiedad (FTU) 7.43 13.05 23.30 6.44 8.17

Resistividad (KΩ)

2.68 4.18 3.10 4.47

Salinidad (%) 0.70 0.40 0.60 5.00

ORP (mV) 92.75 115.65 46.00

Conductividad (µS)

371.90 240.10 332.40 223.60

pH (Unidades de pH)

7.80 7.07 6.30 8.00

Sulfatos (mg/L) 2.04E+00 1.04E-01 2.00E-01

Cloruros (ppm) 7.55 31.50 24.30

Fosfatos (ppm) 0.70 0.47 0.26 0.98 0.50

Nitrogeno Amoniacal, N- NH3 (mg/L)

21.50

Nitrogeno de Nitratos, N- NO3-

(mg/L)4.90 17.97

Oxigeno Disuelto, OD (mg/L)

11.47 8.10 7.45 6.44 6.10

DBO (mg/L) 7.04 4.24 6.70

Coliformes Totales

46.00

Coliformes Fecales

42.00

Plomo (µg/L)

Arsenico (ppb) 10.00

Dureza (ppm)

Hierro (ppm) 0.00

Manganeso (mg/L)

0.10

Aluminio (mg/L) 0.01

Cromo (mg/L) 0.00

112

Figure B–61: Temperature at Puente Colgante

Figure B–62: TDS at Puente Colgante

Figure B–63: Turbidity at Puente Colgante

Figure B–64: Resistivity at Puente Colgante

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

113

Figure B–65: Salinity at Puente Colgante

Figure B–66: ORP at Puente Colgante

Figure B–67: Conductivity at Puente Colgante

Figure B–68: pH at Puente Colgante

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, p

H units

Date

114

Figure B–69: Sulfates at Puente Colgante

Figure B–70: Chlorides at Puente Colgante

Figure B–71: Phosphates at Puente Colgante

Figure B–72: Ammonia Nitrogen at Puente Colgante

0.00E+00

5.00E‐01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

115

Figure B–73: Nitrate Nitrogen at Puente Colgante

Figure B–74: Dissolved Oxygen at Puente Colgante

Figure B–75: BOD at Puente Colgante

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

116

Table B–6: Results Reported by the UV for Panga

Rio: Cazones Latitud Longitud

# punto: 6 Coordenadas: 20°42'37.02"N 97°14'22.69"WNombre de punto de Monitoreo: Panga

Fecha 25-Apr-10 8-Jul-10 5-Oct-10 23-Mar-11 27-May-11 13-Oct-11

Hora 12:05 PM 6:00 PM

Temperatura (°C) 25.8

SDT (ppm) 838.30 621.00 799.50 2.85 23.00

Turbiedad (FTU) 3.13 7.56 16.55 2.53 6.14

Resistividad (KΩ)

608.00 624.40 178.00 0.77

Salinidad (%) 3.10 0.30 10.50 2.50

ORP (mV) 98.50 139.00 106.40

Conductividad (µS)

1.67 1.55 5.64 1241.00

pH (Unidades de pH)

7.15 7.28 6.65 8.54

Sulfatos (mg/L) 7.70E-01 1.95E-01 1.30E-01

Cloruros (ppm) 0.46 1.26 2.46

Fosfatos (ppm) 0.51 0.47 0.36 0.71 0.33

Nitrogeno Amoniacal, N- NH3 (mg/L)

17.70

Nitrogeno de Nitratos, N- NO3-

(mg/L)4.00 18.33

Oxigeno Disuelto, OD (mg/L)

9.56 8.44 6.36 21.17 3.87

DBO (mg/L) 6.32 3.72 6.70

Coliformes Totales

18.00

Coliformes Fecales

15.00

Plomo (µg/L)

Arsenico (ppb) 0.00

Dureza (ppm)

Hierro (ppm) 0.00

Manganeso (mg/L)

