99
DEVELOPMENT AND QUALITY EVALUATION OF A READY-TO-EAT BANANA COMPOSITE FOOD FOR OLDER INFANTS AND YOUNG CHILDREN By Makafui A. Borbi A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Food Science−Master of Science 2016

DEVELOPMENT AND QUALITY EVALUATION OF A READY-TO-EAT

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

DEVELOPMENTANDQUALITYEVALUATIONOFAREADY-TO-EATBANANACOMPOSITEFOOD

FOROLDERINFANTSANDYOUNGCHILDREN

By

MakafuiA.Borbi

ATHESIS

SubmittedtoMichiganStateUniversity

inpartialfulfillmentoftherequirementsforthedegreeof

FoodScience−MasterofScience

2016

ABSTRACT

DEVELOPMENTANDQUALITYEVALUATIONOFAREADY-TO-EATBANANACOMPOSITEFOODFOROLDERINFANTSANDYOUNGCHILDREN

By

MakafuiA.Borbi

Amonglow-incomefamiliesindevelopingcountries,foodsfedtoinfantsandyoungchildrenarerichin

carbohydrates but limiting in protein, and importantmicronutrients. Inadequate protein levels in the

diet of children can lead to protein energy malnutrition (PEM). The objective of this study was to

develop a high-proteinweaning food,with enhanced nutritional composition and sensory properties.

Lightredkidneybeans,brownriceandsemi-ripeCavendishbananaswereusedforthedevelopmentof

banana-rice-bean(BRB)porridge.Theserawmaterialswereair-driedat60°Cfor8-16h,andmilledinto

flours, which were used to formulate seven BRB composite flour treatments. The treatments and

individualflourswereanalyzedfornutritionalcompositionandphysicochemicalproperties.Fouroutof

seventreatmentswereselectedforsensoryevaluationofporridge.AllBRBcomposite flourcontained

significant levelsofprotein,rangingfrom5.70to8.52g/100g.Ashandcrudefatcontentrangedfrom

2.25to3.05g/100gand1.23to1.73,g/100grespectively.Theresistantstarchanddietaryfibercontents

were 6.35 to 9.21 and 10.1 to 11.82 g/100g, respectively. The raffinose and stachyose levels ranged

from0.19to0.46mg/gand3.49to6.27mg/g,respectively.Thepreparedporridgeswereshowntobe

ofacceptablequalityby31AfricanandAsianmothers.Twenty-nineofthepanelistsindicatedthatthey

wouldfeedatleastoneoftheporridgestoachildbelowfiveyearsofage.Basedontheresultsofthis

study,BRBporridgecouldbeusedasanutritiousweaningfood.

iiiiii

Tomywonderfulparentsandsiblingswhoinculcatedinmethevalueofpersistence—MrESQGbeve,MrsOliviaKuwornu-Gbeve,

Mawuli,Senyo,Dzidefo,Mawutor,AkpeandEyram.

iviv

ACKNOWLEDGEMENTS

IwouldliketoexpressmyprofoundgratitudetomymajoracademicadvisorDr.KirkDolanand

co advisor Dr. Muhammad Siddiq, for their scientific guidance and immense contribution

towards my research work. I am grateful to my guidance committee members, Dr. Gale

StrasburgandDr.LeslieBourquinfortheircontinuousguidance,expertiseandcontributions.I

alsowanttothankDr.JaniceHarteDr.SungeunCho,Dr.KarenCichyandDr.SharonHooperfor

theirimmensecontributiontowardsthesuccessofthisresearchwork.IamalsogratefultoDr.

FrederikDerksenandAnneSchnellerfortheirconfidenceinme.

I am forever grateful to The MasterCard Foundation Scholars program for their financial

support,particularlytheMichiganStateUniversityteamfortheirmoralsupportandformaking

theacademicjourneylighter.

Withouttheprayers,supportandencouragementofmyfamilyIwouldn’thavemadeitthisfar.

Iamthankfultomymum,dadandmysiblings.BigthankstoEdwinBlewusiFiawoyife;youhave

alwaysbeenthere.Ifinallywanttothankallwhoparticipatedinthesensoryevaluationofthe

infantfood.

Tothebigbrainbehindthescene,ELIzuzWegibborTheLordMightyandStrong,Iamgrateful!

vv

TABLEOFCONTENTS

LISTOFTABLES............................................................................................................................viii

LISTOFFIGURES.............................................................................................................................x

KEYTOABBREVIATIONS................................................................................................................xi

CHAPTER1......................................................................................................................................1INTRODUCTION..............................................................................................................................1

CHAPTER2......................................................................................................................................5LITERATUREREVIEW......................................................................................................................52.1StandardsandNutritionalGuidelinesforyoungchildren.....................................................5

2.1.1WHOnutritionalguidelines...........................................................................................62.1.2CodexAlimentariusrecommendations.........................................................................8

2.2Traditionaldietsforyoungchildren.....................................................................................82.2.1Africa.............................................................................................................................82.2.2Ghana............................................................................................................................9

2.3RecentDevelopmentsandRecommendationforfeedingyoungchildren...........................92.3.1Value-addedfoodproducts.........................................................................................102.3.2Fortifiedfoodproducts................................................................................................102.3.3Dietarysupplements...................................................................................................11

2.4NutrientrichrawmaterialschoicesusedininfantFoodFormulation...............................112.4.1Banana.........................................................................................................................122.4.1.1Nutritionalsignificanceofbanana............................................................................132.4.2Beans...........................................................................................................................142.4.2.1Nutritionalsignificanceofbeans..............................................................................152.4.3Rice..............................................................................................................................162.4.3.1Nutritionalcompositionofrice.................................................................................16

2.5ProcessingandPreparationofrawmaterialsforformulationofdietsforinfants.............172.5.1Sortingandcleaning....................................................................................................172.5.2Soaking........................................................................................................................182.5.3Dehulling......................................................................................................................182.5.4Fermentation...............................................................................................................182.5.5Roasting.......................................................................................................................192.5.6Milling..........................................................................................................................202.5.7Extrusioncooking........................................................................................................202.5.8Fooddehydration........................................................................................................212.5.8.1Air-drying..................................................................................................................212.5.8.2Vacuumdrying..........................................................................................................22

vivi

2.5.8.3Spraydrying..............................................................................................................222.5.8.4Drumdrying..............................................................................................................232.5.8.5Freeze-drying............................................................................................................23

2.6QualityEvaluation..............................................................................................................242.6.1Protein.........................................................................................................................252.6.2Carbohydrates.............................................................................................................252.6.3Dietaryfiber.................................................................................................................252.6.4Resistantstarch...........................................................................................................262.6.4.1Starchclassification..................................................................................................272.6.4.2Functionalpropertiesofresistantstarch.................................................................282.6.5Oligosaccharides..........................................................................................................302.6.6Lipids............................................................................................................................312.6.7VitaminsandMinerals.................................................................................................32

CHAPTER3....................................................................................................................................37MATERIALSandMETHODS...........................................................................................................373.1Flourprocessing.................................................................................................................373.1.1Redkidneybeanflour..................................................................................................373.1.2Riceflour......................................................................................................................383.1.3Bananaflour................................................................................................................38

3.2Productformulation...........................................................................................................383.3ProximateAnalysis.............................................................................................................393.3.1Moisturecontent.........................................................................................................393.3.2Ashcomposition..........................................................................................................403.3.3CrudeFat.....................................................................................................................403.3.4Protein.........................................................................................................................413.3.4.1Digestion...................................................................................................................413.3.4.2Neutralizationanddilutionofdigestedsamples......................................................413.3.4.3Nitrogendetermination............................................................................................41

3.4Raffinoseandstachyosedetermination.............................................................................423.4.1Extraction.....................................................................................................................423.4.2HPLCanalysis...............................................................................................................433.6Resistantstarchdetermination......................................................................................453.6.1Hydrolysisandsolubilisationofnon-resistantstarch..................................................453.6.2MeasurementofResistantStarch...............................................................................463.6.3Non-Resistant(Solubilized)Starch..............................................................................46

3.7MineralAnalysis.................................................................................................................483.8Physicalproperties.............................................................................................................493.8.1Color............................................................................................................................493.8.2Bulkdensity.................................................................................................................493.8.3Waterabsorptionandoilabsorptioncapacities(WAC/OAC)......................................503.8.4Watersolubilityindex..................................................................................................50

3.9SensoryevaluationofBRBcompositeporridge.................................................................503.10StatisticalAnalysis............................................................................................................52

viivii

CHAPTER4....................................................................................................................................53RESULTSANDDISCUSSION...........................................................................................................534.1Nutritionalcompositionofingredients..............................................................................534.2ProximatecompositionofBRBcompositeflours...............................................................574.3Non-digestiblecarbohydratesofBRBcompositeflours.....................................................594.4MineralComposition..........................................................................................................614.5Physicalproperties.............................................................................................................634.6SensoryEvaluationandconsumeracceptability................................................................68

CHAPTER5....................................................................................................................................73OUTCOMESandRECOMMENDATIONS........................................................................................735.1Conclusion..........................................................................................................................735.2Recommendations..............................................................................................................73

APPENDICES..................................................................................................................................75AppendixA:Recommendednewdietaryreferenceintake......................................................75AppendixB:Workingstandardsolutionsformineralanalysis.................................................76AppendixC:Chromatogramoutputforsugaranalysis.............................................................77

REFERENCES.................................................................................................................................78

viiiviii

LISTOFTABLES

Table2.1:WHOrecommendednutrientintakeforchildrenage6to23months.........................7

Table2.2:Nutritionalcompositionofrawanddehydratedbananaper100g.............................14

Table2.3:Nutritionalcompositionofdifferentcultivarsofdrybeansflour................................15

Table2.4:Nutritionalprofile(per100g)ofwhiteandbrownrice...............................................17

Table2.5:PhysiologicrolesanddeficiencysignsofB-complexvitamins.....................................34

Table3.1:BRBcompositeflours(%).............................................................................................39

Table3.2:Standardsolutionsfornitrogendetermination...........................................................42

Table3.3:Variableandfixedworkingconditionsforcalcium,iron,magnesiumandzinc...........49

Table4.1:NutritionalcompositionofBanana,riceandbeanflour.............................................53

Table4.2:ProximatecompositionofBRBcompositeflours........................................................59

Table4.3:Resistantstarch,totaldietaryfiber,raffinoseandstachyosecontentofBRBcompositeflours...................................................................................................................61

Table4.4:Calcium,iron,magnesiumandzinclevels(mg/100g)ofbanana,riceandbeanflour…….........................................................................................................................................62Table4.5:Calcium,iron,magnesiumandzinclevelsinBRBcompositeflour..............................63

Table4.6:ColorparametersL*,a*,b*,valuesandChromaandHueangleofbanana,riceandbeanflour.............................................................................................................................64

Table4.7:Density,watersolubility,andwaterandoilabsorptionpropertiesrice,beansand

bananaflour.........................................................................................................................65Table4.8:ColorparametersL*,a*,b*,valuesandChromaandHueangleofBRBcomposite

flour......................................................................................................................................67Table4.9:Density,waterandoilabsorptionandwatersolubilitypropertiesofBRBcomposite

flours.....................................................................................................................................68

ixix

Table6.1:Recommendednewdietaryreferenceintake(DRI)forchildrenage6to23months..

..............................................................................................................................................75Table6.2:Concentrationsofworkingstandardssolutionsforcalcium,magnesium,ironandzinc

..............................................................................................................................................76

xx

LISTOFFIGURES

Figure2.1:Resistantstarchanditseffectonbloodglucoselevel................................................29

Figure2.2:Structureofsomegalactooligosaccharides................................................................31

Figure4.1:SensoryattributesandoverallacceptabilityofBRBporridge...................................69

Figure4.2:PercentpanelistdistributionofoverallacceptabilityofBRBporridge.......................70

Figure4.3:Checkallthatapply(CATA)attributesofBRBporridge.............................................71

Figure4.4:Checkallthatapply(CATA)ingredientsofBRBporridge...........................................73

Figure6.1:Chromatogramsforrice,bananaandbeanflourinreplicates...................................77

xixi

KEYTOABBREVIATIONS

CATA:checkallthatapply

FAO:FoodandAgricultureOrganization

GHSGhanaHealthService

GSS:GhanaStatisticalService

MOH:MinistryofHealth

NDC:Non-digestiblecarbohydrates

OAC:oilabsorptioncapacity

RS:Resistantstarch

TDF:Totaldietaryfiber

UNICEF:UnitedNationChildren’sFund.

WAC:Waterabsorptioncapacity

WAI:Wateractivityindex

WCARO:WestandCentralAfricaRegionalOffice

WHO:WorldHealthOrganization

WSI:Watersolubilityindex

1

CHAPTER1

INTRODUCTION

Stuntingandwastingare themostcommonconditions inchildrenbelowfiveyearsof

agefromlowandmiddle-incomecountries,particularlychildrenfromlowsocioeconomicstatus

families (Vollmerandothers2014). Stuntingoccurswhenachild’sheight is too low for their

age,specifically,“whoseheightsarelessthantwostandarddeviationsbelowthemedianheight

for the age of the standard reference population” (UNICEF/WHO 2015). The most common

causeofstuntingislackofessentialmacroandmicronutrientssuchasprotein,ironandzincin

thedietofchildren.Stuntingtypicallyleadstonegativegrowthconsequencessuchascognitive

impairmentinchildren,whichcanbeirreversible(DeweyandAdu-Afarwuah2008).

Globally,“5.9millionchildrenundertheageof5diedin2015andabout45%ofallchild

deaths are linked to malnutrition” (UNICEF 2015). Children below the age of 5 in some

developingcountriessuchasMalawioftensufferfromseveremalnutrition.Thismalnutritionis

evident in the high rate (42%) of stunting in this demographic (UNICEF 2015). UNICEF/WHO

(2015) reportedadecline in stunting rateglobally in theyear2015but ironically, numberof

stunted children is increasing in Africa and the continent has not experienced significant

improvement in stunting rate (UNICEF/WHO 2015). In Ghana for instance, 28% stunting in

children less than5 yearsof agewas recorded in2011ofwhich35%were from low-income

familiesandonly14%werefromthericherquintile (WCARO2011).Asof2014,Ghana isstill

listedasoneof the countries that suffer frommalnutrition: 19%of childrenare stunted,5%

wasted,and11%sufferfromunderweight(GSS/GHS/ICF2015).

2

The growth rates of breast-fed infants (mostly below 6 months) in most developing

countriesaresimilartothoseofinfantsindevelopedcountries(GSS/GHS/ICF,2015).However,

during the weaning period, infants in developed countries continue to grow normally while

stunting and wasting are observed in most infants in developing countries due to

undernutrition (Lartey and others 1999). This underdevelopment is mostly due to the poor

nutritionalqualityofcomplementaryfoodsthatarefedtoinfantsandtootherfactorssuchas

infectionsand inadequate feeding (Amaglohandothers2012). WHOdefinescomplementary

feeding as “the process starting when breast milk alone is no longer sufficient tomeet the

nutritional requirements of infants, and therefore other foods and liquids are needed, along

withbreastmilk.”

Cereal-legumeporridgesarethemostcommontraditionalfoodsgiventoinfantsduring

theweaningperiodandhas receivedmuch interestover theyears.Cowpea, soybean,maize,

andgroundnutsarethemostpopularingredientsusedinformulation.Thehighstarchcontent

(amylose) in maize leads to high viscosity of porridge during cooking due to swelling and

requires dilution with large amounts of water leading to consequent thinning of nutrients

(Amaglohandothers2013).Theadditionoflocallyproducedfoodcropsisbeingexploredasan

alternativetofortificationandtoaddressthechallengesofmalnutrition.Therightselectionand

combimationof indigeniousfoodcropscouldhelpmeetmacronutrientneedsofolder infants

andyoungchildren(Twumandothers2015).

InGhana,approximately20to50%lossesoffoodcropsincludingfruitsandvegetables

arelostannually(Twumandothers2015).Theadditionoffruitsandvegetablestoinfantfoodis

recommended by Codex Alimentarius (CODEX 1991). Dessert banana is rich in minerals,

3

vitamins,potassium,phosphorousandmagnesium.Italsoandenhancestheflavorandtasteof

most foods (Da mota and others 2000; Bello-Perez and others 2012). Dessert banana is

underutilized and is subjected to high post-harvest losses in Ghana because it is mostly

consumedfreshandrarelyincorporatedintofoodproducts(Twumandothers2015).

RiceisthesecondmostconsumedcerealaftermaizeinGhana.Locallyproducedriceis

usuallycrowdedoutbyimportedricebecauseofconsumerpreferenceforimportedrice.Some

ofthereasonsforthisarethepoorqualityoflocalriceproduced,andageneralinclinationto

importedgoods(BoakyeandEgyir2014).Processingandaddingrice,asaningredienttoother

productswill,therefore,increaseitsvalue.BrownriceisagoodsourceofB-carotene,thiamine,

niacin and magnesium (Babu and others 2009; Boakye and Egyir 2014). Beans contain

appreciable levels of carbohydrates, protein, and fiber. Inmost tropical countries, however,

substantialpostharvestlossesofbeansoccurduetohightemperaturesandhumidityandalso

spoilagecausedbyweevilsduetolackofstoragefacilities(Nyombaireandothers2011;Ruiand

Boye2013).Findingwaystoprocessand incorporatethesefoodcrops intoready-to-eatshelf

stableproducts,wouldnotonlymitigatetheproblemofundernutritionamongchildrenunder

fiveyearsofage,butitwillalsocontributetoaddingvaluetothesefoodcropswithconsequent

reductioninpostharvestlosses.

Theoverallgoalofthisstudytherefore,wastodevelopaready-to-eatcomplementary

food,with improvedprotein contentand sensoryattributesusing rice,bananaandbean, for

useinGhanaandotherdevelopingnations.Thisistohelpmitigateprotein-energymalnutrition

(PEM)andalsotohelpdiversifythenumberoftraditionalcomplementaryfoodsavailablefor

children. The objective is to analyze the level of selected nutrients and non-digestible

4

carbohydrates.Nutritionalcompositioncovered inthisstudy included:proximateandmineral

composition,raffinose,stachyoseandresistantstarchandsomephysicochemicalproperties.

5

CHAPTER2

LITERATUREREVIEW

Thepurposethissectionistoreviewnutritionalrequirementsforinfantsandyoung

childrenandalsotodescribeavailablemethodsforprocessingandproducinginfantfood.

2.1StandardsandNutritionalGuidelinesforyoungchildren

GuidelinesforpreparingcomplementaryfoodsareusuallyestablishedbyWorldHealth

Organization (WHO) and Codex Alimentarius. These standard procedures and guidelines are

highly recommended during processing and formulation of foods given to infants. This is to

ensure optimum growth, development, and good health. Dietary guidelines cover daily

nutritionalrequirements,whichprovidesnutrientsintherightamountwithoutcausingexcess

or deficit (WHO/FAO 2004). TheWHO hopes to achieve 45% rate in stunting by 2025. The

developmentofnutritionallyadequate complementary foods isoneof the interventions that

areemployed tohelpachieve this goal.With regard to the2025goal, governmentagencies,

whichregulatesuchastheFoodandDrugAuthorityinvariousnations,arerequiredtoenforce

strictregulationsonthedevelopmentandmarketingofinappropriatecomplementaryfoodsto

children. They should endorse and allow commercialization of food products that meet

standardrequirementsandnationaldietaryguidelinesforinfants(WHO2015).

The requirements of a healthy diet for children are similar to that for adults.

Components of a healthy diet include legumes, nuts, fruits and vegetables, low sodium, low

sugar and high potassium levels. Recommendations for children include exclusively

6

breastfeeding of infants for at least 6months and continually for 2 years accompaniedwith

complementaryfoods(WHO2015).

2.1.1WHOnutritionalguidelines

Nutritional requirements for children vary with the current stage of growth and

development.Recommendednutrientintake(RNI)isthedailynutrientrequirementthatmeets

the daily nutritional need of a healthy individual. The RNI set byWHO for children from 6

monthsupto23monthsarerepresentedintable2.1.Therecommendedlevels(table2.1)were

adaptedfromtheWHOguidelinesfrom1998.Therearenotmanyrecommendationsforolder

children from age 2 to 5 years. There is, however, work underway for the development of

dietaryguidelinesspecificforchildrenofthisagegroup(WHOHQ/AFRO2013).

7

Table2.1:WHOrecommendednutrientintakeforchildrenage6to23months

Nutrient RecommendedIntake 6to8months 9to11months 12to23months Protein(g/day) 9.1 9.6 10.9 VitaminA(μgRE/day) 400 400 400 Folate(μg/day) 80 80 160 Niacin(mg/day) 4 4 6 Pantothenicacid(mg/day) 1.8 1.8 2.0 Riboflavin(mg/day) 0.4 0.4 0.5 Thiamine(mg/day) 0.3 0.3 0.5 VitaminB6(mg/day) 0.3 0.3 0.5 VitaminB12(μg/day) 0.5 0.5 0.9 VitaminC(mg/day) 30 30 30 VitaminD(μg/day) 5 5 5 VitaminK(μg/day) 10 10 15 Calcium(mg/day) 400 400 500 Chloride(mg/day) 500 500 800 Copper(mg/day) 0.3 0.3 0.4 Fluoride(μg/day) 0.05 0.05 0.05 Iodine(μg/day) 90 90 90 Iron(mg/day) 9.3 9.3 5.8 Magnesium(mg/day) 54 54 60 Manganese(mg/day) 0.02 0.02 0.02 Phosphorous(mg/day) 400 400 270 Potassium(mg/day) 700 700 800 Selenium(μg/day) 10 10 17 Sodium(mg/day) 320 350 500 Zinc(mg/day) 4.1 4.1 4.1 RE:Retinolequivalent(DeweyandBrown2003)

8

2.1.2CodexAlimentariusrecommendations

Thechoiceofrawmaterialsforpreparationandformulationof infantfoodsshouldbe

based on availability, affordability, diets that are usually given to children aswell as feeding

habits of infants. Rawmaterials should be sorted and cleanedwhere applicable. Also, raw

materialsaretobetreated inawaysoastoreduceantinutritient levels.Soaking,moistheat

treatment, fermentation, cooking for prolongedhours are commonprocessingmethods that

canhelpinminimizinglecthins,phytate,trypsininhibitorsandotherantinutrients.Fiberlevels

mustbereducedtoaminimumof5g/100gondrybasis.Energycomingfromproteinshallnot

belessthan6%ormorethan15%ofthetotalenergycomingfromthecomplementaryfoods

(CODEX1991).

2.2Traditionaldietsforyoungchildren

Most Africanmothers in the low ormiddle socio-economic class resort to traditional

foods for feeding their children due their inability to afford complementary foods that are

commerciallyavailable.Anotherreasonismothers’preferencetofamiliaringredientsthatare

usedinthepreparationofthesetraditionalfoodshencemakingmotherstrustthosefoodsthat

aretraditionallyprepared(Ejiguiandothers2007).

2.2.1Africa

Africandietsareheavilyplant-basedandsoarediets for infantsandchildrenyounger

thanfiveyearsofage.Porridgepreparedfromcerealsandlegumeblendsisthemostpopular

porridgegiventoinfantsandchildrenonthecontinentofAfrica(Achi2015;Achidiandothers

9

2016;Gabaza2016).Maize,millet, cowpeas, soybean,andgroundnutsareoftenusedduring

preparation. The use of these types of blends helped in the reduction of protein energy

malnutritionovertheyearsincountrieslikeGhana.Mashedbananasarealsogiventoinfantsin

countries likeUganda (Gibsonandothers2010;Achidi andothers2016).When legumesand

cerealsareused,theyareusuallyprocessedbyroastingorfermentationmethod.Regardlessof

theuseoftheseblends,somepartsoftheAfricancontinentandotherdevelopingcountriesstill

sufferfromprotein-energymalnutrition(UNICEF/WHO2015).

2.2.2Ghana

Porridges prepared from locally produced legume and cereal blends are the most

commonweaningfoods.Additionalfoodsthatareintroducedaftersixmonthsuptotwoyears

are banku and stew, tea, fried eggs, sausage, yam, mashed kenkey, jollof rice, bread, and

‘mpotompoto’, etc. (Pelto and Klemesu 2011). These foods range from semi-solid to solid

foods;theageofachildisadeterminantoffoodchoiceandextentofsolidity.Thesefoodsare

given to children at least twice a day; frequency is again determined by a child’s age and

demands for food. That is, the degree of solidity of food increases with age (GSS/GHS/ICF

2015).

2.3RecentDevelopmentsandRecommendationforfeedingyoungchildren

Several interventions have been put in place to help address the challenge of

malnutrition. This includes educating mothers on the importance of adequate and healthy

feeding practices for infants and young children. The most common approach is the

10

development and formulation nutritious food products thatwould helpmeet the nutritional

requirementsofthisdemographic

2.3.1Value-addedfoodproducts

These types of food products involve the application of different processingmethods

such as dehydration, milling, extrusion, juicing, etc. to improve and preserve foods (USDA

2016). The growing need for key nutrients, particularlymicronutrients led to the addition of

processedfruitsandvegetablestoalreadyexistingcereal-legumeblendsthataretraditionally

produced.Recentdevelopments includeadditionofpowderedfish,sweetpotatoflour, fruits,

vegetablesandmilksolidstoenhancethenutrientdensityofcomplementaryfoodsforinfants

and young children (Achidi andUkwuru 2015;Murthy and others 2016). A recent study by

OyeyinkaandOyeyinka (2016)suggested thatadditionofMoringaoleifeirapowder improves

thenutritionalqualityoffoodproductstargetedtowardschildren.

2.3.2Fortifiedfoodproducts

Fortificationoffoodproductsforinfantsandyoungchildrenbecomesimportantwhena

childisfedtherightamountoffoodbuthis/hernutritionalrequirementsarenotmet.Infants

betweentheagesof6to8months,forinstance,requirehighlevelsofnutrientsintheirfoods

duetotherapidgrowthrate.FoodFortificationinvolvestheadditionofcertainmicronutrients

(thisismostlythecasefortraditionalcomplementaryfoodspreparedforinfants)intheirpure

form or by adding food ingredients that are considered to be rich sources of some

micronutrients,mostly vitaminsandminerals. The food fortificant shouldassimilatewell into

11

the food product that is being fortified while maintaining sensory properties of the food

product(OyenyinkaandOyenyinka2016).

Vitamin A, zinc and iron are the most common micronutrients that are fortified in

complementary foods in developing countries. Iron and zinc are not fully absorbed in the

infant’sgut;thepresenceofhighlevelsofcertainantinutritionalfactorssuchasphyticacidin

complementaryfoodsinhibitscompleteabsorptionandmakesthesemineralslessbioavailable

(Gabazaandothers2016).

2.3.3Dietarysupplements

Dietary supplements are products that may come in the form of tablets, syrups or

powdermostly containing essentialminerals, vitamins, and amino acids that are ingestedby

mouthfornutritionalpurposes(WHO,2016).Theyaremostlyrecommendedbasedonspecial

needs. Over 300 million children worldwide died from anemia in 2011, which led to the

development of recent guidelines by the WHO for infants and children on daily iron

supplementation,especiallyforchildreninareasofhighmalariaprevalence(WHO2016).

2.4NutrientrichrawmaterialschoicesusedininfantFoodFormulation

Thechoiceofrawmaterialsforformulatinginfantdietsisdeterminedbydifferentsuch

asnutrientdensityoftraditionaldiets,complementaryfeedingpractices,socioeconomicfactors

andavailabilityofingredients(CODEX1991).Someexamplesofcommonlyutilizedlegumesand

cerealsfortraditionalinfantdietsinAfricaandotherdevelopingcountriesaremillets,sorghum,

maize, soybean, rice, etc. Cereals are typically rich in sulfur-containing amino acids (cysteine

12

andmethionine)butlimitingintheessentialaminoacidlysinewhilelegumesaregenerallyhigh

in lysinebuthaveonly low levelsofcysteineandmethionine.Thereforecerealsand legumes

arecomplementaryintermsofproteinandessentialaminoacidneeds(Bazazandothers2016;

Tembaandothers2016).Fruits,ingeneral,containasubstantialamountofmicronutrientsand

antioxidantsandtheirincorporationincreasesthenutritionalqualityofcomplementaryfoods.

MostfruitsarerecognizedfortheirvitaminC,fiber,antioxidantandmineralcontents.

2.4.1Banana

Banana(Musaspp.)iswidelycultivatedintropicalandsubtropicalregionsofdeveloping

countries,usuallyby small-scale farmersasa staple food.Bananasarealsogrownona large

scaleforexport.Theyarerankedasoneofthelargestgrownfoodcropsworldwidefollowing

rice, maize, and wheat. Bananas are classified into two groups based on their culinary

characteristics (dessert and sweet bananas) and cooking bananas. Cooking bananas include

plantainsandareusuallycookedbeforeconsumption(Auroreandothers2009).

Compared to fruits like apples and oranges, processed banana products are less

commononthemarket(Auroreandothers2009).Attheendoftheyear2000,only0.1%of

the bananas that were produced globally were used industrially (Aurore and others 2009).

AccordingtothesecondannualreportoftheUnitedStatesInternationalTradeCommissionin

2011, banana is one of the least processed fruits in Africa, and undergoes high post-harvest

losses. To add value to banana and avoid post-harvest losses, the fruit is incorporated into

other food products such as cake and pie (Aurore and others 2009; Karthiayan and others

2013).

13

2.4.1.1Nutritionalsignificanceofbanana

Dessert bananas are easily digestible (Mohapatra and others 2010) and can be

incorporated into food products that are made for individuals who may have the need for

digestibility,oilandfat-freefoodsandhighermineralcontentdiets.Peoplewiththesespecial

needs include; infants, the elderly and individuals with stomach ulcers and some

gastrointestinaldisorders(Auroreandothers2009).

The pulp contains significant levels of potassium, phosphorous and magnesium (Table 2.1)

Dehydratedbananascontainrelativelyhighenergyandsugarlevels(Table2.1).Theproximate,

mineralandvitamincompositionoffreshanddehydratedbananasarerepresentedintable2.2.

Thereismuchinterestgrowinginbananaduetoitspotentialuseasafoodsourcefor

diabetesmanagementbecauseithasalowglycemicindexanditisalsousedtotreatdiarrhea

(Mohapatraothers2010;PillayandFungo2016).Bananaalsocontainsimportantphenolicsand

flavonoidswhich, act as antioxidants. The nutritional value of banana flourmakes it a great

product for use in baby foods, particularly when accompanied by legumes (Mohapatra and

others2010).

14

Table2.2:Nutritionalcompositionofrawanddehydratedbananaper100g

Nutrient Unit Rawbanana Dehydratedbanana

ProximateWater g 74.91 3Energy Kcal 89 346Protein g 1.09 3.89Totallipids 0.33 1.81Carbohydrate g 22.84 88.28Totaldietaryfiber g 2.6 9.9Totalsugars 12.23 47.3

MineralsCalcium mg 5 22Iron mg 0.26 1.15Magnesium mg 27 108Phosphorous mg 22 74Potassium mg 358 1491Sodium mg 1 3Selenium μg 1 3.9

VitaminsVitaminC mg 8.7 7Thiamin mg 0.031 0.18Riboflavin mg 0.073 0.24Niacin mg 0.665 2.8VitaminB-6 mg 0.367 0.44Folate mg 20 14Choline,total mg 9.8 19.6BetaCarotene μg 26 101Alphacarotene μg 25 96VitaminA,IU IU 64 248VitaminK μg 0.5 2(USDA2016).

2.4.2Beans

Common beans (Phaseolus vulgaris L.) are legumes, which thrive well in Eastern Africa and

somepartsofsouthernAfrica.Asubstantialamountofdrybeansarelostafterharvestdueto

lackofappropriatestoragefacilitiesandpreservationmethods.(Nyombaireandothers2011)

15

2.4.2.1Nutritionalsignificanceofbeans

Drybeansaregenerallylowinfatbuthighinproteinanddietaryfiber(Table2.3).The

protein present in beans is about two times the amount present in cereals. Due to the

expensivenatureofanimalproteins,beanmealisapreferablesourceofproteinindeveloping

countriesparticularlyamongfamilieswithlowsocioeconomicstatus.Thispreferenceisdueto

the rich protein and calorie content of beans. In developing countries, beans are boiled and

eatenasacuisineandservedwithotherdelicacies(Nyombaireandothers2011).Knownforits

high dietary fiber content (Table 2.3), beans serve as a good source of roughage, which

enhances bowel movement. The proximate compositions of a variety of kidney beans are

showninTable2.3.

Table2.3:Nutritionalcompositionofdifferentcultivarsofdrybeansflour

Beancultivar Fat(%) Protein(%) Ash(%)Crude/dietary

fiber%)

Cranberry 1.28-1.4 22.36-24.3 4.25 20.9 Darkredkidney 1.1-1.16 27.09-28.5 4.84 21.9 Kidney(wetbasis) 1.6 20.9 3.8 26.3(d) Lightredkidney 1.28 24.15 4.40 - Kidney*wb 1.7 24.5 3.3 - Pinto 1.0-1.34 23.19-23.7 4.53 21.8 Navy 1.5-1.8 25.1-30.4 3.85-4.6 7.6,23.3 Navy* 1.74 23.1-28.3 3.73-4.1 1.95 *=dehulledWb=wetbasis(RuiandBoye2013)

16

2.4.3Rice

Rice (Oryza sativa L) is an important cereal, largely produced in Asian countries, is a

staplefoodsomecountriesandisconsumedinmorethanhalfoftheglobe.Riceconsumption

is increasing inmost sub-SaharanAfrican countries and is takingover from traditional staple

foodssuchasyamandcassava(Tomlinsandothers2005).Irrespectiveofthevariety,riceisa

goodsourceofcarbohydrates,particularlystarchandishighincalories,232Kcal(Table2.4).It

alsocontainsfiber,somemicronutrientssuchasphosphorousandmagnesium(Table2.4).

2.4.3.1Nutritionalcompositionofrice

Nutritionalcompositionof ricevarieswith rice type; that is,white rice (milledrice)or

brown rice. Brown rice is the type of rice in which the husk has not been removed and is

generallyconsideredmorenutrientdensecomparedtoitswhitericecounterparts(Table2.4).

Riceisremarkablyhighincarbohydratesandcontainsrelativelylowlevelsofprotein.Whennot

consumedtogetherwithprotein-richingredientsdiets,rice-baseddietscould,leadtoprotein-

energymalnutrition(Babuandothers2009).Phyticacid,anantinutritionalfactorispresentin

the rice bran and can be reduced by soaking or more significantly by fermentation and

germination (Kaur and Kapoor̂ 1990). Rice bran also contains other antinutrients such as

tannins,oxalates,trypsininhibitorsandpolyphenols(KaurandKapoor̂1990).

17

Table2.4:Nutritionalprofile(per100g)ofwhiteandbrownrice

Parameters Brownrice WhitericeCalories 232 232Protein(g) 4.88 4.1Carbohydrate(g) 49.7 49.6Fat(g) 1.17 0.205Dietaryfiber(g) 3.32 0.74Thiamin,B1(mg) 0.223 0.176Riboflavin,B2(mg) 0.039 0.021Niacin,B3(mg) 2.73 2.050Viatamin,B6(mg) 0.294 0.103Follacin(μg) 10 4.1VitaminE(mg) 1.4 0.462Magnesium(mg) 72.2 22.6Phosphorous(mg) 142 57.4Potassium(mg) 137 57.4Selenium(mg) 26 19Zinc(mg) 1.05 0.141(Babuandothers2009)

2.5ProcessingandPreparationofrawmaterialsforformulationofdietsforinfants

Toensureasafeandhealthydietforinfantsandyoungchildren,certainprocessesing

meethodsandmethodsarerecommendedbyCodexAlimentariusduringformulationof

complementaryfoods.

2.5.1Sortingandcleaning

Sortingandcleaningarecarriedouttoremovedebris,foreignmaterials,anddamaged

seeds. It also involves treatment of the raw material with water to remove unwanted

materials.Sortingandcleaningarealmostalwaystheinitialstagesofrawmaterialpreparation

18

before proceeding to the next stage of treatment. This stage applies to all types of raw

materialsusedinformulationofinfantfoods(CODEX1991).

2.5.2Soaking

Where applicable, legumes, cereals and pulses are soaked by covering with enough

water,atleast4xwater(Afifyandothers2011;AchiandUkwuru2016).Thepositiveeffectof

soakingonreducingoligosaccharidessuchasraffinoseandstachyoseandotherantinutritional

factorsiswelldocumented(EgaunlentyandAworh2003;Siddiqandothers2006).