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

117

Figure B–76: Temperature at Panga

Figure B–77: TDS at Panga

Figure B–78: Turbidity at Panga

Figure B–79: Resistivity at Panga

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

118

Figure B–80: Salinity at Panga

Figure B–81: ORP at Panga

Figure B–82: Conductivity at Panga

Figure B–83: pH at Panga

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, pH units

Date

119

Figure B–84: Sulfates at Panga

Figure B–85: Chlorides at Panga

Figure B–86: Phosphates at Panga

Figure B–87: Ammonia Nitrogen at Panga

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

8.00E‐01

9.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, p

pm

Date

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

120

Figure B–88: Nitrate Nitrogen at Panga

Figure B–89: Dissolved Oxygen at Panga

Figure B–90: BOD at Panga

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

121

Appendix C. Results Reported by the UV for the Tuxpan River

Table C–1: Results Reported by the UV for Puente Alamo

Rio: Tuxpan Latitud Longitud

# punto: 1 Coordenadas: 20°55'42.27"N 97°40'47.67"WNombre de punto de Monitoreo: Puente Alamo

Fecha 29-Apr-10 8-Jul-10 21-Oct-10 23-Mar-11 27-May-11 11-Oct-11

Hora 11:00 AM 8:40 AM 4:10 AM

Temperatura (°C)

SDT (ppm) 8.50 172.40 116.20

Turbiedad (FTU) 7.30 1.90 1.47

Resistividad (KΩ)

55.30 2.97 4.30

Salinidad (%) 33.50 0.60 0.40

ORP (mV) 160.50 114.80 137.90

Conductividad (µS)

18.04 344.60 231.10

pH (Unidades de pH)

7.80 7.95 7.40

Sulfatos (mg/L) 4.14E-01 4.26E+01 7.50E-01

Cloruros (ppm) 8.52 5.74 9.36

Fosfatos (ppm) 0.18 0.20 0.34

Nitrogeno Amoniacal, N- NH3 (mg/L)

0.10

Nitrogeno de Nitratos, N- NO3-

(mg/L)0.10

Oxigeno Disuelto, OD (mg/L)

10.56 8.22 9.10

DBO (mg/L) 9.57 3.00 9.28

Coliformes Totales

4.00

Coliformes Fecales

7.00

Plomo (µg/L) 2.00

Arsenico (ppb) 10.00

Dureza (ppm) 120.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.20

Aluminio (mg/L) 0.06

Cromo (mg/L) 0.00

122

Figure C–1: Temperature at Puente Alamo

Figure C–2: TDS at Puente Alamo

Figure C–3: Turbidity at Puente Alamo

Figure C–4: Resistivity at Puente Alamo

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

123

Figure C–5: Salinity at Puente Alamo

Figure C–6: ORP at Puente Alamo

Figure C–7: Conductivity at Puente Alamo

Figure C–8: pH at Puente Alamo

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

7.30

7.40

7.50

7.60

7.70

7.80

7.90

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, pH units

Date

124

Figure C–9: Sulfates at Puente Alamo

Figure C–10: Chlorides at Puente Alamo

Figure C–11: Phosphates at Puente Alamo

Figure C–12: Ammonia Nitrogen at Puente Alamo

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

4.00E+01

4.50E+01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

125

Figure C–13: Nitrate Nitrogen at Puente Alamo

Figure C–14: Dissolved Oxygen at Puente Alamo

Figure C–15: BOD at Puente Alamo

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

126

Table C–2: Results Reported by the UV for Jardines de Tuxpan Residencial (Tuxpan 1)

Rio: Tuxpan Latitud Longitud

# punto: 2 Coordenadas: 20°56'33.87"N 97°25'4.93"WNombre de punto de Monitoreo: Jardines de Tuxpan Residencial (Tuxpan 1)

Fecha 29-Apr-10 8-Jul-10 21-Oct-10 23-Mar-11 27-May-11 11-Oct-11

Hora 9:00 AM 10:15 AM 6:00 AM

Temperatura (°C)