2.5.3Dehulling

Dehulling is the removal of the seed coats of lentils, legumes, pulses, or oil seeds to

minimize the amount of dietary fiber to an acceptable level for infants and young children

(CODEX 1991). There is evidence of disruption in zinc and iron absorption in infants who

consumedietshighindietaryfiber(CODEX,1991;Gabazaandothers2016).Dietaryfiberalso

reducesintakeoffoodininfantsandchildren,inducessatietyataminimumintakeandleadsto

bulkinessofstool.Dehullingcanreduceconcentrationsofphenoliccompounds,antinutritional

factors: phytates, chymotrypsin and trypsin inhibitors and tannins, which have the ability to

drastically,reduceproteinabsorptionandaminoaciddigestibility(CODEX1991;Egaunlentyand

Aworh2003).

2.5.4Fermentation

Fermentation is an age-old process employed in foodpreservation. Fermentation is a

biochemicalprocessinwhich,asubstrateistransformedbytheactionofmicroorganismsinto

19

othercompoundssuchasethanol,which,mayenhancenutritionalandsensorypropertiesof

food products (Adenike 2016;Gabaza and others 2016). Thismethod ismostly applicable to

cerealsandgrains suchasmaize,millet, and sorghumduring thepreparationof infant foods

(Egaunlentyandothers2002;Galatiandothers2014).InGhana,atypicalfermentationprocess

involvessoakingmaizeinwaterfor3daystoaweektoallowtheseedstosprout.Thesprouted

seeds are latermilled and turned into a gruel knownas ‘Koko’ for infants (Nagai andothers

2012).

The fermentation process can be either controlled or uncontrolled; the uncontrolled

process does not employ specific microorganisms and is a random spontaneous process,

inducedbymicroorganismspresentintheenvironment(Adeninke2016).Thelattermethodis

used inhomes inAfrica andotherdeveloping countriesduring thepreparationof traditional

gruelsforbothadultsandinfants.Thechallenge,however,isthepossibilityofcontaminationof

cerealsandgrainswithmycotoxinsduringthefermentationperiod(Watsonandothers2015).

Fermentationhelpsinthereductionofphytateactivitybyhydrolyzingthem;thiscouldenhance

mineralabsorptionandimproveB-vitamincontent(CODEX1991).

2.5.5Roasting

Roastingortoastinginvolvesdryheatingoflegumes,cereals,grains,pulsesandoilseeds

at very high temperatures (80°C) before or after soaking coupled with dehydration (CODEX

1991;Twumandothers2015).Thisprocess significantly improves tasteand flavorof legume

andcerealblends,which isattributedtopre-digestionofstarches.Digestibilityofthetoasted

product also improves (CODEX 1991). Roasting also decreases bulkiness (density) and also

20

results in high quality end product because insects,microorganisms and enzyme activity are

destroyedathigh temperatures (CODEX1991). Lossofproteincould,however,occurduring

roasting due to the browning reaction that occurs between amino acids and reducing

carbohydratesathightemperatures;agoodcontroloftheprocessisneededtoavoidprotein

loss (CODEX1991).Roasting is themajormethodemployedat thehouseholdandsmall-scale

level to prepare weanimix, a popular weaning food in Ghana. It is difficult to optimize

temperaturesathouseholdandsmall-scalelevelssoprocesscontrolarenotadequate(CODEX

1991).

2.5.6Milling

Dry rawmaterials after pretreatment can be combined andmilled together ormilled

separately and mixed afterward depending on technological feasibility. Preserving the

nutritional quality ingredients during milling is very important. While milling reduces the

particlesizeofingredientsandmakestheirincorporationintoproducteasier,itcouldalsolead

tobulkinessofthefloursamples(CODEX1991;Nagaiandothers2012).Bulkinesscan,however,

bereducedbyadditionofalpha-amylasestoallowpre-digestionofstarchandhelpreducethe

amount of water required during cooking. Excess dilution of formulated product during

preparation could cause reduction in food to water ratio leading to low nutrient density

(Amaglohandothers2013).

2.5.7Extrusioncooking

Extrusioncookingisatechniqueusedtocookfoodunderhighpressureandcontrolled

temperature(Obatoluandothers2000;Nyombaireandothers2011).Theproductisallowedto

21

passthroughdifferentsizesofdie(s)-determinedbydesiredattributes.Theextrudateexhibits

different physical and sensory attributes than the original ingredients (Alonso and others,

2000). Extrusion cooking is used for the production of snacks, breakfast cereals, and instant

powders. The process can be employed for further cooking of composite ingredients of

intendedinfantformulaaftermilling(OjokohandFagbemi2016).

Extrusioncookinghasanadvantageofloweringtheamountofwaterrequiredtoreach

gelatinization temperature. It also inactivates phytic acid and trypsin inhibitors (Camire and

others 1990; CODEX 1991). The amino acids L-lysine, L-arginine, L-tryptophan and sulfur-

containing amino acids cysteine and methionine and vitamins may, however, be lost if

processingparameterssuchastemperaturearenotwellcontrolled(CODEX1991).

2.5.8Fooddehydration

Food dehydration is a method of food preservation that has been in existence for

several centuries (Vega-Mercado and others 2001; Aguilera and others 2003). This method

entailsremovalofmoisturefromfoodproductstoalevelthatminimizesmicrobialactivityand

chemical reactions which otherwise could lead to food product deterioration (Aguilera and

others2003).

2.5.8.1Air-drying

This method is relatively less expensive than most drying methods (freeze drying,

vacuum drying, and microwave dehydration) and is used to dehydrate food products in an

enclosedvacuumorchamber.Materialstobedehydratedareoftenplacedonopentraysand

hot air is passed over the products and moisture is removed by convection. The air-drying

22

method is referred to as the traditional or conventional drying method because it is often

operatedat relativelyhigher temperature. It is able toprovideappreciable shelf stabilitybut

may compromise the nutritional, sensory, chemical and physical qualities of food products.

Commonlyalteredqualitiesinclude:lossofflavor,alteredtaste,textureandrehydrationability,

andreducedvitaminC(CohenandYang1995;Vega-Mercadoandothers2001).

2.5.8.2Vacuumdrying

Thisissimilartoair-dryingbutitmakesuseoflowertemperaturesandhigherpressures

to remove water. It is relatively less expensive compared to freeze-drying and the product

characteristicsandattributes(flavor,taste,andaroma)arebetterpreservedduringthisprocess

compared to air-drying (Chen and others 2006; Thipayarat, 2007). Vacuum belt drying is a

subtypeofvacuumdryingexcepttheprocessiscontinuous(Chenandothers2006;Wangand

others2007).

2.5.8.3Spraydrying

Liquidsamplesorfreeflowingproductsaredehydratedusingthismethod.Spraydrying

consistsofdropletformationthatispumpedthroughanozzleintoahotdryingmedium,which

utilizesatomizationtoevaporatemoistureandtoformfineparticles.Theendproductparticles

are mostly uniform and even spherical shapes but may vary depending on whether the

temperatureatwhichtheproductsaredriedisbeloworabovedroplettemperature.Powdered

milk and instant coffee are commonly produced by this method. Spray drying has the

advantage of producing uniform and specified product characteristics under constant

23

conditions. It is also a continuous process and easy to operate (Vega-Mercado and others

2001).

Ahugeshortfallofthismethod,however,isthatitisnotsuitablefordryingawiderange

or types of products. For instance, rawmaterials that are high in fat cannot be dehydrated

usingspraydryingunlessthefatcontentisremovedtoaminimallevel.Also,materialshighin

sugarcontentmayhavetobedilutedorspraydriedwithacarriersuchasmaltodextrins(Cohen

andYang1995).

2.5.8.4Drumdrying

Drum drying is employed for dairy products, cereals, gelatin beverages and bakery

goods.Itcanbeusedtodehydrateslurries,purees,andpastesbyconduction.Theproductto

bedehydratedisuniformlypouredoveraheateddrumtoevaporatemoisture;thedrumblades

scrapedriedproduct.Theuniformityofslurryandfullattachmentofproductstothedrumis

importantforobtainingahighqualityandfullydehydratedproduct.Occasionally,theproduct

mayneedsomemodificationbyadditionofother ingredientstoensuretheaboveconditions

aremet.Thecommerciallyavailabledrummaybeasingleordoubledrum.Highratesofdrying

areobtainedduringdrumdryingandareveryheateconomical.Thedisadvantage,however,is

thehightemperatureofthedrumsthatcausesseveredamagetotheendproduct.Thishasled

toadeclineintheuseofdrumdrying(CohenandYang1995;Vega-Mercadoandothers2001).

2.5.8.5Freeze-drying

Freezedryingisutilizedforanyproducttypeaslongasitcanbefrozen.Freeze-drying

alsoknownaslyophilization,operatesontheprincipleofsublimation.Frozensamplesaredried

24

atroomtemperaturesunderhighvacuum(Vega-Mercadoandothers2001).Thetemperatures

leadtolittleornolossesinsensoryattributesorstructure.Also,theporousnatureoftheend

productattainedasresultofsublimationof icecrystalsfromtheproduct’ssurfacecausesthe

producttorehydrateatafastrate(Vega-Mercadoandothers2001;Prothon2002).

The process is very expensive for commercial use because of extensive periods of

drying,whichleadstohighercompressorenergyrequirements.Longerdryingperiodsrequired

during freeze-drying is due to the formation of a thick layer whiles the drying process

progresses, making removal of remaining ice crystals difficult (Cohen and Yang 1995; Vega-

Mercadoandothers2001).

2.6QualityEvaluation

Qualityevaluationincludesbut isnot limitedtonutritionalanalysis,microbialanalysis,

aswellasphysicochemicalproperties,functionalpropertiesandalsosensoryattributes.Quality

evaluation is essential as it influences consumer preferences, packaging decisions, and shelf

stability.Nutritionalcompositionanalysisistheprioritywhenitcomestofoodsgiventoinfants

andchildren(Achidiandothers2016).

Nutritionalqualityalsoincludesantinutritionalfactors.Proteinsandmicronutrientsare

themost importantnutrients for infantsandyoungchildren.Theaveragehuman requiresat

least 49 different nutrients to maintain a normal and healthy development. A lack or

insufficientintakeofoneofthe49nutrientscouldleadtoadversehealtheffectsorevendeath

(Welch and Graham 2004). Most childhood stunting, infections and morbidity are linked to

inadequateintakeofoneormoremicronutrients(UNICEF/WHO2015).

25

2.6.1Protein

Normalgrowthanddevelopmentof infantsandyoungchildrenaredeterminedbythe

amountandqualityofproteinconsumed.Qualityofprotein isentailsbioavailabilityandalso

the presence and amount of essential amino acids. A combination of legumes and cereals

provides the right amount and quality of protein. However, it may become necessary to

improvetheproteinquality (bioavailabilityandamountofessentialand limitingaminoacids)

for children by the addition of fish, meat or dairy products to allow for amino acid

complementarity(DeweyandAdu-Afarwuah2008).

2.6.2Carbohydrates

Carbohydratesareoneof thesourcesofenergy in thedietandare foundprimarily in

starchyfoods.Toprovidetherightamountofenergy,easilydigestiblestarchyfoodsshouldbe

selected for children.Other higher energy sources such as fat and oils can also be added to

increase energy levels. Incorporation of certain carbohydrates for other purposes, such as

sweetness,shouldbeaddedsparingly(CODEX1991).

2.6.3Dietaryfiber

Dietaryfibersarenon-digestiblepartsofcarbohydratesthatescapedigestionandmay

be fermented in the human gut to produce short chain fatty acids that are nutritionally

beneficial. Excess gas production could, however, result from fermentation. Dietary fiber is

comprised of complex mixture of indigestible polysaccharides (cellulose, hemicelluloses,

26

oligosaccharides,pectins,gums),and lignin foundmostly inplantcellwallmaterial (Toshand

Yada2010;Brownlee2011).

Dietaryfiberisassociatedwitheasybowelmovementandstoolbulkiness(Agget,2003).

Theantinutritional effectofdietary fiber is still unclearandnot concretelydocumented. The

positiveeffectsseemtoexceedthesuspectedanti-nutritionalfactors:“Dietaryfiberspromote

beneficialphysiologicaleffectsincludinglaxation,and/orbloodcholesterolattenuation,and/or

bloodglucoseattenuation”(ToshandYada2010).

Some studies showed that dietary fiber can decrease absorption of zinc, iron and

micronutrientsthatarepresentonlyinminuteconcentrations(Gabazaandothers2016).Codex

Alimentariusrecommendationofdietaryfiberinformulatedcomplementaryfoodisatmost5g

per100gonadrybasis(CODEX1991).

2.6.4Resistantstarch

Thepolymerchainsofstarchesaremadeofmostlystraight-chainamyloseandbranched

chain amylopectin molecules. The branched-chain amylopectin has glucose molecules

connectedby,linearα(1→4)andbranchedchainα(1→6)glycosidiclinkages.Thelinearchain

is packed more closely compared to the branched chains, which are packed more loosely

contributing to instability in the latter. Starches exist in the native form but they can be

chemically or enzymaticallymodified to produce a specific or desired type of starch. Native

starch can be classified based on a crystalline pattern exhibited under x-ray crystallography,

digestibilitybyenzymesandalsobynutritionalproperties(Sajilataandothers2006).

27

2.6.4.1Starchclassification

X-raycrystallinestructureiscomposedoftypesA,BandC.Thesetypesaredetermined

by the chain lengths of polymers making up the core of the loosely packed amylopectin

network, by the compactness and density of starch granules and also by the availability of

waterinthesystem(Sajilataandothers2006;Sharmaandothers2008).

The incubation of starch in vitro with digestible enzymes without prior treatment,

results in rapidly digestible, slowly digestible, and resistant starch. This classification is

determinedbyeaseandrateofconversion into itsmonomerglucoseunits.Rapidlydigestible

starches (RDS)areentirelyhydrolyzedtoglucoseunitsafter20minutesof incubation.This is

attributed to its irregularly shaped and loosely packed nature, which make them easily

accessibletodigestiveenzymessuchasalphaamylase.RDStypesarecommonisfoodsthatare

cookedbyapplicationofmoistheat.Commonexamplesarepotatoesandbread(Sajilataand

others2006;Sharmaandothers2008).

Slowlydigestiblestarch (SDS)undergoesdigestionslower in thesmall intestine (about

100 minutes). This type of starch, are also amorphous in nature, except it is not physically

accessible to digestive enzymes. Slowly digestible starches are found in food products with

uncooked starch such as green bananas. Resistant starch (RS) does not digest in the small

intestineandmaybefermentedonceitreachesthelargeintestines.Duringchemicalassays,RS

iscalculatedbysubtractingthesumofRDSandSDSfromtotalstarch(TS).(WooandSeib2002;

Agettandothers2003;Sajilataandothers,2006).

Classificationaccording tonutritionalpropertiesproduces twomaincategories-digestibleand

resistantstarches.ThedigestiblegroupconsistsofRDSandSDSwhilstresistantgroupconsists

28

of4subcategories:resistantstarchtype1,2,3and4(RS1,RS2,RS3,RS4respectively)(Sajilata

andothers2006).RStype1iscommoninfullyorpartiallymilledgrains,cereals,legumesand

certain bulky starches. Their resistance to digestion can be reduced by through milling and

chewing(Sajilataandothers2006).RStype2hasaspecialgranularstructurethatmakesthem

inaccessible.Thistypeispredominantinrawstarchduetorelativelydehydratedstarchcontent

andcompactlatticestructure.RStype2comesfromungelatinizedstarch,whichiscommonin

bananas.Cookingandothermethodsoffoodprocessingminimizetheresistanceandamount

ofRStype2.

RStype3isformeduponcooling.Gelatinizedstarchcontainingamylosemoleculeshave

thetendencytoretrogradetoformRStype3.Theyaretotallyinaccessibleandescapedigestion

inthesmallintestine,particularlybypancreaticamylases.Theycanbedistributedinsolutionby

additionofpotassiumhydroxide (Sajilataandothers2006).RS type4 if formedduringcross-

linkingofchemicallymodifiedstarchesandaretheleastsusceptibletodigestibility(Sajilataand

others2006).

2.6.4.2Functionalpropertiesofresistantstarch

Commercially, resistant starches are often incorporated into other food products,

especiallytopreparelow-moisturefoodproducts.Thewideusageofresistantstarchesinthe

foodindustryisduetotheirlowwater-holdingcapacity,smoothtexture,blandtasteandwhite

color,whichallowlessinterferencewiththeintegrityofproductstheyareaddedto(Sajilitaand

others 2006). The health benefits of resistant starches include hypoglycemic effects,

hypocholesterolemiceffect,minimalgallstoneformationanditscapacitytocurbcoloncancer

29

(ToppingandClifton2001).ResearchalsoshowedthatRSprovidesaprebioticeffectbyserving

as a substrate for the growthof beneficial bacteria such asBifidobacterium (Bird andothers

2010). Additionally, absorption of calcium, zinc, phosphorous and iron are enhanced in the

presenceofapproximately16.4%RScomparedwithdietsmadeexclusivelyofdigestiblestarch

(ToppingandClifton2001;Sajilataandothers2006).T

hefigurebelowexplainstheeffectofRSonbloodglucoseconcentrationcomparedtoa

controldiet (granolabars).Generally, therewasa steady increase inbloodglucose (90 to92

mg/dl)forthefirst30minutesafterconsumptionofresistantstarch.Theconsumptionofthe

controldiet(granolabars)ledtoadrasticincreaseinbloodglucosefromapproximately93to

102mg/dlafter30minutes.

Figure2.1:Resistantstarchanditseffectonbloodglucoselevel(Duncanandothers2009).

30

2.6.5Oligosaccharides

Oligosaccharides such as raffinose and stachyose are not digestible and are classified

under non-digestible group of carbohydrates. Non-digestible carbohydrates produce low to

zeroenergy in foods.Oligosaccharidesmostly fall intooneof the followingcategories: inulin,

fructooligosaccharides, galactooligosaccharides or trans-galactooligosaccharides (Roberfroid

and Slavin 2000). Fructooligosaccharides are found in certain fruits like bananas; inulin in

artichoke and galactooligosaccharides in legumes, pulses, and some vegetables.

Galactooligosaccharidesincluderaffinoseandstachyose.Theinabilityofmonogastricmammals

to completely digest and absorb these oligosaccharides is due to the lack of the alpha-

galactosidaseenzyme(Agostoniandothers2004).

During the breakdown and fermentation of oligosaccharides in the colon, other

products (Figure 2.3) or excess gas production could result (Mussatto and Mancilha 2007).

Stachyose, a tetrose, and raffinose are the main culprits associated with gastrointestinal

discomfort due to excessive gas production. Their levels are reduced during soaking and

cookingwhichleadstoaconsequentreductioningasproduction(Mulimani1995;RuiandBoye

2013). The functional and health benefits linked to oligosaccharides are a prebiotic effect,

hypocholesterolemia, hypoglycemia, colonic health, etc. These health effects are greatly

connectedtofructooligosaccharidesand,toalesserextent,togalactooligosaccharides(Aggett

andothers2003).