SDT (ppm) 740.40 2.33 25.55

Turbiedad (FTU) 7.80 17.09 6.49

Resistividad (KΩ)

684.00 2.15 20.10

Salinidad (%) 2.80 8.70 95.10

ORP (mV) 604.55 107.06 42.00

Conductividad (µS)

1.48 4.56 50.67

pH (Unidades de pH)

7.00 7.77 7.70

Sulfatos (mg/L) 7.47E-01 3.00E-01

Cloruros (ppm) 16.10 7.48 1.62

Fosfatos (ppm) 1.32 0.01 6.07

Nitrogeno Amoniacal, N- NH3 (mg/L)

11.20

Nitrogeno de Nitratos, N- NO3-

(mg/L)49.80

Oxigeno Disuelto, OD (mg/L)

0.12 9.26 6.51

DBO (mg/L) 0.18 3.56 5.91

Coliformes Totales

4.00

Coliformes Fecales

1.00

Plomo (µg/L) 3.00

Arsenico (ppb) 0.00

Dureza (ppm) 425.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.18

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

127

Figure C–16: Temperature at Jardines de Tuxpan (Tuxpan 1)

Figure C–17: TDS at Jardines de Tuxpan (Tuxpan 1)

Figure C–18: Turbidity at Jardines de Tuxpan (Tuxpan 1)

Figure C–19: Resistivity at Jardines de Tuxpan (Tuxpan 1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

128

Figure C–20: Salinity at Jardines de Tuxpan (Tuxpan 1)

Figure C–21: ORP at Jardines de Tuxpan (Tuxpan 1)

Figure C–22: Conductivity at Jardines de Tuxpan (Tuxpan 1)

Figure C–23: pH at Jardines de Tuxpan (Tuxpan 1)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

6.90

7.00

7.10

7.20

7.30

7.40

7.50

7.60

7.70

7.80

7.90

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH, p

H units

Date

129

Figure C–24: Sulfates at Jardines de Tuxpan (Tuxpan 1)

Figure C–25: Chlorides at Jardines de Tuxpan (Tuxpan 1)

Figure C–26: Phosphates at Jardines de Tuxpan (Tuxpan 1)

Figure C–27: Ammonia Nitrogen at Jardines de Tuxpan (Tuxpan 1)

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

8.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

130

Figure C–28: Nitrate Nitrogen at Jardines de Tuxpan (Tuxpan 1)

Figure C–29: Dissolved Oxygen at Jardines de Tuxpan (Tuxpan 1)

Figure C–30: BOD at Jardines de Tuxpan (Tuxpan 1)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

131

Table C–3: Results Reported by the UV for Parque Ribereño (Tuxpan 2)

Rio: Tuxpan Latitud Longitud

# punto: 3 Coordenadas: 20°56'53.54"N 97°21'15.72"WNombre de punto de Monitoreo: Parque Ribereño (Tuxpan 2)

Fecha 29-Apr-10 8-Jul-10 21-Oct-10 23-Mar-11 27-May-11 11-Oct-11

Hora 7:50 AM 12:50 PM 8:20 AM

Temperatura (°C)

SDT (ppm) 138.90 3.47 28.17

Turbiedad (FTU) 1.87 10.60 3.54

Resistividad (KΩ)

3.61 145.00 17.90

Salinidad (%) 0.50 12.90 105.10

ORP (mV) 124.25 121.60 36.60

Conductividad (µS)

277.00 6.92 56.32

pH (Unidades de pH)

6.75 7.87 7.50

Sulfatos (mg/L) 6.42E-01

Cloruros (ppm) 19.70 8.81 22.80

Fosfatos (ppm) 0.08 0.04 0.06

Nitrogeno Amoniacal, N- NH3 (mg/L)

3.50

Nitrogeno de Nitratos, N- NO3-

(mg/L)15.30

Oxigeno Disuelto, OD (mg/L)

6.44 9.05 5.07

DBO (mg/L) 2.14 4.42 4.91

Coliformes Totales

7.00

Coliformes Fecales

1.00

Plomo (µg/L) 4.00

Arsenico (ppb) 0.00

Dureza (ppm) 425.00

Hierro (ppm) 0.00

Manganeso (mg/L)

0.09

Aluminio (mg/L) 0.00

Cromo (mg/L) 0.00

132

Figure C–31: Temperature at Parque Ribereño (Tuxpan 2)

Figure C–32: TDS at Parque Ribereño (Tuxpan 2)

Figure C–33: Turbidity at Parque Ribereño (Tuxpan 2)

Figure C–34: Resistivity at Parque Ribereño (Tuxpan 2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Temp, C

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

TDS, ppm

Date

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Turbidity, FTU

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Res, KΩ

Date

133

Figure C–35: Salinity at Parque Ribereño (Tuxpan 2)

Figure C–36: ORP at Parque Ribereño (Tuxpan 2)

Figure C–37: Conductivity at Parque Ribereño (Tuxpan 2)

Figure C–38: pH at Parque Ribereño (Tuxpan 2)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Salin

ity, %

Date

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

OPR, m

V

Date

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Conductivity, m

S

Date

6.60

6.80

7.00

7.20

7.40

7.60

7.80

8.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

pH Units, pH units

Date

134

Figure C–39: Sulfates at Parque Ribereño (Tuxpan 2)

Figure C–40: Chlorides at Parque Ribereño (Tuxpan 2)

Figure C–41: Phosphates at Parque Ribereño (Tuxpan 2)

Figure C–42: Ammonia Nitrogen at Parque Ribereño (Tuxpan 2)

0.00E+00

1.00E‐01

2.00E‐01

3.00E‐01

4.00E‐01

5.00E‐01

6.00E‐01

7.00E‐01

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Sulfates, ppm

Date

0.00

5.00

10.00

15.00

20.00

25.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Chlorides, ppm

Date

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Tot Phosphate, p

pm

Date

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Ammonia Nitrogen, m

g/L

Date

135

Figure C–43: Nitrate Nitrogen at Parque Ribereño (Tuxpan 2)

Figure C–44: Dissolved Oxygen at Parque Ribereño (Tuxpan 2)

Figure C–45: BOD at Parque Ribereño (Tuxpan 2)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Nitrate Nitrogen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

Dissolved Oxygen, m

g/L

Date

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Jan‐10

May‐10

Aug‐10

Nov‐10

Feb‐11

Jun‐11

Sep‐11

Dec‐11

BOD, m

g/L

Date

137

Appendix D. Comparison of Results at Puente Alamo – Alamo Jugeras

Table D–1: Comparison of Results at Puente Alamo – Alamo Jugureas

Figure D–1: Chlorides Comparison at Puente Alamo – Alamo Jugueras

River: Tuxpan

Note: Alamo Jugueras is about 4km upstream of Puente Alamo

Date TimeChlorides

(mg/L)Conductivity

(mS/cm)BOD

(mg/L)Phosphates

(mg/L)

Ammonia Nitrogen (mg/L)

Nitrate Nitrogen (mg/L)

Dissolved Oxygen (mg/L)

pH (pH units)

TDS (mg/L)

Turbidity (FTU)

23-Mar-04 10:50 30.33 820.00 7.28 0.67 <2.00 1.17 2.04 6.75 532.67 9.0024-Nov-04 20:30 37.11 909.00 <5.00 0.74 0.66 3.77 6.73 567.33 8.0030-Mar-05 10:20 34.47 872.33 <5.00 0.92 1.18 2.68 6.38 585.66 14.00