31

Figure2.2:Structureofsomegalactooligosaccharides

2.6.6Lipids

Fatsand lipidsare important incomplementary foodsandtheyboost thebulkenergy

content of foods. Essential fatty acids, linoleic and alpha-linolenic acid are necessary for

cognitivedevelopment in infants and children. They are alsonecessary for the absorptionof

fat-soluble vitamins (WHO/FAO 2004). The addition of oils sources containing omega 3 fatty

acids suchasDocosahexaenoicacid (DHA)at recommended levels shouldalsobe considered

whenpreparingfoodforinfantsandolderchildren(CODEX1991).

32

2.6.7VitaminsandMinerals

Vitaminandmineraldeficienciesamongchildrenindevelopingcountriesarecommonly

reportedforcalcium,iron,zincandvitaminA.Otherimportantvitaminsandmineralsinclude:

vitamin B complex, vitamin C, vitamin D, vitamin E, folate, and selenium. All vitamins and

mineralsprovidedinachild’sdietshouldmeetdailynutritionalrequirementsasrecommended

intable1.Eachvitaminormineralplaysaspecialroleandensuresthehealthydevelopmentof

infantsandchildren(WHO/FAO2004).

Vitamin A is essential for good vision and deficiency of vitamin A can cause night

blindness, xerophthalmiaor cause susceptibility toother infections likeanemiaanddiarrhea.

EfficientabsorptionofvitaminA isalsodependentonthepresenceof fator fattyacids.Fish,

liver,eggyolk,wholemilk,greenleafyvegetables,yellowandorangenon-citrusvegetablesare

foodsourcesrichinvitaminA(WHO/FAO2004).

VitaminD is requiredforhealthyskingrowthandoptimumabsorptionofcalciumand

phosphate which in turn lead to strong bone development, muscle contraction and nerve

development. Sunlight is required tomake vitaminD inhumans is the sun.Only aminimum

amount is provided through the diet. Latitudinal differences, seasonal changes, and cultural

disparity can have a significant effect on the vitamin D supply in both children and adults.

BabiesborninautumnareatahigherriskofvitaminDdeficiency(WHO/FAO2004).

Vitamin C also known as ascorbic acid is synthesized in the liver of some mammals

mostlyfromglucose.HumansareunabletosynthesizevitaminCandisthereforerequiresfrom

thediet.VitaminCisanelectrondonor,thebasisofitsantioxidant,biochemicalandmolecular

functions.Itsantioxidantroleenablesittostabilizefolateinfood.VitaminCisalsoneededfor

33

repairofdamagedtissues.ThedeficiencyofvitaminCinthedietcanleadtoscurvy.VitaminC

also increases the absorption of soluble non-heme iron at levels at approximately 25mg by

chelationorbymaintainingironinthereducedform.Citrusfruits,kiwi,papaya,andvegetables

aregoodsourcesofvitaminC(WHO/FAO2004).

B-ComplexVitaminsreferstoallBvitaminsexcludingvitaminB12.Themainfunctionin

additiontootherphysiologicalrolesisactingasacoenzymeorcofactorinmanybiochemical

pathways required inmetabolismof certainnutrients suchas carbohydrates, branched-chain

aminoacids,fattyacids,etc(Table2.5).RiceandwheatarethemainsourcesofB-vitamins;the

amount of these vitamins can be significantly compromised when cereals are excessively

polished. Beriberi (cardiac and dry), peripheral neuropathies, pellagra, and oral and genital

lesionsrelatedtoriboflavindeficiencyusedtobeaglobalhealthchallengeinsomepartsofthe

worldbuthasexperiencedahugedecline(WHO/FAO2004).

34

Table2.5:PhysiologicrolesanddeficiencysignsofB-complexvitamins

(WHO/FAO2004)

Themainroleofcalciuminhumansistomaintainstrongteethandbones.About99%of

calciumstoresareintheskeleton.Otherfunctionsofcalciumincludecertainenzyme-mediated

reactionsandhealthynervousandmusclefunctioning.Only25to30%ofcalciumfromthediet

is absorbed. A large amount of calcium must be included in the diet to ensure optimal

absorptiontomeetdailynutritionalrequirements.Calciumabsorptionisalsoregulatedbythe

Vitamin Physiologicroles Clinicalsignsofdeficiency

Thiamin(B1)

Coenzymefunctionsinmetabolismofcarbohydratesandbranched-chainaminoacidssyndrome

Beriberi, polyneuritis, WernickeKorsakoffsyndrome

Riboflavin(B2)Coenzymefunctionsinnumerousoxidationandreductionreactions

cheilosis,angularanddermatitis

Niacin (nicotinic acid andnicotinamide)

Cosubstrate/coenzymeforhydrogentransferwithnumerousdehydrogenases

Pellagrawithdiarrhoea,dermatitis,anddementia

VitaminB6(pyridoxine,pyridoxamine,andpyridoxal)

Coenzymefunctionsinmetabolismofaminoacids,glycogen,andsphingoidbases

Nasolateralseborrhoea,glossitis,andperipheralneuropathy(epileptiformconvulsionsininfants)Pantothenicacid

Constituent of coenzyme A andFatigue,sleepdisturbances,phosphopantetheine involved inimpairedcoordination,andfattyacidmetabolism

Fatigue,sleepdisturbances,nausea

BiotinCoenzymefunctionsinbicarbonate-dependentandcarboxylations

Fatigue,depression,nausea,dermatitis,andmuscularpains

35

amountofsodium,vitaminD,andproteinthatarepartofthediet.Increasedintakeofsodium

leadstoanincreaseincalciumexcretionintheurine.VitaminDhelpsinefficientabsorptionof

calcium, a lack or decreased vitamin D in the body could increase susceptibility to calcium

deficiency (WHO/FAO 2004). Major sources of calcium are dairy products and certain plant

sourcessuchaslegumesandsomefruitsandvegetables.Thedailyrequirementsofinfantsand

childrenrangedfrom200to800mg/day(WHO/FAO2004).

Seleniumisatracemineral,whichperformscomplexbiochemicalfunctionsandislinked

to the antioxidant activity of glutathione. A decrease in selenium intake is associated with

consequentdecreaseinglutathionecapacity.Adailyseleniumintakeincomplementaryfoods

andinfantformulaisrecommendedatalevelof10μg(WHO/FAO2004).

Magnesium acts as a cofactor for several biochemical enzymes involved in protein

synthesis,RNAandDNAsynthesis(HurleyandDoane1989).Magnesiumiswidelydistributed

inmostfoodsandcommonlyfoundingreenleafyvegetables,legumes,nuts,spices,soyflour,

andsomeshellfish.Magnesiumdeficiencyisrarebutseveredeficienciescanleadtosymptoms

such as muscular weakness, nausea, anorexia, weight loss, tetany, muscular spasm and

hyperirritability(WHO/FAO2004).

Iron is responsible for heme synthesis,which is essential for oxygen transport in the human

body(HurleyandDoane1989).Infantssolelydependonironfromthedietandanincreasein

iron requirement is needed during the weaning period to sustain normal growth and

development. Foods containingappreciable levelsof lean redmeat andascorbic acidusually

aresufficienttoprovidedailyironneedsduringthisperiod(WHO/FAO2004).“Irondeficiencyis

possibly one of the most common nutritional deficiencies” (WHO/FAO 2004). The most

36

common symptoms of iron deficiency are anemia. Studies also suggest a link between iron

deficiencyandbrainimpairmentinchildren,whichmakesincreasingironcontentinthedietfor

childrenveryimportant(WHO/FAO,2004).

Zinc helps inmotor coordination and the entire neuron system is dependent on the

adequate availability of zinc. Leanmeat, redmeat,whole grains, cereals, and legumes are a

goodsourceofzinc(WHO/FAO2004).Noknownclinicalsymptomshavebeendocumentedfor

mild to low level of zincdeficiency, but severedeficiencies could lead todelayed sexual and

bonedevelopment,diarrhea,alopecia,skinlesionsandsusceptibilitytoinfections(Hurleyand

Doane1989).

In summary, several important factors are considered during the development of an

infant food containing sufficient nutrients for developing countries. Additionally, processing

methodsmustbechosencarefullytoproduceatastyvalueadded-productthatismarketablein

low-income areas of the developing world. The next chapter outlines the methods used to

produceandanalyzesuchaproduct.

37

CHAPTER3

MATERIALSandMETHODS

Canvendishbananas,brownriceandlightredkidneybeanswerepurchasedfromalocal

source.Chemicalsandreagentsusedwereofanalyticalgrade.Resistantstarchanddietaryfiber

assaykitswerepurchasedfromMegazymeinternational(Wicklow,Ireland).Allotherchemicals

and reagents towere purchase from SigmaAldrich (St. Louis,Missouri, USA). All treatments

were prepared in duplicates and the entire procedure was completely repeated from raw

materialtreatmenttophysicochemicalanalysis.

3.1Flourprocessing3.1.1Redkidneybeanflour

Red kidney beans were sorted, cleaned and washed in cold water. The beans were

soakedin4xwaterat70°Cfor8h.Thewaterwasdrainedandthebeanswerecookedinboiling

water for30min.Cookedbeanswerecooledundercold runningwaterandairdriedusinga

fooddehydrator,modelSD-P9000(TribestSedona,Anaheim,C.A.,U.S.A.)at60±1°Cfor8-10h.

(ambientairenteredthedryeratatemperatureof23±2°Candwarmairexitedthedryerat60

±2°C;humidity intheroomwasrecordedat17±2%).Dehydratedbeansweredehulled ina

hammermill, modelW series (Schutte-Buffalo, N.Y., U.S.A.) followed bymanual removal of

remaining seed coats. Sampleswere thenmilledusing aUDY sample cyclonemill, Belt-Drive

model3010-019(UDYCorp.Rome,Italy)toaparticlesizeof0.5mm.Theflourwaspackagedin

1-milpolyethylenebagsandstored23±1°Cuntilused.

38

3.1.2Riceflour

Brownricewascleanedandwashedandcookedfor30minutesinboilingwater.Thericewas

thencooledanddriedat60±1°C for8-10h.Conditionswere thesameas thoseusedduring

dehydrationofkidneybeans.

3.1.3Bananaflour

Cavendish bananas (DoleTM brand) ranging from “more green than yellow” to “more

yellow than green” banana was purchased. CIE color of fresh bananas with peels was also

determined;thebcolorvalue,which isan indicatorofthedegreeofyellownessrangedfrom

33.83to52.75.Bananaswerepeeled,andslicedusingaknife intoabout4mmthicknessand

treatedwithascorbicandcitricacid.Thepretreatedbananasliceswereuniformlyarrangedon

traysanddriedat60°CinaSedonadehydratorfor12-16h.Dehydratedslicesweremilledinto

flour(0.5mm).

3.2Productformulation

Bean, rice, andbanana (BRB) composite flours treatmentsarepresented inTable3.1.

TheratioswereselectedbasedonCodexAlimentariusrecommendationofamountofenergy

required fromprotein, from6 to15%of total energy contained in the complementary food

(CODEX1991)andalsobasedonconsumerperception.Individualflourswerealsoanalyzedfor

nutritionalandphysicochemicalproperties.

39

Table3.1:BRBcompositeflours(%)

Treatment Banana Rice Beans

Trt-1 80 10 10

Trt-2 70 10 20

Trt-3 70 20 10

Trt-4 60 25 15

Trt-5 55 20 25

Trt-6 50 30 20

Trt-7 45 40 15

3.3ProximateAnalysis

Moisture,totallipidsandashcontentsweredeterminedbasedonAOAC2005methods

withaslightmodificationduringdeterminationoftotallipidsbytheuseofmicrowave-hexane

extraction.

3.3.1Moisturecontent

About2gofsampleswereweighedintodryaluminumpans.Sampleswereplacedina

forced-airovenovernightat105⁰C,and thencooled indesiccators.Dryweightwas recorded

andpercentagemoisturedetermined.

40

3.3.2Ashcomposition

Emptycruciblespluscoverswereweighedand2-3gofsampleswereaddedandplaced

in a muffle furnace overnight at 550°C. They were allowed to cool in a muffle furnace and

transferred to desiccators to finish cooling. Crucibles plus ashwereweighed andpercentage

ashcontentwascalculated.

3.3.3CrudeFat

Sample tube liners, specific for a microwave reaction unit, Multiwave model 3000

(AntonPaar,Ashland,N.C,U.S.A.)wereplacedinthetubeholderofananalyticalscale.Usinga

Approximately1gofBRBcompositefloursamplesweretransferredtothebottomofthetube

liners.Tubelinerswereplacedinceramicvesselsand10mLeachofacetoneandhexanewas

added.Vesselswereassembled,placedonacarouselandthenintoamicrowaveextractor.

The extractor was operated under the following conditions: temperature ramp

increased5⁰C/min,110°Cfinaltemperature;heldfor10minat110°C;cooledto40(about20

min) and disassembled. Sample extracts were filtered through glass wool into pre-weighed

round bottom flask and solventwas evaporated using a rotary evaporator. Flasks containing

crudefatweredriedat100⁰Cfor~10min,cooledinadesiccatorandweighed.Totalcrudefat

wasdetermined.

41

3.3.4Protein

Protein content was determined using Kjeldahl method for sample digestion and

neutralizationfollowedbyindophenolmethodofnitrogendetermination.

3.3.4.1Digestion

Approximately0.5gsampleswereplacedintomicrowavedigestiontubesand4mLof

hydrogenperoxidewasaddedfollowedby6mLofsulfuricacid.Thetubeswereassembledinto

acarouselforandheatedforatotalof1h.Thetubeswereheldfor45minutesatapressure

rate of 0.5 bar/S and 800W and cooled for 20 minutes in the microwave digestion unit,

Multiwavemodel3000 (AntonPaar,Ashland,V.A.,U.S.A.).Aftercompletedigestion, samples

weretransferredtoa100mLvolumetricflaskfollowedbyadditionofwatertobringthefinal

volumeto100mL.

3.3.4.2Neutralizationanddilutionofdigestedsamples

TwoMilliliterdigestedsamplewasaddedtoapproximatelyof25mLofwaterina100

mLbeaker.Digestedsamplewasneutralizedwith1MNa2CO3toobtainapHof6.5 -7.5and

transferred toa50mLvolumetric flask.Volumewasbrought to50mLwithwaterandmixed

thoroughly.

3.3.4.3Nitrogendetermination

Ammoniumchloridewasusedasanitrogensourceforpreparationofastandardcurve.

Fivestandardswerepreparedandsampledilutionspreparedwhennecessary.

42

Table3.2:Standardsolutionsfornitrogendetermination.

PreparationofStandards 0μgN 1.25μgN 2.5μgN 3.75μgN 5μgN

mLofstandard(5µgofN/mL) 0 0.25 0.5 0.75 1mLofnanopureH2O 1 0.75 0.5 0.25 0

Twomilliliterseachofreagent1(10gPhenol,50mgsodiumpentacyanonitrosylferrate

dehydrateperL)andreagent2(15gsodiumhydroxide,10mLsodiumhypochloriteperL)were

added to each tube andmixedwell. Tubeswere placed in awater bath at 50°C for 40min.

Samples and standardswere blue color after 10 – 15min. After the 40min incubation, the

absorbance of samples and standards were measured at 640nm using a microplate reader,

model,synergyHTXMulti-Mode(BioTek,Winooski,VT,U.S.A)andnitrogenconcentrationwas

quantifiedusingstandardcurvesandproteincontentwascalculatedusingaconversionfactor

of6.25.

3.4Raffinoseandstachyosedetermination

3.4.1Extraction

RaffinoseandstachyosecontentsweredeterminedaccordingtothemethodofKuoand

others(1988).Floursamples(75mgto100mg)weresuspendedinapproximately80%ethanol

ina5mLflutedcap,(Note:volumeofethanoladdedwascalculatedforeachsamplebasedon

theirrespectiveweightsfromastandardconcentrationof25mg/mL),placedhorizontallyonan

orbitalshaker (50rpm)at40Cfor16h,andthesuspensionwascentrifugedat3000g for10

43

min to obtain clarified ethanol sugar extract. Ethanol was evaporated overnight using a

CentriVapconcentrator.

3.4.2HPLCanalysis

Thepelletwasre-suspendedin1mLofmobilephaseandthesolutionpassedthrougha

0.2um filter (Puradisc 25 TF, Whatman) through a centrifugation process using a

Microcentrifuge,model5424,(Eppendorf,Hauppauge,NY).Analiquot(1.2mL)ofre-suspended

mobilephasewasusedforHPLCanalysis ina6.5x300mmsteelcartridgeWatersSugar-Pak

carbohydratecolumn(WAT085188,WatersCo.,Milford,M.A.,U.S.A.).

Themobile phase contained 134 uMNa2Ca EDTA set at constant flow at 0.5mL/min,

90°C, 13 min run time per sample. Quantification was done with Waters 410 differential

refractometerheldat35°CusingInfrared(IR)detector.Standardsforsucrose(2.92-46.74mM),

glucose and fructose (0.22 to 4.44mM), raffinose (0.13-1.34mM) and stachyose (0.12-1.20

mM)wereusedtogeneratestandardspectra.

3.5Totaldietaryfiber

TotaldietaryfibercontentofcompositeflourwasdeterminedbasedonAACCmethod

32-05.01 and AOACmethod 985.29 (AOAC 1987) using theMegazyme assay kit (Megazyme

Int’l.,Wicklow,Ireland).Duplicatesgsampleswereweighedinto400mLbeakersensuringthat

weightsofduplicatesonlydifferedbylessthan20mgfromeachother.Fiftymilliliterofsodium

phosphate buffer (pH 6.0)was added to samples and the pH adjustedwhen necessary to a

rangeof6.0±0.1.Thesampleswereincubatedwith50µLheat-stableα-amylasesolutionat98-

44

100°Cfor15mininawaterbathwithintermittentshakingat5minintervals.Thebeakerswere

covered with aluminum foil before incubation. The solutions were allowed to cool to room

temperatureandpHadjustedto7.5±0.1with0.275NNaOHsolution.

The samples were then incubated at 60°C with 100 µL of protease solution for 30

minutes with continuous agitation. The solutions were to cooled to room temperature, pH

adjusted with 0.325 N HCl solution to 4.5±0.2, 200 µL amyloglucosidase was added and

incubatedat60°Cwithcontinuousagitationfor30minutes.

10.Pre-heated95%ethanol(280mL)wasaddedtosamplesandleftatroomtemperaturefor1

htoallowtheformationofprecipitate.

Theprecipitatedenzymedigestswerefilteredthroughpre-weighedcelitecontainedina

frittedglasscrucible.Thecelitewasmoistenedandredistributedwith78%ethanolanddrawn

ontothefrittedglassofcrucibletoformanevenmatbyapplyingsuctionusingavacuumpump.

Sampleresiduesobtainedduringfiltrationweresuccessivelywashedwiththree20mLportions

of78%ethanol,two10mLportionsof95%EtOH,andtwo10mLportionsofacetone.

Cruciblescontainingresidueweredriedat105°Cinanairovenovernight,cooledinadessicator

and weighed to determine residue weight. The residues were then corrected for ash and

protein.Oneduplicatewasashedinamufflefurnaceat525°Cfor5hours,cooledindesiccator

andweighedtodetermineashcontent.Proteinweightwasdeterminedforthesecondresidue,

using the Kjeldahl method (with colorimetric determination of nitrogen) and by using 6.25

factor.Blankswererunalongsamplestomeasurecontributionsfromreagentsused.

45

Calculations

Uncorrectedaverageblankresidue(UABR)=Averageblankresidueofduplicate

blanks(mg)

Blankproteinresidue(BPR)=UABRx%proteininblank

Blankashresidue(BAR)=UABRx%ashinblank

Correctedblank(CB)=UABR-BPR-BAR

Uncorrectedaveragesampleresidue(USAR)=Avsampleresidueofduplicate

samples

Sampleproteinresidue(SPR)=USARx%proteininsample

Sampleashresidue(SAR)=USARx%ashinsample

Correctedsampleresidue(CSR)=USAR-SPR-SAR-CB

%TDF=100xCSR/mgsample

3.6Resistantstarchdetermination3.6.1Hydrolysisandsolubilisationofnon-resistantstarch

For resistant starch measurement, AOACMethod 2002.02 (AOAC 2000) method was

used,followingtheMegazymeassaykit(MegazymeInt’l.,Wicklow,Ireland).Floursamples(100

±5mg)weredirectlyweighedinto15mLFalcontubes.Tubesweregentlytappedtoensurethat

samples reached the bottom of tubes. Four milliliters of pancreatic α-amylase (10 mg/mL)

containing amyloglucosidase (AMG) was added to each tube. Tubes were tightly capped,

content of tubesweremixedusing a vortexmixer, and incubated in a 37°Cwater bathwith

continuous shaking. The tubes were removed after 16 h and excess water on tube surface

wiped;theywerethenuncappedandtreatedwith4.0mLofethanol (99%v/v)withvigorous

stirringonavortexmixer.Thetubeswerecentrifugedat1,500gfor10minandsupernatants

decanted.Thepelletswerere-suspendedin2mLof50%ethanolwithvigorousmixing.Samples

46

were again centrifuged after further addition of 6mL of 50% ethanol, stirred, decanted, re-

suspendedandcentrifugedonelasttime.Anyliquidremainingafterdecantationwasremoved

byinvertingthetubesonabsorbentpaper.

3.6.2MeasurementofResistantStarch

Pelletswerere-suspendedin2mLof2MKOHanddissolvedbystirringwithmagnetic

barsfollowedbystirringinice/waterbathfor20min.Inordertopreventenzymehydrolysis,8

mLof1.2Msodiumacetatebuffer(pH3.8)wasaddedtoeachtubewithstirringand0.1mLof

amyloglucosidase(AMG)wasaddedandmixed.Tubeswereincubatedinawaterbathat50°C

for30minwithintermittentmixing.Samplescontaininggreaterthan10%RSweretransferred

into100mLvolumetricflask,toppedupwithdistilledwater,andmixedwell.Externalmagnets

were used to remove the stirrer bar in while washing the solution from the tube into the

volumetricflask.Analiquotofthesolutionwastakenandcentrifugedat1,500gfor10min.No

dilution step was required for samples containing less than 10% RS; tubes were directly

centrifuged for 10min. Aliquots (0.1mL) in duplicates of supernatants for both diluted and

undilutedstepweretransferredtoglasstubes(16x100mm)and3mLofGOPODreagentwas

added.Thesolutionwasthenincubatedat50°Cfor20min.

3.6.3Non-Resistant(Solubilized)Starch

Supernatant solutions obtained by centrifugation of the initial incubation were

combined with the supernatants obtained from the subsequent two 50% ethanol washings.

Volumewasadjustedto100mLwith100mMsodiumacetatebuffer(pH4.5) inavolumetric

flaskandmixedthoroughly.Induplicates,0.1mLoftheresultingsolutionwasincubatedwith

47

10μLofdiluteAMGsolution(300U/mL)in100mMsodiummaleatebuffer(pH6.0)for20min

at50°C.Thesolutionwasmixedwith3.0mLofGOPODreagentandthetubeswereincubated

at50°Cforafurther20min.

3.6.4MeasurementofAbsorbance

Absorbanceofall samplesandstandardsweremeasuredat510nmagainsta reagent

blank forboth resistantandnon-resistant starch. The contentof resistantandnon-resistant

(solubilised)starchweredeterminedbyfurthercomputation:

ResistantStarch(g/100gsample)(samplescontaining>10%RS):

=ΔExFx100/0.1x1/1000x100/Wx162/180

=ΔExF/Wx90.

ResistantStarch(g/100gsample)(samplescontaining<10%RS):

=ΔExFx10.3/0.1x1/1000x100/Wx162/180

=ΔExF/Wx9.27.

Non-Resistant(Solubilized)Starch(g/100gsample):

=ΔExFx100/0.1x1/1000x100/Wx162/180

=ΔExF/Wx90.

ΔE=absorbance(reaction)readagainstthereagentblank.

F=conversionfromabsorbancetomicrograms(theabsorbanceobtainedfor100µgofD-

glucoseintheGOPODreactionisdetermined,andF=100(µgofD-glucose)dividedbythe

GOPODabsorbanceforthis100µgofD-glucose.

100/0.1=volumecorrection(0.1mLtakenfrom100mL).

1/1000=conversionfrommicrogramstomilligrams.

48

W=dryweightofsampleanalyzed=“asis”weightx[(100-moisturecontent)/100].

100/W=factortopresentRSasapercentageofsampleweight.

162/180=factortoconvertfromfreeD-glucose,asdetermined,toanhydro-D-glucoseas

occursinstarch.

10.3/0.1=volumecorrection(0.1mLtakenfrom10.3mL)forsamplescontaining0-10%RS

3.7MineralAnalysis

Calcium,iron,magnesium,andzincwereanalyzedinthisstudyfollowingAOACOfficial

Method 999.11 (AOAC 2005) for sample and standard preparation. Atomic absorption

spectrometer model, SpectrAA 55 series (Agilent Technologies, Santa Clara, CA, U.S.A.) was

usedtoanalyzeCa,Fe,Mg,andZn.Approximately0.5gofporridgesamplesweredigestedfor

90min with 2mL of H2O2 and 8mL of nitric acid in aMicrowave extraction unit. Digested

sampleswerediluted to25mLwithdeionizewater. ForCaandMg,5mLofdiluteddigests

werefurtherdilutedto20mLforfinalabsorbancereadings.Ca,Fe,Mg,andZnstandardswere

prepared from calcium carbonate, iron metal, magnesium wire, and zinc metal strips,

respectively.Foreachmineral,workingstandards(AppendixB)werepreparedfromthe1000

µg/mL stock solutions. Lanthanum standard solution was added to calcium and magnesium

standards, to minimize matrix interferences. The working conditions for each mineral are

represented inTable3.3.Pressurewasprovided intheatomicabsorptionspectrophotometer

usingairacetylene.

49

Table3.3:Variableandfixedworkingconditionsforcalcium,iron,magnesiumandzinc

Wavelength(nm) SlitWidth(nm) Lampcurrent(mA) OptimumWorkingrange(μg/mL)

Calcium 422.7 0.5 10 0.01–3Iron 248.3 0.2 5 0.06–15Magnesium 202.6 1.0 4 0.15–20Zinc 213.9 1.0 5 0.01–2

3.8Physicalproperties

3.8.1Color

Colorparametersweremeasuredforbanana,rice,beanandBRBcompositefloursusing

aMinoltacolormeter,modelCR-400(KonicaMinoltaSensing,Inc.,Osaka,Japan).TheCIEL*,

a*,andb*werereadusingaD75lightsourceandtheobserverangleat10°.About25gofflours

wasplacedinasamplecupandcolorvalueswererecordedas:L*(0,black;100,white),a*(–a,

greenness;+a,redness),andb*(–b,blueness;+b,yellowness). Colorvaluesa*andb*values

wereusedtocalculatetheChromaandHueangleaccordingtomethodofLittle(1975):

Chroma= 22 ba +

Hueangle(h°)= ⎟⎠

⎞⎜⎝

⎛−

ab1tan

3.8.2Bulkdensity

Bulk density (loose) was determined according to the method of Okaka and Potter

(1977).A50-gsamplewasfilledintoa100-mLgraduatedmeasuringcylinder.Thecylinderwas

50

tappedgentlyseveral timesona laboratorybenchtoaconstantvolume.Theresults forbulk

densitywerereportedasg/mL.

3.8.3Waterabsorptionandoilabsorptioncapacities(WAC/OAC)

Water and oil absorption capacities were determined by the method of Mason and

Hoseney,(1969).Twogramsofflourweremixedwith20mLdistilledwaterandrefinedcornoil

(for oil absorption capacity) at 30C and centrifuged using Sorval RT 6000B Refrigerated

centrifuge,for15min.Thesupernatantsweredriedinanovenat130°Cfor2hours.Waterand

oilabsorptionwascalculatedastheincreaseinweightofthepelletorsediment.

3.8.4Watersolubilityindex

Dried supernatants obtained from the determination of WAI step were weighed to

determinethewatersolubilityindexofflourusingthisformula:

WSI= wtofsupernatant+wtofdriedsupernatant X100wtoforiginalsample

3.9SensoryevaluationofBRBcompositeporridge

Outofthe7BRBcompositeflourtreatments,4wereselectedforporridgepreparation

and = sensory evaluation. This choice of four flours was to prevent tasting and evaluation

WACorOAC = (wtofsediment+centrifugetube)–(wtofcentrifugetube) X100wtoforiginalsample

51

fatigue. Sensory evaluation of porridge was carried out at Michigan State University,

DepartmentofFoodScienceandHumanNutrition,SensoryLaboratory.

Thirty-onemothers from17countrieson theAfricanandAsiancontinent (DRCongo,Ghana,

Kenya, Malawi, Uganda, Tanzania, South Africa, India, Zambia, Zimbabwe, China, Taiwan,

Vietnam, Namibia, Pakistan and Sierra Leone) participated in the sensory evaluation.

Participants were allowed to read and sign a consent form confirming their acceptance to

participate in thesensoryevaluation.Onlymotherswhoconsentedwereallowedtoevaluate

theporridge.Evaluatorswerecompensatedwith$15forparticipation.TheInstitutionalReview

Board(IRB)attheMichiganStateUniversityapprovedthisstudy.

Aninstantporridgewaspreparedfromthebananacompositeflour inaratioof1:3(1

partofflourto3partsofwater).Waterat60°Cwasmixedwithapproximately5gofflourto

formporridgesthatwereservedtopanelist.Sampleswereserved intransparentplasticcups

labeledwithrandom3-digitnumbers-241,871,463and973.Panelistswereaskedtoevaluate

the porridge for its consistency, flavor, appearance, mouthfeel, sweetness and overall

acceptabilityona9-pointHedonicscale(Meilgaardandothers1999):9=likeextremely,8=like

verymuch,7=likemoderately,6= likeslightly,5=neither likenordislike,4=dislikeslightly,

3=moderately, 2= dislike very much and 1= dislike extremely. “Check all that apply” (CATA)

technique,containingalistoffiveattributesandingredientswereutilizedtogainmoreinsight

intoconsumerperceptionoftheweaningporridge.Participantswerealsoaskediftheywould

feedanyoftheporridgestoachildlessthan5years.Thesensoryevaluationquestionnairewas

preparedusingSIMS(vs.6.0)sensorysoftware(SIMS,BerkelyHeightsNJ,US).

52

3.10StatisticalAnalysis

One-way analysis of variance (ANOVA)was used to analyze the data, using Statistical

Package for Social Sciences (SPSS version 22, International Business Machines, New York,

U.S.A.). The sensory data were analyzed by ANOVA using SAS software, version 9.3 (SAS

Institute, Inc.,Cary,NorthCarolina,U.S.A.).Theseparationofmeansor significantdifference

comparisonsweremadebyTukey’sHSDandthestatisticalsignificancewasdefinedasp<0.05.

53

CHAPTER4

RESULTSANDDISCUSSION

4.1Nutritionalcompositionofingredients

Proximatecomposition,dietaryfiber,raffinoseandstachyosecontentofrice,beanand

bananaflourarerepresentedinTable4.1.Nosignificancedifferences(P>0.05)wereobserved

between the three samples for moisture content. Banana flour recorded the highest ash

content.Allsamplesdifferedsignificantly(P<0.05)inashcontent.Proteincontentwashighest

forbean flour and least forbanana flour as expected.Banana flour contained relativelyhigh

levelsofresistantstarch,whichdiffered(P<0.05)fromamountpresentinriceandbeanflour.

Riceandbean flour contain some stachyoseand raffinose. Stachyoseand raffinosewerenot

detectedinbananaflour.Beanflourcontainedhighestamountsofthedietaryfiber.

Table4.1:NutritionalcompositionofBanana,riceandbeanflour.

Bananaflour Riceflour BeanflourMoisture(%) 4.59±1.19a 3.65±0.59a 3.76±0.61a

Ash(%) 3.07±0.026c 1.23±0.01a 2.88±0.11bFat(%) 1.00±0.01c 2.42±0.17a 1.82±0.96b

Protein(%) 3.76±0.13c 7.87±0.45a 20.15±0.44bResistantstarch(g/100g) 6.27±0.49b 2.81±1.96a 3.70±0.20aRaffinose(mg/g) ND 0.26±0.09a 1.64±0.08b

Stachyose(mg/g) ND 1.06±0.007a 13.17±0.61b

Dietaryfiber(g/100g) 9.54±0.56c 6.60±0.56a 22.82±0.69bMeans ± SD in the same column with same letters are not significantly different (Tukey’s HSD test,P>0.05)ND=Notdetected

54

Apart fromwater activity,moisture content is one of the important determinants of

shelf stability of food products. Lowermoisture contents of food are associatedwith longer

shelf life relative to food products containing high levels of moisture. This is because High

moisture content support microbial growth especially yeasts and moulds. The moisture

contentsobservedinthepresentstudyweresignificantlylowerthanvalues,8.4to13.7,g/100g

reported by Asare and others (2004) for rice-cowpea blend and also the maximum CODEX

recommendations(15.5g/100g)forwheatflour(CODEX,1985).

Ash is the total amount of inorganic content remaining after the organic carbon

components are oxidized upon exposure to high heat treatment in a furnace (550°C). The

inorganicmaterial(ash) isreferredtoasthetotalmineralcompositionofaparticularsample.

Fresh bananas contain high levels of minerals, particularly, potassium, magnesium and

phosphorous.Thisexplainstherelativelyhightotalashmaterialinbananaflour(P<0.05)(Table

4.1).

Lipids are important in children’s diet for efficient absorption of fat-soluble vitamins

suchasvitaminA,whichisimportantforgoodsightdevelopmentininfants.Also,essentialfatty

acids assist in cognitive development in infants, curbing their susceptibility to cognitive

impairment in adulthood. Crude fat components of the individual ingredientswere generally

lowasexpectedforfruits,cereals,andlegumes(Table4.1).

Protein is by far one of the most important nutrients that are required for normal

growthanddevelopmentinchildren.Legumesarenaturallyrichinprotein,containingabout3

timestheproteinlevelincereals.Proteinsreportedinliteratureforredkidneybeansflourare

generallyfrom23to30%(RuiandBoye,2013).Theamountsrecordedinthisstudyareslightly

55

lowerthanreported(Table4.1).Theamountofproteinreportedhereforbanana(3.76%)and

brownriceflour(7.87%)areconsistentwiththose listedbyUSDAfoodcompositiondatabase

(USDA,2016).

Unripebananascontainresistantstarchtype2(RS2),whichdecreasessignificantlywith

ripening (Akerbergandothers1998). Akerbergandothers (1998) reporteda resistantstarch

(RStype2)contentbetween31%to72%totalstarch.Langkildeandothers(2002)andMenezes

and others (2011) reported 54% and 48.99% respectively of RS type 2 in raw green banana

flour. Semi-ripebananaswereused in this studyhencea lower value, 6.27% (Table4.1)was

obtained.Thiscouldpresentpotentialbenefitsifthisbananaflourisusedintheformulationof

food products for infants; infants and young children require only moderate amount of

resistant starch in their diets. This is becausediets consisting of highnon-digestible starches

content leads to low digestible energy density of food products (CODEX 1991). Children

consume foods in relatively smaller quantities compared to adults and may require higher

energyfromaparticularmeal.Sajilataandothers(2002)reportedthatmealscontainingabout

16.4%resistantstarchwereassociatedwithhighercalciumandironabsorptionratesinthegut

comparedtostarchesthatarecompletelydigested.

ResistantstarchlevelsobtainedinthisstudyaresimilartoresultsreportedbyTovarand

others(1990)andWangandothers(2010).Theyreportedadecreasingresistantstarchcontent

with cooking. Wang and others (2010) recorded a decrease of RS from 29.37 to 3.59% for

cooked red kidney bean whiles Tovar and others (1990) reported 3.3% resistant starch in

cooked,freeze-driedandmilledredkidneybeanflour.Thisisconsistentwith3.70%obtainedin

thisstudy(Table4.1),consideringthatthebeansinthisstudywerecookedfor30minutesand

56

thatofTovarandothers(1990)werecookedfor60to70minutes.Theresistantstarchcontent

ofbrownriceflour(2.85%)issimilartothoseobtainedbyDelaHeraandothers,(2013)(2.3%

to3.8%)andbyEggumandothers(1993)(2%to3.4%). Egumandothers(1993)reportedan

increasedinresistantstarchwithcooking.

Raffinose and stachyose are naturally abundant in legumes and pulses but lower in

cerealsandabsent in fruits.Thegeneral trendobtained for raffinoseandstachyose forbean

flour in this study, is incongruencewith the resultsobtainedbyShimelisandRakshit (2007).