18-Apr-06 12:10 28.2 845.33 <5.00 <0.23 <2.00 1.86 2.46 7.06 524.50 4.00

30-Oct-06 20:00 47.72 1014.00 <5.00 1.29 6.06 6.89 656.80 10.00

9-Apr-07 12:55 51.64 1008.27 <5.00 0.28 1.24 1.16 4.21 7.18 644.00 16.00

29-Apr-10 11:00 8.52 18.04 9.57 0.18 0.10 0.10 10.56 7.80 8.50 7.3021-Oct-10 08:40 5.74 344.60 3.00 0.20 8.22 7.95 172.40 1.9023-Mar-11 04:10 9.36 231.10 9.28 0.34 9.10 7.40 116.20 1.47

CONAGUA

UV

Spring2004-Spring2005 (CONAGUA), Spring2006-Spring2007 (CONAGUA), Spring 2010-Spring 2011 (UV)

Periods and data to be compared:

Alamo-Jugueras (CONAGUA), Puente Alamo (UV)Monitoring points to be

compared:

0.00

10.00

20.00

30.00

40.00

50.00

60.00

16‐Feb

18‐Mar

17‐Apr

18‐May

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐Mar

18‐Apr

19‐May

Chlorides, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

138

Figure D–2: Conductivity Comparison at Puente Alamo – Alamo Jugueras

Figure D–3: Biochemical Oxygen Demand Comparison at Puente Alamo – Alamo Jugueras

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

16‐Feb

18‐M

ar

17‐Apr

18‐M

ay

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐M

ar

18‐Apr

19‐M

ay

Conductivity, mS/cm

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

‐2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

16‐Feb

18‐M

ar

17‐Apr

18‐M

ay

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐M

ar

18‐Apr

19‐M

ay

BOD, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

139

Figure D–4: Phosphates Comparison at Puente Alamo – Alamo Jugueras

Figure D–5: Ammonia Nitrogen Comparison at Puente Alamo – Alamo Jugueras

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

16‐Feb

18‐Mar

17‐Apr

18‐May

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐Mar

18‐Apr

19‐May

Phosphates, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

16‐Feb

18‐Mar

17‐Apr

18‐May

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐Mar

18‐Apr

19‐May

Ammonia Nitrogen, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

140

Figure D–6: Nitrate Nitrogen Comparison at Puente Alamo – Alamo Jugueras

Figure D–7: Dissolved Oxygen Comparison at Puente Alamo – Alamo Jugueras

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

16‐Feb

18‐M

ar

17‐Apr

18‐M

ay

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐M

ar

18‐Apr

19‐M

ay

Nitrate Nitrogen, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

16‐Feb

18‐Mar

17‐Apr

18‐May

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐Mar

18‐Apr

19‐May

Dissolved

Oxygen, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

141

Figure D–8: pH Comparison at Puente Alamo – Alamo Jugueras

Figure D–9: Total Dissolved Solids Comparison at Puente Alamo – Alamo Jugueras

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

16‐Feb

18‐Mar

17‐Apr

18‐May

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐Mar

18‐Apr

19‐May

pH, p

H units

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

16‐Feb

18‐Mar

17‐Apr

18‐May

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐Mar

18‐Apr

19‐May

TDS, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

142

Figure D–10: Turbidity Comparison at Puente Alamo – Alamo Jugueras

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

16‐Feb

18‐M

ar

17‐Apr

18‐M

ay

17‐Jun

18‐Jul

17‐Aug

17‐Sep

17‐Oct

17‐Nov

17‐Dec

17‐Jan

16‐Feb

19‐M

ar

18‐Apr

19‐M

ay

Turbidity, FTU

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

143

Appendix E. Comparison of Results at Puente Alamo – Alamo

Table E–1: Comparison of Results at Alamo – Puente Alamo

Figure E–1: Chlorides Comparison at Puente Alamo – Alamo

River: Tuxpan

Note: Alamo is about 5km downstream of Puente Alamo

Date Time Chlorides (mg/L)Conductivity

(mS/cm)BOD (mg/L)

Phosphates (mg/L)

Ammonia Nitrogen (mg/L)

Nitrate Nitrogen (mg/L)

Dissolved Oxygen (mg/L)

pH (pH units)

TDS (mg/L)Turbidity

(FTU)