Theyreportedadecreaseinraffinosecontentduringsoakingandcookingbutarelativelyhigh

level of stachyose even after cooking. Raffinose content (1.64mg/g) is closer to the value

reportedbyShimelisandRakshit (2007)(1.8mg/g).They,however,showed loweramountof

stachyose(4.7mg/g)comparedto13.17mg/g(Table4.1).JangchudandBunnag(2001)useda

synonymousmethod to theoneemployed in this studyexcept thebeanswereboiled for15

minutes and they obtained raffinose and stachyose values of 5.6mg/g and 17.9mg/g

respectively. Compared to values reported in this study, it is apparent a relatively longer

cookingtime(30minutes)playedaroleinlowercontentofraffinoseandstachyose.

Shanmugavelanandothers(2013)reportedanaverageraffinosecontentof0.29g/100g

for cereals in general and 0.16 g/100g for brown-black rice. Overall, no values have been

reportedinliteratureforraworprocessedbrownriceandbananas.Thecurrentstudypresents

0.26mg/g and 1.06 mg/g of raffinose and stachyose, respectively, for rice flour. The

predominanttypeofoligosaccharideinbananasisfructooligosaccharides;theyhavenotbeen

shown to contain galactooligosaccharides including raffinose and stachyose (Mussatto and

Mancilha2007).Noraffinoseandstachyosewasdetectedinbananasforthisstudy.However,

57

weobservedpseudopeaks forbanana flour.Thechromatograms for raffinoseandstachyose

forthethreefloursarelistedinappendixC.

Bean flourcontained thehighest totaldietary fiber (TDF)content (22.82g/100g).Tosh

andYada(2010)documentedTDFlevelsfrom23g/100gto32g/100gforalltypesofrawkidney

beans seeds.Wang and others (2010) reported that cooking increases dietary fiber content;

they showedan increase indietary fiber from19.97g/100g to24.56g/100g for80%cooked

darkredkidneybeansflour.TheTDFcontentinthisstudyisconsistentwithvaluesstatedinthe

twostudiesabove.Theslightly lowerlevelscouldalsobelinkedtothefactthatkidneybeans

usedweredehulledtosomeextent;dehullingreducesfibercontent(CODEX1991).Theamount

of TDF in brown rice flourwas 6.6g/100g. TheUSDA Fooddatabase composition indicated a

4.6g/100gTDFcontent forrawbrownrice flour.Additionally,Leeandothers (1988)reported

4.91g/100gto7.34g/100gfordifferentvarietiesofbrownrice.TheTDFforbananaflourwas

9.54g/100g,whichissimilartothosestatedbyUSDAfoodcompositiondatabase(9.9g/100g).

TDF values of 7.6 g/100g for fully ripe bananas and 6 g/100g to 15.5 g/100g for varieties of

greenbananasarealsowelldocumented in literature(DaMotaandothers2000;Auroreand

others2009)

4.2ProximatecompositionofBRBcompositeflours

Proximate composition of the seven different composite flours prepared from rice,

bean, and banana flours is represented in Table 4.2. Significant differences (P<0.05) existed

betweenmostBRB (banana-rice-bean)composite flours forallproximatecompositionexcept

formoisture content (P>0.05). Essentially, all nutrients seem tobeadirect reflectionof the

58

amountshownbythevariousingredients(rice,beans,andbananaflour)inTable4.1.Thiscould

beanindicationofminimalinteractioneffectbetweenthethreefloursatthelevelsusedinthe

presentstudy.

For instance,Trt-1containing themostbanana flour (80%) showedpercentageashof

3.05% (Table 4.2) Similarly, sample Trt-5made of highest bean flour percentage (25%) gave

proteincontentof(8.53%).ThehighestMC(4.42%)isabouttwotimeslessthancodexstandard

for flour (8%). This could be a good indicator of potential shelf stability of all composites.

Protein composition of composite flours (5.70% to 8.52%) is identical to the ones shown by

similar composite flour producedby Twumandothers (2015) using soybean flour “5.46% to

8.95%” (Table 4.2). It must, however, be acknowledged that the composite ratios and

ingredients used in formulation of products in the two study are totally different. No

significance difference existed between Trt-1 and Trt-3; both flours had bean flour content

maintainedat10%anddifferentriceandbananaflourpercentages.Trt-5andTrt-6showedno

significancedifference(p>0.05)forproteinandash(Table4.2).

Nutritionally,allflourscontainedrecommendedlevelsofproteinsincethetotalamount

of proteinneeded from complementary foods tomeetdaily proteinneedsper day for older

infantsandyoungchildren, ranged from2g for6-8monthsold infantsand5 to6g for infants

who are 12-23 months old (Dewey and Adu-Afarwuah 2008). Percentage lipids at levels

reportedinthisstudyseemtoolow(Table4.2)tomeetdailylipidneedsforinfantsandolder

infants.However,itisnotedthatporridgeorsimilarfoodsarenotconsideredatypicalsource

offatinthedietsofyoungchildren.Theamountoflipidrequiredfromcomplementaryfoodsis

approximate“3gday-1at9–11monthsand9–13gday-1at12–23months”(DeweyandAdu-

59

Afarwuah2008).Itmaybenecessarytoaccompanyfoodpreparedfromtheseflourswithother

foods containing lipidsparticularly thosewithessential fatty acids. Such sources include fish,

egg,liver,nutpastesandvegetableoils(DeweyandAdu-Afarwuah2008).

Table4.2:ProximatecompositionofBRBcompositeflours.

Treatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-3=70:20:10,Trt-4=0:25:15,Trt-5=55:20:25,Trt-6=50:30:20,andTrt-7=45:40:15.Means ± SD in the same column with same letters are not significantly different (Tukey’s HSD test,P>0.05)

4.3Non-digestiblecarbohydratesofBRBcompositeflours

Dataforresistantstarch(RS),totaldietaryfiber(TDF),raffinoseandstachyoseforBRB

treatments are presented in Table 4.3. Numerically, values of all nutritional components

represented the original amount present in rice, bean and banana flourwith respect to the

percentageusedintheBRB(banana-rice-bean)compositeflours.Statistically,however,RS,and

TDF componentswerenot different for all BRB composite flour treatments (P>0.05). Some

differences(P<0.05)wereobservedinStachyoseandraffinoselevels.Trt-5containingthemost

beanscontentshowedthehighestraffinoseandstachyose.

Treatments Moisture(%) Ash(%) Fat(%) Protein(%)

Trt-1 4.41±0.94a 3.05±0.31c 1.23±0.07a 5.70±0.10aTrt-2 4.42±0.96a 2.77±0.07bc 1.35±0.05ab 7.29±0.16bcTrt-3 4.16±0.97a 2.81±0.32bc 1.42±0.07bc 6.15±0.17a

Trt-4 4.17±0.99a 2.49±0.15ab 1.52±0.07cd 5.83±1.28ab

Trt-5 4.12±1.10a 2.59±0.18ab 1.52±0.06cd 8.52±0.21d

Trt-6 4.04±0.85a 2.29±0.02a 1.62±0.08de 8.13±0.22cd

Trt-7 4.18±1.15a 2.25±0.16a 1.73±0.09e 7.77±0.24cd

60

Therearenospecificdietaryguidelinesfortheamountofnon-digestiblecarbohydrates

(NDC), suchas raffinose, stachyoseand resistant starch that shouldbepresent in thedietof

children in The lack of solid regulations of NDCs (encompasses components represented in

table3) isprobablyduetothewell-establishedphysiologicalrolesofNDCs inthehumangut.

NDCs provide prebiotic effects in children (Vandenplas 2002; Agget and others 2003). Some

oligosaccharides including galactooligosaccharides are occasionally added to commercial

complementary foodsasprebiotics (Aggetandothers2003;Vandenplas2002). Somestudies

alsosuggestalinkbetweenabsorptionofcertainmicronutrientswithdietshighinNDCs(Agget

andothers2003).

Regardless,onlymoderateamountsofNDCsareneededinyoungchildrenbecausethe

lack or over consumption of NDCs can cause certain adverse effects such as diarrhea and

difficultyemptying thebowel inyoungchildren (Aggetandothers2003).Theuseof riceand

riceproductsininfantfoodwereassociatedwithreductioninregurgitation.

TheAmericanAcademyofPediatricsrecommends0.5g/kgdietaryfiberperbodyweight

(Aggetandothers2003)andCODEXrecommends5%TDFondrybasisincomplementaryfoods.

Total dietary fiber content of BRB composite flours exceeds Codex standards for

complementary foods (CODEX1991). Itmaybevery important touse fullydehulledbeans in

flourformulationtohelpreducethedietaryfibercontent(CODEX1991).

RScontentsuggestedthatapproximately90.9to93.6g/100gofstarchpresent inBRB

compositeflourisdigestible.Thiswasevidentinthehighsucrose,fructoseandglucoselevels

recordedforbanana,riceandbeanflour(AppendixC).

61

Table4.3:Resistantstarch,totaldietaryfiber,raffinoseandstachyosecontentofBRBcompositeflours

Treatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-3=70:20:10,Trt-4=0:25:15,Trt-5=55:20:25,Trt-6=50:30:20,andTrt-7=45:40:15.Means ± SD in the same column with same letters are not significantly different (Tukey’s HSD test,P>0.05)

4.4MineralComposition

Theamountofcalcium, iron,magnesiumandzinc inbanana, riceandbean flour,and

bananaflourareshowninTable4.4.Beanflourshowedhighlevelsofcalcium,iron,magnesium

andzinc.All threefloursdifferedsignificantly (P<0.05) inmineralcontents.Thecalcium, iron,

magnesiumandzinccontentsforbeanflourwereclosertothevaluesreportedbyWangand

others (2010) andBarampamaand Simard (1995) for kidneybeans.Wang andothers (2010)

reported78Ca,5.37Fe,153Mgand3.04Znmg/100gdrybasis.BarampamaandSimard(1995)

obtained145mg/100gforiron,2.76mg/100gforzincand145mg/100gformagnesium.

Mineral content obtainedwere similar to the amounts found byGregorio and others

(2000);Heinemannandothers(2005)fordifferentvarietiesofbrownrice.

Treatments Resistantstarch(g/100g)

Totaldietaryfiber(g/100g)

Raffinose(mg/g)

Stachyose(mg/g)

Trt-1 9.21±2.2a 10.35±0.87a 0.19±0.08a 3.53±0.17aTrt-2 8.17±1.18a 11.60±0.79a 0.35±0.07b 4.62±0.71abTrt-3 8.13±3.35a 10.1±0.73a 0.22±0.06ab 3.49±0.24aTrt-4 7.17±1.84a 10.64±0.65a 0.31±0.10b 3.99±1.03abTrt-5 6.71±1.30a 11.82±0.42a 0.46±0.09c 6.27±0.40cTrt-6 6.99±1.63a 11.11±0.33a 0.41±0.07c 4.92±0.43bTrt-7 6.38±1.40a 10.63±0.01a 0.35±0.09b 3.95±0.37ab

62

Amounts of calcium, iron, magnesium found in banana flour (20.61, 1.11, 101.95 and 0.66,

mg/100grespectively)arecomparabletoresultsacquiredbyHaslindaandothers(2009).They

obtained 28.9 Ca, 1.73 Fe, 105.34Mg and 0.74 Zn,mg/100g respectively on a dry basis for

greenbananaflour.

Table4.4:Calcium,iron,magnesiumandzinclevels(mg/100g)ofbanana,riceandbeanflour

Means ± SD in the same rowwith same superscripts are not significantly different (Tukey’sHSDtest,P>0.05)

Theamountofcalcium, iron,magnesiumandzinc inBRBcomposite flours treatments

arepresentedinTable4.5. Mineralcontentdifferedsignificantly(P<0.05)amongtreatments.

Thehighestironandmagnesiumlevels(2.83and111.61,mg/100g)respectivelyobtainedinthis

studyweregenerallyhigherthanthelargest(0.59Feand12.6Mg,mg/100g)valuerecordedby

Twum and others (2015) for maize-soybean composite flour. However, they reported 2.34

mg/100gofzinc,whereasthepresentstudyrecorded1.44mg/100g(Table4.5).

Recommendeddailynutrientintake(RDI)forinfantsandchildrenaged6monthsto23months

bytheWHO(2002)standardsforcalcium,iron,magnesiumandzincare400mgto500mg,5.8

mg to 9.3mg, 54mg to 60 mg and 2.8 mg to 4.1mg per day respectively. CODEX also

recommends that 50 to 75%of RDI of individual nutrients come from complementary foods

(CODEX1991;Dewey2008).Basedonbioavailability,RDIforironandzincarerecommendedas

Bananaflour Riceflour BeanflourCalcium 20.61±0.8a 10.61±0.41b 69.71±0.78cIron 1.11±0.08a 1.19±0.13b 7.27±0.27cMagnesium 101.95±0.98a 109.12±2.73b 131.23±1.18cZinc 0.66±0.03a 2.04±0.05b 2.29±0.04c

63

follows; iron (mg): 11.6, 5.8 and 3.9 for 5%, 10 % and 15% dietary iron bioavailability

respectively. Zinc (mg): 8.3, 4.1 and2.4 for low,mediumandhighdietary zincbioavailability

respectively(CODEX1991).

Considering these standards and other factors such as portion size consumed, the

frequency of feeding, and other diets that are consumed by infants, all composites could

minimally meet most of the daily nutritional requirements for this demographic except for

calciumrequirements.Itwouldthereforebenecessarytoincorporatedairy-baseddietsaspart

offoodsgiventoinfantstohelpmeettheirdailyneedsofcalcium.

Table4.5:Calcium,iron,magnesiumandzinclevelsinBRBcompositeflour

Treatments Calcium(mg/100g)

Iron(mg/100g)

Magnesium(mg/100g)

Zinc(mg/100g)

Trt-1 24.56±0.68ab 1.78±0.08a 105.82±0.97a 0.95±0.03aTrt-2 29.34±0.42d 2.45±0.08bc 108.48±1.00abc 1.14±0.03bTrt-3 23.72±1.19a 2.24±0.19b 105.40±3.24a 1.10±0.06bTrt-4 25.82±0.48bc 2.28±0.08b 108.38±0.60abc 1.26±0.03cTrt-5 30.81±0.49d 2.83±0.10d 111.61±0.38c 1.33±0.05cdTrt-6 26.63±1.08c 2.58±0.14cd 110.23±0.96b 1.41±0.03deTrt-7 24.14±0.48ab 2.33±0.10bc 108.12±1.10ab 1.44±0.17eTreatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-3=70:20:10,Trt-4=0:25:15,Trt-5=55:20:25,Trt-6=50:30:20,andTrt-7=45:40:15.Means ± SD in the same column with same letters are not significantly different (Tukey’s HSD test,P>0.05)

4.5Physicalproperties

Table 4.6 represents data for color parameters, L*, a* and b* values. Color is an

importantparameter in foodproducts,particularlypertaining toaestheticsattributesof food

productsandconsumerpreference.L*value indicatesthedegreeof lightness(whiteness),a*

64

valuesrepresentsgreentoredandb*value,bluetoyellow.ThehighestLvaluewasexpressed

in rice flour followedbybean flourand thenbanana flour.Banana flourdifferedsignificantly

(P<0.05) from rice and bean flour, which did not differ from each other (P>0.05); this same

trendwasshownfora*values.Allfoursdifferedsignificantly(P<0.05)inb*parameter.Banana

flourhad thehighest a value (3.05) followedbybean flour (1.67) and lastly rice flour (0.36).

Beanflourshowedtheleastdegreeofyellowness(b*=8.51).Bananaflourshowedthehighest

b*value.

Table4.6:ColorparametersL*,a*,b*,valuesandChromaandHueangleofbanana,riceandbeanflour

L a b Chroma HueangleBananaflour 76.89±2.49b 3.05±0.47c 15.19±1.61b 15.5±1.66b 1.37±0.00bRiceflour 82.77±0.2a 0.36±0.19a 9.82±0.63a 9.82±0.62a 1.53±0.02aBeanflour 82.63±0.17a 1.67±0.06b 8.51±0.27a 8.67±0.25a 1.38±0.01b

Means±SDinthesamerowwithsamesuperscriptsarenotsignificantlydifferent(Tukey’sHSDtest,P>0.05)

Thelightredkidneybeansusedinthisresearchlostmostofitscoloraftersoaking.The

highdegreeof lightnesscouldalsobeattributedtothe fact thatabout70%of theseedcoats

wereremovedbeforemilling.Waniandothers(2013)reportedanL*valueof81.6,a*=1.3and

b*=7.9forrawredkidneybeanflour.Lambertandothers(2006)showedanL*valueof85,a*=

1andbvalueof13forrawbrownriceflour.L*a*andb*valuesarelowerthanreportedabove

(82.77, 0.36 and 9.82 respectively). Differences in physical attributes between cooked and

uncookedricecouldbeamajorfactor.L*parametersreportedherewereslightlyhigherwhiles

bvaluesarelower(L*=76.89andb=15.19)thanthosepresentedbyRakshit(2011)forfullyripe

65

bananaflour(L*=68.29andb=21.6).Thedifferenceisapparentlyduetotheuseofmoregreen

than ripe bananas in formulating the flour. Chroma color parameter is an indicator of the

richnessofcolorordegreeofcolorintensity. Bananaflourseemsricherincolorthanriceand

beanflours(P<0.05).Hueanglewhichbasicallyindicateshowasampleappeartothehumaneye

suggestthatriceflourappeareddifferently(P<0.05)frombeanandbananaflour.

Data for density, water absorption index (WAI), water solubility index (WSI), and oil

absorptioncapacity(OAC)arerepresentedintable4.7.Bulkdensityisthemassperunitvolume

ofoccupiedbyasample.Bulkdensityinfluencespackagingandtransportationdecisionsinthe

foodindustry.Bulkdensitydifferedforallthreeflours(P<0.05).Moongngarmandothers(2014)

showed 0.6 to 0.67 g/mL for varieties of brown rice flour,Wani and others (2013) reported

0.88mg/mL for raw kidney bean flour; Zakpa and others (2010) reported 0.76 g/mL for ripe

plantain.

Table4.7:Density,watersolubility,andwaterandoilabsorptionpropertiesrice,beansandbananaflour.

Bulkdensity(g/mL) WAC(g/g) WSI(%) OAC(g/g)Bananaflour 0.85±0.02a 3.03±0.64a 24.65±0.11a 1.82±0.04aRiceflour 0.708±0.03b 4.75±0.22b 1.1±0.0b 1.67±0.04bBeanflour 0.76±0.002c 3.80±0.01c 10.22±0.01b 1.65±0.03bMeans± SD in the same rowwith same superscripts arenot significantlydifferent (Tukey’sHSD test,P>0.05)

Waterabsorptionindexorwaterabsorptioncapacityandoilabsorptioncapacityisthe

amountofwateroroilrespectively,thatisheldpergramofflourorprotein. Riceflour,with

leastmoisturecontentexhibitedthehighestwaterholdingcapacityfollowedbybeanflourand

66

forbanana flour (Table4.7).This trend iscontrary to the linear relationshipbetweenprotein

concentrationandwaterabsorptioncapacity(RuiandBoye2013).

Foroilabsorptioncapacity (OAC),bananaflourshowedthehighestvalueanddiffered

significantlytoOACofbeansandriceflourdidnotdifferfromeachother(P>0.05)(Table4.7).

Siddiqandothers (2010)obtainedWAIandOACof2.25and1.52 respectively for redkidney

bean flour,which is similar to values obtain in the current study.WAI andOAC reported by

Beckerandothers(2014)forvarietiesofbrownriceflourwere2.85g/gtoand1.81to2.03g/g

respectively.Gamlath(2008)indicatedWAIforextrudedbananaflourat5.68g/g.Eventhough

theabovevaluesweobtained for riceandbanana flourdiffered fromwhat is reportedhere,

thedisparitiesarenotextreme.

Water solubility index is linked to degree of dextrinization and gelatinization and

consequentstarchsolubility.Itisareflectionoftheamountofstarchgranulesthatunderwent

disruption during processing (Nyombaire and others 2011). Rice is a relatively rich source of

starchcomparedtobeansandsemi-ripebananas.TheWSIvalueforriceflourisanindicationof

highdegreeofintactstarchgranuleshenceleastwatersolubility(Table4.7).Bananaflourwas

relatively more soluble (24.65%) but slightly higher than those found (23.35%) by Gamlath

(2008)forextrudedbananaflour.

L*, a*, b* Chroma, and Hue color parameters for composite flours are presented in

Table4.8.L*valuesrangedfrom76.74obtainedforTrt-1to79.85forTrt-6.LowerL*values

wouldbeanegativeindicatorofqualityduetoenzymaticbrowningofbananas.Valuesfora*

parameterrangedfrom1.99forTrt-6to2.91forTrt-1.b*valuesrangedfrom12.92to14.72.

67

Nodifferencesinb*values(p>0.05)wereobservedamongtreatments.Significantdifferences

existedforamongtreatmentsforL*anda*values.Asareandothers(2004)showedL*values

ranging from 79.07 to 91.21 for extruded rice-cowpea-groundnut blend. All BRB composite

floursshowedthesame(P>0.05)degreeof intensity indicatedbychromavalues (Table4.1).

Resultsobtained forHueangleshowedthat,with theexceptionofTrt-6andTrt-7, theother

porridgesamplesdidnotdifferinappearance.

Table4.8:ColorparametersL*,a*,b*,valuesandChromaandHueangleofBRBcompositeflour

Treatments L* a* b* Chroma HueangleTrt-1 76.74±1.69a 2.91±0.06c 14.72±1.03a 15.02±0.99a 1.375±0.02aTrt-2 77.31±1.05ab 2.72±0.05c 13.89±0.67a 14.15±0.64a 1.377±0.01aTrt-3 77.13±1.04ab 2.66±0.11c 13.81±0.86a 14.07±0.82a 1.379±0.02aTrt-4 78.94±0.75bc 2.30±0.08b 13.83±1.67a 14.02±1.66a 1.404±0.01abTrt-5 77.67±0.46ab 2.65±0.25c 13.28±0.32a 13.54±0.26a 1.373±0.02aTrt-6 79.85±0.75c 1.99±0.25a 13.12±1.77a 13.27±1.78a 1.420±0.00bTrt-7 78.97±0.40bc 2.00±0.06a 12.92±0.88a 13.07±0.87a 1.417±0.00bTreatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-3=70:20:10,Trt-4=0:25:15,Trt-5=55:20:25,Trt-6=50:30:20,andTrt-7=45:40:15.Means ± SD in the same column with same letters are not significantly different (Tukey’s HSD test,P>0.05)

Results for density,Water absorption index (WAI), oil absorption capacity (OAC) and

watersolubilityindex(WSI)arepresentedintable4.9.ThehighestWSIwasobtainedforTrt-1

(28.41%) and the least (17%) for Trt-7. TheWSI obtained for composite flours appear to be

affected by amount of banana and rice flour used in formulation. Trt-1 formulatedwith the

highest banana contentwas themost solublewhiles Trt-7 containinghighest amountof rice

flour showed the least degree of solubility (Table 4.9). In exception of WSI, there were no

differences(P>0.05)betweenallBRBcompositeflourswithregardstodensity,WACandOAC.

68

Thedensities(0.78to0.82,mg/mL)obtainedforBRBporridgesfellwithintherange(0.295to

1.541, g/mL) reportedbyAsare andothers, (2004) for extruded rice-cowpea-groundnut. It is

expected that extruded flours would be lighter in terms of density, compared to those

processedbyothermethods(CODEX1991).

Table4.9:Density,waterandoilabsorptionandwatersolubilitypropertiesofBRBcompositeflours

Treatments Density WAI OAC WSI(%)Trt-1 0.82±0.009a 2.79±0.23a 1.76±0.04a 28.41±0.06bTrt-2 0.82±0.014a 2.87±0.16a 1.71±0.06a 26.12±0.02abTrt-3 0.81±0.034a 3.02±0.19a 1.77±0.05a 24.01±0.05abTrt-4 0.78±0.035a 3.03±0.21a 1.75±0.01a 23.29±0.04abTrt-5 0.80±0.007a 2.98±0.21a 1.76±0.03a 22.66±0.05abTrt-6 0.81±0.001a 3.10±0.32a 1.75±0.02a 19.84±0.37abTrt-7 0.78±0.037a 3.03±0.77a 1.74±0.03a 17.00±0.03a

Treatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-3=70:20:10,Trt-4=0:25:15,Trt-5=55:20:25,Trt-6=50:30:20,andTrt-7=45:40:15.Means ± SD of treatments in the same column with same superscripts letters are not significantlydifferent(P>0.05).

4.6SensoryEvaluationandconsumeracceptability

The results of sensory attributes (appearance, consistency,mouthfeel, sweetness and

overall acceptability) of four BRB porridges are shown in Figure 4.1. Apart from sweetness

attribute, no differenceswere observed in panelist ratings between porridge samples for all

attributesandoverallacceptability.Sweetnessscoressuggestedahigherlikingofsampleswith

increasing banana content; Trt-1 & Trt-2 differed from Trt-5 (P< 0.05). All porridges were

acceptablebasedsensoryscoresof6.5to7.1ona9-pointHedonicscale.Outof31panelists29

ofthemagreedtheywouldfeedanyoftheporridgestoachildbelow5years.

69

Figure4.1:SensoryattributesandoverallacceptabilityofBRBporridge

Treatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-4=0:25:15,Trt-5=55:20:25.

The percentage of mothers on the hedonic scale regarding overall acceptability is

presentedinfigure4.2.Consumertastepreferencesareoneofthemostcomplicatedaspectsof

sensorychemistry,duetogreatdisparities intastepreferences. It ishoweverwellnotedthat

the demographic used for the sensory evaluation are from 17 different countries. Thewide

range of taste preferences was evident in the overall liking for each of the porridges.Most

mothers, 41.9% liked Trt-1 very much, but Trt-1 also seemed to be the highest on “dislike

slightly”and“dislikemoderately”scale(6.5%).Surprisingly,thesecondhighestporridgeonthe

“likeverymuch”scale(likedby32.3%panelists)wasTrt-5.Thisconfirmedthecomplexityand

unpredictabilityofconsumerpreferences.Regardless,therewasadecentoverallacceptability

ofallporridges.

5.86

6.26.46.66.87

7.27.4Appearance

Consistency

Mouthfeel

Sweetness

Flavor

Overallacceptability

Trt-1

Trt-2

Trt-4

Trt-5

70

Figure4.2:PercentpanelistdistributionofoverallacceptabilityofBRBporridge

Treatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-4=0:25:15,Trt-5=55:20:25.

Figure4.3representpercentagedistributionofdescriptionofattributesbypanelistfor

BRBcompositeporridgesamples;Panelistswereaskedto“checkallthatapply”(CATA).There

were distinctions and some trends between samples for some attributes such as flavorful,

bland, beany and raw. The percentage of panelists, who selected flavorful, decreased with

decreasingbananaflourcontent;thissametrendinreversewasrecordedfor“bland”attribute.

“Traditional” description of samples was higher for higher rice plus bean flour content

combined (Figure 4.3). There were differences (P<0.05) between porridge samples for:

“flavorful”,“sweet”andtraditionalattributes.

Approximately15%of themothersperceivedbeany flavor inTrt-2andTrt-5.Mostof

the mothers who selected beany and “raw” attributes chose the composite flours with the

highest percentage of bean flour (20% and 25%). This suggests a feeling of “rawness” with

0.05.010.015.020.025.030.035.040.045.0

%panelists

Trt-1

Trt-2

Trt-4

Trt-5

71

increasing bean flour content. However, no differenceswere observed between samples for

panelists who described the porridge samples as “beany” and “raw”. At 10% bean flour, it

appears panelists’ perception of “beany” flavor and rawness of porridge, only one panelist

perceivedbeany“flavor”and“rawness”.

Figure4.3:Checkallthatapply(CATA)attributesofBRBporridge

Treatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-4=0:25:15,Trt-5=55:20:25.Thesamelettersonbarsarenotsignificantlydifferent(P>0.05)

Resultfor“CheckAllThatApply”(CATA)ingredientsisshowninFigure4.4.Bananawas

themostperceivedingredient.Bananahasanaturallystrongandoverwhelmingflavor,which

increases with the degree of ripeness. The perception and distinction of banana flavor as

dehydratedflourincompositescouldsuggestminimalflavorlossduringtheair-dryingprocess.

Mothers also perceived bean and rice; these ingredients including bananawere listed in the

a

a

a

a

ab

b

a

ab

aa

a

a

b a

bca

a

a

ab

a

ac

a

a a

b

a

a

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Percentageofpanelists

Trt-1

Trt-2

Trt-4

Trt-5

72

consent forms that were signed by participants. Differences existed between samples for

banana,beanandcornperceptionbypanelists.

Other ingredients and flavors indicated were corn, carrot, wheat and citrus. The

number of panelists who perceived corn andwheatwere relatively higher compared to the

numberwhoperceivedcarrotandcitrus;onlyonepersonperceivedcarrot.Thepercentageof

panelists perceptionof citrus decreasedwithdecreasingbanana component,which couldbe

duetothepresenceofabout7mgascorbicacid inbananaflour(USDA2016).Recognitionof

wheat, corn and carrot could be linked to flavor and ingredient interaction, producing a

differentsensoryeffectoritcouldbejustasaresultofmisperceptionbysomepanelists.

Figure4.4:Checkallthatapply(CATA)ingredientsofBRBporridge

Treatmentshadbanana, riceandbean ratios, respectively,as follows:Trt-1=80:10:10,Trt-2=70:10:20,Trt-4=0:25:15,Trt-5=55:20:25.Barssharingthesameletterwithinattributesarenotsignificantlydifferent(p>0.05)

a

b

a

ab a

a

a

ab

a

a ab

a

a

a

ab

a

a

aba

a

b

a

a

aa

a

a

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Banana Bean Carrot Rice Corn Wheat Citrus

Percentageofpanelists

Trt-1

Trt-2

Trt-4

Trt-5

73

CHAPTER5

OUTCOMESandRECOMMENDATIONS

5.1Conclusion

All BRB composite flour contained significant levels of protein. Flatulence-causing

oligosaccharideswere lower inBRBflour than incookedbeanflourandtheamountsofnon-

energy contributing resistant starch was less than 10%. Dietary fiber levels exceeded Codex

Alimentarius recommendations forcomplementary foods.Banana flourhadapositive impact

on Sweetness and “flavorful” attribute of BRB porridge and could be added to traditional

cereal-legume blends to improve flavor and sweetness, which could ultimately lead to

avoidanceofaddedsugarstotraditionalinfantfoods.Instantporridgespreparedfromselected

BRB composite flourswere all of acceptable quality by 31mothers of Africa andAsia origin.

Twenty-ninemothers indicated that theywould feedat least oneof theporridges to a child

below 5 years of age. BRB porridge could be incorporated as part of children’s diet to help

alleviateproteinenergymalnutrition.

5.2Recommendations

Itisimportanttoaccompanydietscontainingcereal-legumeblendswithfoodscoming

fromanimal sources inorder to improvezincand ironcontents toensureadequacyof these

nutrients for infants. Additionally, fortification of cereal-legume blends with limiting but

essential minerals is important to meet daily nutritional requirements. Also, fruits and

vegetablescontaininghighlevelsofvitaminCcouldbeaddedtodietsgiventoinfantstohelp

improveabsorptionofsolublenon-hemeiron,whichisthemaincomponentinmosttraditional

74

infantdiets.Antinutritionalfactorsshouldbedeterminedtoknowtheextentofbioavailability

ofzincandironincereal-legumeblendsmadeforchildren,suchasBRBinfantfood.

75

APPENDICES

75

AppendixA:Recommendednewdietaryreferenceintake

Table6.1:Recommendednewdietaryreferenceintake(DRI)forchildrenage6to23months

Nutrient

RecommendedIntake

6to8months 9to11months 12to23months

Protein(g/day) 9.1 9.6 10.9

VitaminA(μgRE/day) 500 500 300

Folate(μg/day) 80 80 150

Niacin(mg/day) 4 4 6

Pantothenicacid(mg/day) 1.8 1.8 2.0

Riboflavin(mg/day) 0.4 0.4 0.5

Thiamine(mg/day) 0.3 0.3 0.5

VitaminB6(mg/day) 0.3 0.3 0.5

VitaminB12(μg/day) 0.5 0.5 0.9

VitaminC(mg/day) 50 50 15VitaminD(μg/day) 5 5 5

VitaminK(μg/day) 2.5 2.5 30Calcium(mg/day) 270 270 500

Chloride(mg/day) 500 500 800

Copper(mg/day) 0.2 0.2 0.3Fluoride(μg/day) 0.5 0.5 0.7

Iodine(μg/day) 130 130 90

Iron(mg/day) 11 11 7

Magnesium(mg/day) 75 75 80Manganese(mg/day) 0.6 0.6 1.2

Phosphorous(mg/day) 275 275 460

Potassium(mg/day) 700 700 800Selenium(μg/day) 20 20 20

Sodium(mg/day) 320 350 500

Zinc(mg/day) 3 3 3(Adebeyiandothers2016).

76

AppendixB:Workingstandardsolutionsformineralanalysis

Table6.2:Concentrationsofworkingstandardssolutionsforcalcium,magnesium,ironandzinc

ppm StockVol(mL) Water(mL) La(mL)Calcium

0 2mLHNO3 47.5 0.51 0.05 49.45 0.52 0.1 49.4 0.52.5 0.15 49.375 0.53 0.2 49.35 0.54 0.25 49.3 0.5

Magnesium0 2mLHNO3 47 11 0.05 48.95 15 0.25 48.75 110 0.5 48.5 115 0.75 48.25 120 1 48 1

Iron0 2mLHCl 48 03 0.15 49.85 05 0.25 49.75 08 0.4 49.6 010 0.5 49.5 012 0.6 49.4 0

Zinc0 2mLHCl 48 00.5 0.025 49.975 01 0.05 49.95 01.5 0.075 49.925 02 0.1 49.9 02.5 0.125 49.875 0

77

AppendixC:Chromatogramoutputforsugaranalysis

Riceflour

Riceflour

Bananaflour

Bananaflour

Beanflour

Beanflour

Figure6.1:Chromatogramsforrice,bananaandbeanflourinreplicates

Peak1=glucose-6phosphate,peak2=stachyose,peak3=raffinose,peak4=sucrose,peak5=glucose,peak7=fructose

78

REFERENCES

79

REFERENCES

AchiOK,Ukwuru,M. 2015. Cereal-based fermented foodsofAfrica as functional foods. Int JMicrobiolApp2:71-83Achidi A U, Tiencheu B, Tenyang N, Womeni HM, Moyeh MN, Ebini LT, Tatsinkou F. 2016.Quality evaluation of nine instant weaning foods formulated from cereal, legume, tuber,vegetableandcrayfish.IntJofFoodSciNutrEng6:21–31.AdenikeOM. 2016. Effect of co-fermentation on nutritional and sensory evaluation of bitteryamandcowpeaascomplementaryfood.IntJCurrMicrobiolAppSci5:267–78.AfifyAE,El-BeltagiHS,El-SalamSMA,OmranAA.2011.Bioavailabilityofiron,zinc,phytateandphytase activity during soaking and germination of white sorghum varieties. Plos One 6:e25512.doi:10.1371/journal.pone.0025512.Aggett PJ, Agostoni C, Axelsson I, Edwards CA, Goulet O, Hernell O. 2003. Non-digestiblecarbohydrates in the diets of infants and young children: a commentary by the ESPGHANCommitteeonNutrition.JPediatrGastroentNutr36:329–37.Agostoni C, Axelsson I, Goulet O, Koletzko B, Michaelsen KF, Puntis JW. 2004. Prebioticoligosaccharidesindieteticproductsforinfants:acommentarybytheESPGHANCommitteeonNutrition.JPediatrGastroentNutr39:465–73.AguileraJM,ChiraltA,FitoP.2003.Fooddehydrationandproductstructure.TrendsFoodSciTech14:432–37.AkerbergAK,LiljebergHG,GranfeldtYE,DrewsAW,BjörcIM1998.Aninvitromethod,basedon chewing, to predict resistant starch content in foods allows parallel determination ofpotentiallyavailablestarchanddietaryfiber.JNutr128:651–60.Amagloh FK, Hardacre A,Mutukumira AN,Weber JL, Brough L, Coad J. 2012. Sweet potato-basedcomplementaryfoodforinfantsinlow-incomecountries.FoodNutrBulletin33:3–10.[AOAC] Association of Official Analytical Chemists 1987. Changes in methods. J Assoc AnalChem70:393.[AOAC]AssociationofOfficialAnalyticalChemists2000.Officialmethodsofanalysis.17thed,AOACINTERNATIONAL,WashingtonDC,U.S.A.[AOAC]AssociationofOfficialAnalyticalChemists,2005.Officialmethodsofanalysis.18thed,

80

AOACINTERNATIONAL,Gaithersburg,MD,U.S.A.Asare EK, Sefa-Dedeh S, Sakyi-Dawson E, Afoakwa EO. 2004. Application of response surfacemethodology for studying the product characteristics of extruded rice–cowpea–groundnutblends.IntJFoodSciNutr55:431–9.AuroreG, Parfait B, Fahrasmane L. 2009. Bananas, rawmaterials formaking processed foodproducts.TrendsFoodSciTech20:78–91.Babu PD, Subhasree RS, Bhakyaraj R, Vidhyalakshmi R. 2009. Brown rice-beyond the colorrevivingalosthealthfood.Am-EurasJAgron2:67-72.BarampamaZ,SimardRE.1995.Effectsofsoaking,cookingandfermentationoncomposition,in-vitro starch digestibility and nutritive value of common beans. Plant Foods HumNutr 48:349–65.Bazaz R, Baba WN, Masoodi FA. 2016. Development and quality evaluation of hypoallergiccomplementary foods from rice incorporated with sprouted green gram flour. Cogent FoodAgri2:1154714.Bello-Perez AL, Agama-Acevedo E, Gibert O, Dufour D. 2012. Banana. In: Tropical andSubtropicalFruitProcessingandPackaging.Editor,Siddiq,M. JohnWiley&Sons,Ames, IowaJohnWiley&Sons,Inc.p137-57.Bird A, Conlon M, Christophersen C, Topping D. 2010. Resistant starch, large bowelfermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes 1:423–31.BoakyeID,EgyirSI.2014.FactorsthatInfluenceHouseholdDemandforLocallyProducedBrownRiceinGhana.JEconSustainDev5:14-21.BrownleeIA.2011.Thephysiologicalrolesofdietaryfibre.FoodHydrocolloids25:238–50.Camire ME, Camire A, Krumhar K. 1990. Chemical and nutritional changes in foods duringextrusion.CritRevFoodSci29:35–57.Chen RR, Wang J, Gong L, Li YZ. 2006. Comparison of vacuum belt, freeze and air-dryingmethodsofprocessingbananapuree.TChineseSocAgriMach37:159–62.CODEX. 1991. Guidelines on Formulated Complementary foods for older infants and youngchildren(Cac/Gl8-1991).Availablefrom:http://www.fao.org/fao-who-codexalimentarius/standards/list-of-standards/en/.Accessed2016September15.