16-Aug-00 13:05 1.91 236.55 2.34 1.18 7.20 0.3118-Oct-00 15:00 4.93 328.66 1.89 0.04 0.24 8.48 7.20 210.0718-May-01 7:40 2.46 242.83 1.70 0.14 0.00 0.01 5.70 7.63 172.00 14.0018-Apr-06 13:45 7.42 393.37 <5.00 <0.23 <2.00 <0.09 7.32 8.19 173.00 3.0030-Oct-06 18:15 3.48 357.40 <5.00 0.52 8.29 8.22 212.40 6.00

9-Apr-07 15:00 6.95 344.03 <5.00 <0.09 1.13 0.19 6.41 7.63 204.00 8.00

29-Apr-10 11:00 8.52 18.04 9.57 0.18 0.10 0.10 10.56 7.80 8.50 7.3021-Oct-10 8:40 5.74 344.60 3.00 0.20 8.22 7.95 172.40 1.9023-Mar-11 4:10 9.36 231.10 9.28 0.34 9.10 7.40 116.20 1.47

CONAGUA

UV

Periods and data to be compared:Spring2000-Spring2001 (CONAGUA), Spring2006-Spring2007 (CONAGUA), Spring 2010-Spring 2011 (UV)

Monitoring points to be compared: Alamo(CONAGUA), Puente Alamo (UV)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

15‐Mar

14‐Apr

15‐May

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐May

15‐Jun

Chlorides, mg/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

144

Figure E–2: Conductivity Comparison at Puente Alamo – Alamo

Figure E–3: Biochemical Oxygen Demand Comparison at Puente Alamo – Alamo

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

15‐Mar

14‐Apr

15‐May

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐May

15‐Jun

Conductivity, mS/cm

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

15‐Mar

14‐Apr

15‐May

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐May

15‐Jun

BOD, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

145

Figure E–4: Phosphates Comparison at Puente Alamo – Alamo

Figure E–5: Ammonia Nitrogen Comparison at Puente Alamo – Alamo

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

15‐Mar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐M

ay

15‐Jun

Phosphates, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

15‐Mar

14‐Apr

15‐May

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐May

15‐Jun

Ammonia Nitrogen, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

146

Figure E–6: Nitrate Nitrogen Comparison at Puente Alamo – Alamo

Figure E–7: Dissolved Oxygen Comparison at Puente Alamo – Alamo

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

15‐Mar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐M

ay

15‐Jun

Nitrate Nitrogen, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

15‐Mar

14‐Apr

15‐May

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐May

15‐Jun

Dissolved

Oxygen, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

147

Figure E–8: pH Comparison at Puente Alamo – Alamo

Figure E–9: Total Dissolved Solids Comparison at Puente Alamo – Alamo

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

15‐Mar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐M

ay

15‐Jun

pH, p

H units

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

50.00

100.00

150.00

200.00

250.00

15‐Mar

14‐Apr

15‐May

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐May

15‐Jun

TDS, m

g/L

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

148

Figure E–10: Turbidity Comparison at Puente Alamo – Alamo

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

15‐Mar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐M

ay

15‐Jun

Turbidity, FTU

Date

CONAGUA(Spring04‐Spring05) CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

149

Appendix F. Comparison of Results at Villa Lazaro Cardenas – Lazaro Cardenas

Table F–1: Comparison of Results at Lazaro Cardenas – Villa Lazaro Cardenas

Figure F–1: Chlorides Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

River: Cazones

Note: Same point

Date Time Chlorides (mg/L)Conductivity

(mS/cm)BOD (mg/L)

Phosphates (mg/L)

Ammonia Nitrogen (mg/L)

Nitrate Nitrogen (mg/L)

Dissolved Oxygen (mg/L)

pH (pH units)

TDS (mg/L)Turbidity

(FTU)