81

CODEX.1985.Standardforwheatflour.(CODEXSTAN152-1985).Availablefrom:http://www.fao.org/fao-who-codexalimentarius/standards/list-of-standards/en/.Accessed2016September20.CohenJS,YangTC.1995.Progressinfooddehydration.TrendsFoodSciTech6:20–5.DaMotaRV,LajoloFM,CordenunsiBR,CiaccoC.2000.Compositionandfunctionalpropertiesofbananaflourfromdifferentvarieties.Starch-Stärke52:63–8.De laHera E,GomezM, Rosell CM. 2013. Particle size distributionof rice flour affecting thestarchenzymatichydrolysisandhydrationproperties.CarbohydPolym98:421–7.Dewey KG, Adu-Afarwuah S. 2008. Systematic review of the efficacy and effectiveness ofcomplementaryfeedinginterventionsindevelopingcountries.MaternChildNutr4:24–85.DeweyKG,BrownK.H.2003.Updateontechnicalissuesconcerningcomplementaryfeedingofyoungchildren indevelopingcountriesand implicationsfor interventionprograms.FoodNutrBull24:5–28.Duncan S, Barbeu B, Aigster A. 2009. Effects of acute resistant starch consumption onpostprandialglucoseandinsulinresponsesandoxidativestressparametersinHispanicwomen.IGERT.Availablefrom:http://www.igert.org/highlights/155.Accessed2016September24.Egaunlety M, Aworh OC, Akingbala JO Houben JH, Nago CM. 2002. Nutritional and sensoryevaluationofmaize-basedtempe-fortifiedweanigfoods.IntJFoodSciNutr53:15–27.EgaulentyM,AworhOC.2003.Effectofsoaking,dehulling,cookingandfermentationwithRhizopusoligosporusontheoligosaccharides,trypsininhibitor,phyticacidandtanninsofsoybean.(GlycinemaxMerr.),cowpea(VignaunguiculataL.Walp)andgroundbean(MacrotylomageocarpaHarms)JFoodEng56:249–254.EggumBO,JulianoBO,PerezCM,AcedoEF.1993.Theresistantstarch,undigestibleenergyandundigestibleproteincontentsofrawandcookedmilledrice.JCerealSci18:159–170.Ejigui J, Savoie L, Marin J, Desrosiers T. 2007. Improvement of the nutritional quality of atraditional complementary porridge made of fermented yellow maize (Zea mays): Effect ofmaize–legumecombinationsandtraditionalprocessingmethods.FoodNutrBull28:23–34.Gabaza M, Muchuweti M, Vandamme P, Raes K. 2016. Can fermentation be used as asustainable strategy to reduce iron and zinc binders in traditional African fermented cerealporridgesorgruels?FoodRevInt.doi:10.1080/87559129.2016.1196491

82

GalatiA,Oguntoyinbo FA,MoschettiG, CrescimannoM, Settanni L. 2014. The cerealmarketandtheroleoffermentationincereal-basedfoodproductioninAfrica.FoodRevInt30:317–37.GamlathS.2008.Impactofripeningstagesofbananaflouronthequalityofextrudedproducts.IntJFoodSciTech43:1541–1548.GibsonRS,BaileyKB,GibbsM,FergusonEL.2010.Areviewofphytate,iron,zinc,andcalciumconcentrations in plant-based complementary foods used in low-income countries andimplicationsforbioavailability.FoodNutrBull31:S134–S46.GregorioGB,SenadhiraD,HtutH,GrahamRD.2000.Breedingfortracemineraldensityinrice.FoodNutrBull21:382–6.[GSS/GHS/ICF] Ghana Statistical Service. Ghana Health Service (GHS), and ICF. 2015.International Demographic and Health Survey. Rockville, Maryland, USA. Available from:https://dhsprogram.com/pubs/pdf/FR307/FR307.pdf.Accessed2016September24.HaslindaWH,ChengLH,ChongLC,AziahAN.2009.Chemicalcompositionandphysicochemicalpropertiesofgreenbanana(Musaacuminata)flour.IntJofFoodSciNutr60:232–239.HeinemannRJB,FagundesPL,PintoEA,PenteadoMVC,Lanfer-MarqueUM.2005.Comparativestudy of nutrient composition of commercial brown, parboiled andmilled rice from Brazil. JFoodComposAnal18:287–96.HurleyWL, Doane RM. 1989. Recent developments in the roles of vitamins andminerals inreproduction.JDairySci72:784–804.JangchudK,BunnagN.2001.EffectofsoakingtimeandcookingtimeonqualitiesofredKidneybeanflour.KasetsartJ,35:409–15.Karthiayani A, Varadharaju N, Siddharth M. 2013. Textural properties of banana (musaacuminata) stored undermodified atmosphere conditions using diffusion channel. J Agri EngBiotech1:17-22.KaurD,Kapoor̂AC.1990.Someantinutritionalfactorsinricebean(Vignaumbellata):effectsofdomesticprocessingandcookingmethods.FoodChem37:171–9.KuoTM,VanmiddlesworthJF,WolfWJ.1988.Contentofraffinoseoligosaccharidesandsucroseinvariousplantseeds.JAgriFoodChem36:32–6.

83

Lamberts L, Bie ED, Derycke V, Veraverbeke WS, De Man W, Delcour JA. 2006. Effect ofprocessingconditionsoncolorchangeofbrownandmilledparboiledrice.CerealChem83:80–85.LangkildeAM,ChampM,AnderssonH.2002.Effectsofhigh-resistant-starchbananaflour(RS2)on in vitro fermentation and the small-bowel excretion of energy, nutrients, and sterols: anileostomystudy.AmJClinNutr75:104–111.LarteyA,ManuA,BrownKH,PeersonJM,DeweyKG.1999.Arandomized,community-basedtrial of the effects of improved, centrally processed complementary foods on growth andmicronutrientstatusofGhanaianinfantsfrom6to12monthsofage.AmJClinNutr70:391–404.Lee HJ, Byun SM, Kim HS. 1988. Studies on the dietary fiber of brown rice andmilled rice.KoreanJFoodSciTech20:576–84.LittleAC.1975.Aresearchnote:Offonatangent.JFoodSci40:410–11.MasonWR,HoseneyRC.1986.Factorsaffectingtheviscosityofextrusion-cookedwheatstarch.Cerealchem63:436-41.Meilgaard M, Civille GV, Carr BT. 1999. Affective tests: consumer tests and in-house panelacceptancetestsIn:Sensoryevaluationtechniques,3rded.NewYork:CRCPress.p242–3.MenezesEW,TadiniCC,TribessTB,ZuletaA,BinaghiJ,PakN.2011.Chemicalcompositionandnutritionalvalueofunripebananaflour(Musaacuminata,var.Nanicão).PlantFoodHumNutr66:231–7.MohapatraD,MishraS,SutarN.2010.Bananaanditsby-productutilization:anoverview.JSciIndRes69:323–9.MoongngarmA,MoontreeT,DeedpinrumP,PadtongK.2014.FunctionalpropertiesofbrownriceflourasaffectedbyGermination.APCBEEProcedia8:41–6.Mulimani VH. 1995. Enzymic hydrolysis of raffinose and stachyose in soymilk by alpha-galactosidasefromGibberellafujikuroi.BiochemMolBiolInt36:897–905.

MurthyBS,HiremathJP,DarshanGB,RoopaOM.2016.QualityAttributesOfComplementaryFoodPreparedUsingMaltedWheatAndFoxtailMillet(Setariaitalica)FloursWithMilkSolids.IntJSciEnvironTech5:765–73.MussattoSI,MancilhaIM.2007.Non-digestibleoligosaccharides:areview.CarbohydPolym68:587–97.

84

Nagai TO, Staatz JM, Bernsten RH, Sakyi-Dawson EO, Annor GA. 2012. Locally ProcessedRoasted-Maize-based Weaning Foods Fortified with Legumes: Factors Affecting TheirAvailabilityandCompetitivenessinAccra,Ghana.AfrJFoodAgriNutrDev9:1927–44.NyombaireG,SiddiqM,DolanKD.2011.Physico-chemicalandsensoryqualityofextrudedlightredkidneybean(PhaseolusvulgarisL.)porridge.LWT-FoodSciTech44:1597–602.Obatolu VA, Cole AH, Maziya-Dixon BB. 2000. Nutritional quality of complementary foodpreparedfromunmaltedandmaltedmaizefortifiedwithcowpeausingextrusioncooking.JSciFoodAgri80:646–50.OjokohAO, Fagbemi AO. 2016. Effects of Fermentation and Extrusion on the Proximate andOrganolepticPropertiesofCowpea-plantainFlourBlends.BritMicrobiolResJ13:1.OkakaJC,PotterNN.1977.Functionalpropertiesofcowpea-wheatflourblendinbreadmaking.JFoodSci42:828–33.Oyeyink AT, Oyeyinka SA. 2016.Moringa oleifera as a food fortificant: Recent trends andprospects. J Saudi Soc Agri Sci. Available from: http://dx.doi.org/10.1016/j.jssas.2016.02.002.Accessed2016September27.

Pelto GH, Armar-Klemesu M. 2011. Balancing nurturance, cost and time: complementaryfeedinginAccra,Ghana.MaternChildNutr7:66–81.

PillayM, FungoR. 2016.Diversity of iron and zinc content in bananas fromeast and centralAfrica.HortScience51:320–324.ProthonF.2002.Combineddehydrationmethods-fromfresh fruit tohigh-quality ingredients.LundUniversity.Availablefrom:http://lup.lub.lu.se/record/465349.Accessed2016September27.Rakshit NJSK. 2011. Processing and Functional Properties of Banana Flour. Int Conf SustainCommdev27:41-46.RoberfroidM, Slavin J. 2000.Nondigestibleoligosaccharides. Crit Revs Food Sci andNutr 40:461–480.RuiX,BoyeIJ.2013.ProcessingofDryBeanFlourfractions.In:SiddiqMandUebersax,editors.DryBeansandPulsesProduction,ProcessingandNutrition.Ames,Iowa:JohnWiley&Sons,Inc.p205‒34.

85

SajilataMG,SinghalRS,KulkarniPR.2006.Resistantstarch–areview.ComprRevFoodSci5:1–17.ShanmugavelanP,KimSY,KimJB,KimHW,ChoSM,KimSN,KimHR.2013.Evaluationofsugarcontent and composition in commonly consumed Korean vegetables, fruits, cereals, seedplants,andleavesbyHPLC-ELSD.CarbohydRes380:112–7.SharmaA, YadavBS, Ritika. 2008. Resistant starch: physiological roles and food applications.FoodRevInt24:193–234.Shimelis EA, Rakshit SK. 2007. Effect of processing on antinutrients and in vitro proteindigestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem103:161–172.SiddiqM,NyombaireG,DolanKD,MatellaNJ,HarteJB.2006.ProcessingofSugar-CoatedRedKidney Beans (Phaseolus vulgaris L): Fate of oligosaccharides and phytohemagglutinin (PHA),andEvaluationofSensoryQuality.JFoodSci71:521-26.SiddiqM,RaviR,HarteJB,Dolan,KD.2010.Physicalandfunctionalcharacteristicsofselecteddrybean(PhaseolusvulgarisL.)flours.LWT-FoodSciandTech43:232–7.Temba MC, Njobeh PB, Adebo OA, Olugbile AO, Kayitesi E. 2016. The role of compositingcerealswithlegumestoalleviateproteinenergymalnutritioninAfrica.IntlJofFoodSciTech.doi:10.1111/ijfs.13035.Thipayarat A. 2007. Quality and physiochemical properties of banana paste under vacuumdehydration.IntlJofFoodEng.doi:10.2202/1556-3758.1112.TomlinsKI,ManfulJT,LarwerP,HammondL.2005.UrbanconsumerpreferencesandsensoryevaluationoflocallyproducedandimportedriceinWestAfrica.FoodQualPrefer16:79–89.Topping DL, Clifton PM. 2001. Short-chain fatty acids and human colonic function: roles ofresistantstarchandnonstarchpolysaccharides.PhysiolRev81:1031–64.ToshSM,YadaS.2010.Dietaryfibresinpulseseedsandfractions:Characterization,functionalattributes,andapplications.FoodResInt43:450–60.Tovar J, Bjoerck IM, AspNG. 1990. Analytical and nutritional implications of limited enzymicavailabilityofstarchincookedredkidneybeans.JAgriFoodChem38:488–93.TwumLA,KottohID,Torby-TettehW,BuckmanES,Adu-GyamfiA.2015.PhysicochemicalandElementalAnalysesofBananaCompositeFlourforInfants.BritJApplSciTech6:276.

86

[UNICEF/WHO]WorldBankGroupjointchildmalnutritionestimates.2015.Levelsandtrendsinchildmalnutrition,2015edition.Availablefrom:http://www.who.int/nutgrowthdb/jme_brochure2015.pdf?ua=1.Accessed2016September24.UNICEF.2015.CommittingtoChildSurvival:APromiseRenewedProgressReport2015.Keyfindingsofthe2015edition.Availablefrom:http://www.apromiserenewed.org/wp-content/uploads/2015/09/APR_2015_8_Sep_15.pdf.Accessed2016September19.USDA Food Composition Databases: National Nutrient Database for Standard ReferenceRelease28slightlyrevisedMay,2016.Availablefrom:https://ndb.nal.usda.gov/ndb/search/list.Accessed2016September24.Vandenplas Y,DeGreef E,Devreker T,Veereman-WautersG,HauserB. 2013. Probiotics andprebioticsininfantsandchildren.CurrInfectDisRep15:251–62.Vega-MercadoH,Góngora-NietoMM,Barbosa-CánovasGV.2001.Advancesindehydrationoffoods.JFoodEng49:271–89.VollmerS,HarttgenK,SubramanyamAM,FinlayJ,KlasenS,SubramanianSV.2014.Associationbetween economic growth and early childhood undernutrition: evidence from 121Demographic and Health Surveys from 36 low-income and middle-income countries. LancetGlobHealth2:225-34.Wang J, Li YZ, Chen RR, Bao JY, Yang GM. 2007. Comparison of volatiles of banana powderdehydratedbyvacuumbeltdrying,freeze-dryingandair-drying.FoodChem104:1516–21.Wang N, Hatcher DW, Tyler RT, Toews R, Gawalko EJ. 2010. Effect of cooking on thecompositionofbeans(PhaseolusvulgarisL.)andchickpeas(CicerarietinumL.).FoodResInt43:589–94.Wani IA,SogiDS,WaniAA,GillBS.2013.Physico-chemicalandfunctionalpropertiesoffloursfromIndiankidneybean(PhaseolusvulgarisL.)cultivars.LWT-FoodSciTech,53:278–84.Watson S, Gong YY, Routledge M. 2015. Interventions Targeting Child Undernutrition inDevelopingCountriesMayBeUnderminedbyDietaryExposuretoAflatoxin.CritRevFoodSciNutrdoi:10.1080/10408398.2015.1040869.WCARO,2011,UNICEFannualReportforGhana.Availablefrom:http://www.unicef.org/ghana/gh_resources_2011Annual_Report.pdf.Accessed2016September24.

87

WelchM, Graham D. 2012. Breeding formicronutrients in staple food crops from a humannutritionperspective.JExpBot55:353-64.[WHO/FAO]WorldHealthOrganization and Food andAgricultureOrganization of theUnitedNations.2004.Vitaminandmineralrequirements inhumannutrition:reportofa jointexpertconsultation,2004,2ndedition.WHOHQ/AFRO.2013.Maternal,infantandyoungchildnutritioninEastandSouthernAfricancountries: moving to national implementation. Report of a World Health Organizationworkshop.Entebbe,Uganda,26–28November2013.Geneva:WorldHealthOrganization;2014.

[WHO] World Health Organization. 1998. Complementary feeding of young children indevelopingcountries:AReviewofCurrentScientificKnowledge:Geneva.

[WHO] World Health Organization. 2015. Guideline: Sugars intake for adults and children,Geneva.

[WHO]WorldHealthOrganization.2016.Guideline:Daily ironsupplementationin infantsandchildren,2016,Geneva.WooKS,SeibPA,2002.Cross-linkedresistantstarch:preparationandpropertiesCerealChem79:819–825.Zakpaa HD, Mak-Mensah EE, Adubofour J. 2010. Production and characterization of flourproducedfromripe“apem”plantain(MusasapientumL.var.paradisiacal;Frenchhorn)growninGhana.JAgriBiotechnolSustainDev2:92.