26-Mar-00 7:15 2.34 307.80 1.90 0.04 0.15 6.53 8.08 197.4423-May-00 17:35 6.26 258.41 2.39 <0.01 0.29 6.33 7.15 202.7010-Aug-00 17:30 19.62 227.40 2.56 1.45 8.17 7.0218-Oct-00 17:30 2.46 264.75 2.36 0.06 0.64 7.83 7.00 161.0021-Mar-01 16:15 3.91 267.00 0.50 0.02 0.11 9.93 7.00 180.83 28.0027-May-03 12:15 2.36 388.40 1.07 <.2546 <0.1456 3.25 7.19 179.33 20.0015-Jul-03 15:28 1.84 245.10 0.97 <0.2546 <0.1317 9.89 8.02 154.67 21.0029-Oct-03 16:10 1.45 238.40 1.65 <0.4308 0.44 9.25 8.66 156.67 16.0019-Apr-04 14:45 4.93 293.67 <5.00 <0.4074 <2.00 <0.2576 8.38 8.00 162.00 3.006-Apr-06 12:00 <5.00 271.93 <5.00 <0.23 <2.00 <0.09 8.27 8.27 165.75 3.0025-Jul-06 13:45 <2.00 263.57 <5.00 <0.10 0.75 6.41 8.02 172.00 48.00

31-Oct-06 7:10 <2.00 363.80 <5.00 0.67 8.33 8.04 170.00 9.00

11-Apr-07 14:20 <2.00 276.63 <5.00 <0.09 <1.00 0.27 8.81 8.18 168.00 4.00

25-Apr-10 10:03 7.34 292.30 0.14 3.00 0.70 9.48 7.20 146.70 14.218-Jul-10 8.64 0.34 15.40 9.96 6.88 123.23 13.485-Oct-10 9:40 2.33 139.25 5.59 0.12 9.44 6.15 70.22 11.7223-Mar-11 10:10 3.49 214.10 1.58 0.02 7.38 7.10 101.70 0.30

CONAGUA

UV

Periods and data to be compared:Spring2000-Spring2001 (CONAGUA), Spring2003-Spring2004 (CONAGUA), Spring2006-Spring2007 (CONAGUA), Spring 2010-Spring 2011 (UV)

Monitoring points to be compared: Lazaro Cardenas(CONAGUA), Villa Lazaro Cardenas-La Uno (UV)

0.00

5.00

10.00

15.00

20.00

25.00

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

Chlorides, mg/L

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

150

Figure F–2: Conductivity Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

Figure F–3: Biochemical Oxygen Demand Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

Conductivity, mS/cm

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

BOD, m

g/L

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

151

Figure F–4: Phosphates Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

Figure F–5: Ammonia Nitrogen Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

Phosphates, m

g/L

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

Ammonia Nitrogen, m

g/L

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

152

Figure F–6: Nitrate Nitrogen Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

Figure F–7: Dissolved Oxygen Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

‐2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

13‐Feb

15‐Mar

14‐Apr

15‐May

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐Mar

15‐Apr

16‐May

Nitrate Nitrogen, m

g/L

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

Dissolved

Oxygen, m

g/L

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

153

Figure F–8: pH Comparison at Puente Villa Lazaro Cardenas – Lazaro Cardenas

Figure F–9: Total Dissolved Solids Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

pH, p

H units

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

0.00

50.00

100.00

150.00

200.00

250.00

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

TDS, m

g/L

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)

154

Figure F–10: Turbidity Comparison at Villa Lazaro Cardenas – Lazaro Cardenas

0.00

10.00

20.00

30.00

40.00

50.00

60.00

13‐Feb

15‐M

ar

14‐Apr

15‐M

ay

14‐Jun

15‐Jul

14‐Aug

14‐Sep

14‐Oct

14‐Nov

14‐Dec

14‐Jan

13‐Feb

16‐M

ar

15‐Apr

16‐M

ay

Turbidity, FTU

Date

CONAGUA(Spring00‐Spring01) CONAGUA(Spring03‐Spring04)

CONAGUA(Spring06‐Spring07) UV(Spring10‐Spring11)