13
Revision 1.0 Development Board EPC9148 Quick Start Guide 48 V Three-level Synchronous Buck Converter, Using EPC2053

Development Board EPC9148 Quick Start Guide

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Revision 1.0

Development Board EPC9148Quick Start Guide 48 V Three-level Synchronous Buck Converter, Using EPC2053

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 2

DESCRIPTION The EPC9148 demonstration board is a 60 V maximum input voltage, 12.5 A maximum output current, 19 V output voltage, ultra-thin three-level synchronous buck converter with only a 3.5 mm component height. It features the 40 V EPC2055 and the 100 V EPC2053 and EPC2038 GaN FETs. The purpose of this demonstration board is to simplify the evaluation of GaN FET-based multi-level synchronous buck converter. For more information on the GaN-based multilevel topology please see How2AppNote 015: How to Design an Ultra-thin, Highly Efficient, Multilevel DC-to-DC Converter.

A simplified block diagram of the EPC9148 development board is shown in Figure 1. It contains one EPC2053 for Q1, three EPC2055 for Q2-Q4 in the power stage, and three EPC2038 GaN FETs for the synchronous bootstrap gate drive circuits with the uPI Semiconductor uP1966E gate drivers. The board also includes on-board housekeeping power supply, digital controller, current and voltage sensing, and output filter. Kelvin sensing test points of the input and output voltages are provided for accurate efficiency measurement.

For more information on EPC2055, EPC2053 and EPC2038, please refer to the datasheet available from EPC at epc-co.com. The datasheet should be read in conjunction with this quick start guide.

Table 1: Performance Summary (TA = 25°C) EPC9148 Symbol Parameter Conditions Min Typ Max Units

VIN Input Voltage Range (1) 44 48 60 V

VOUT Output Voltage (2) 19 V

IOUT Output Current (3) 12.5 A

fSW Switching frequency 400 kHz

Peak efficiency 48 VIN, 8-10 A IOUT, 400 LFM 97.9 %

Full load efficiency 48 VIN, 12.5 A IOUT, 400 LFM 97.8 %

(1) Maximum input voltage depends on inductive loading, maximum drain-source voltage must be kept under 32 V and 80 V for EPC2055 and EPC2053 respectively. Minimum input voltage depends on the output voltage. When the output voltage is lower, it can operate from a lower supply voltage.

(2) Output voltage can be programmed to be 5-20 V, contact EPC for more info.

(3) Maximum current depends on die temperature – actual maximum current is affected by switching frequency, voltage, thermal cooling, as well as the saturation current of the inductor.

Top view EPC9148 development board

Figure 1: Block diagram of the EPC9148 demonstration board

Boot 1

PWM1 G1

Q1

Q2

CFLY CIN

LOUTQ3

Q4

Leve

l shif

t

Boot 2

PWM2 G2

Leve

l shif

t

Syncboot

Boot 3

PWM4

Synchronous bootstrap(sync boot)

VCC

GND

GN

VBoot(N) VBoot(N-1)

G3

G4

PWM3

Leve

l shif

t

Syncboot

Syncboot

HV PSU

3V3 for digitalcontroller andcurrent ampli�er

5 V for gate drivers

VIN

VOUT

GND

COUT

PWM1

PWM2

PWM3

PWM4

VIN_sense

VOUT_sense

VCFLY_sense

IOUT_sense

Digitalcontroller

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 3

VIN Supply(Note Polarity)

VIN Supply(Note Polarity)

Input voltagemeasurement(HIGH VOLTAGE!)

GND probing

Switch-node probing

Output voltagemeasurement

DC Load

DC Load

V

+

+

_

_

V

60 VINmax

60 VINmax

QUICK START PROCEDURE Demonstration board EPC9148 measures 51 mm x 40 mm x 5 mm (total) and is easy to set up for evaluation. Refer to Figures 2-4 and follow the procedure below for proper connect and measurement setup:

1. With power off, connect the input power supply to VIN and GND as shown in Figure 2 from top side or as in Figure 3 from bottom side.

2. With power off, connect the load to VOUT and GND as in Figure 2 from top side or as in Figure 3 from bottom side.

3. Making sure the initial input supply voltage is 0 V, turn on the power and increase the voltage to the required value (do not exceed the absolute maximum voltage 60 V). Output voltage regulation begins at 44 V input voltage or lower for lower output voltage. Probe switching node to see switching operation as shown in Figure 4.

4. Once operational, adjust the load within the operating range and observe the output switching behavior, efficiency and other parameters as in Figure 4.

5. For shutdown, please follow the above steps in reverse.

Figure 2: Power connection from top side

Figure 4: Measurement connection

Figure 3: Power connection from bottom side

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 4

CONTROLLERThe EPC9148 features a Microchip Technology dsPIC33CK32MP102 Digital Signal Controller (DSC). This 100 MHz single core device is equipped with dedicated peripheral modules for Switched-Mode Power Supply (SMPS) applications, such as a feature-rich 4-channel (8x output), 250 ps resolution pulse-width modulation (PWM) logic, three 3.5 Msps Analog-To-Digital Converters (ADC), three 15 ns propagation delay analog comparators with integrated Digital-To-Analog Converters (DAC) supporting ramp signal generation, three operational amplifiers as well as Digital Signal Processing (DSP) core with tightly coupled data paths for high-performance real-time control applications.

The dsPIC33CK device is used to drive and control the converter in a fully digital fashion where the feedback loops are implemented and executed in software. There are three software control loops: a) average current loop; b) output voltage loop and c) flying capacitor voltage loop.

Average current mode control (ACMC) is implemented for output voltage regulation. The converter is controlled by the outer voltage loop providing a reference to the inner average current loop as shown in Figure 6. The inner current loop is adjusted to average cross-over frequencies of 8 kHz. To balance the current reference perturbation of the inner current loop, the outer voltage loop has been adjusted to an average cross-over frequency of 2 kHz, which determines the overall response time of the converter.

Flying capacitor voltage is regulated to ½ VIN using another inde-pendent control loop and the loop cross-over frequency is set to 1 kHz as shown in Figure 7.

THERMAL CONSIDERATIONSThe EPC9148 is intended for bench evaluation with low ambient temperature and convection cooling. The addition of heatsinking and forced air cooling can significantly increase the current rating of these devices, but care must be taken to not exceed the absolute maximum die temperature of 150°C. The EPC9148 board is designed with three threading mounting posts that can be use to easily attach a heat-spreader/heatsink as shown in Figure 8. It only requires a thermal interface material (TIM), a custom shape heat-spreader/heatsink, a thin insulation layer for the components with exposed conductors such as capacitors and resistors and screws. For more information about how to attach a heatsink, the EPC website offers: “AN012 How to Get More Power Out of a High-Density eGaN®-Based Converter with a Heatsink.”

Figure 8: Heatsink attachment

Figure 7. Block diagram of the flying capacitor voltage controller with duty cycle adjust output.

ADC

Δd2

D1,D2IREF

VREF

+

+

_

_

VOUTADC

PWM CurrentSense

IOUTGi(z)CompensatorΣ

Gv(z)CompensatorΣ

Gp(s)Plant

VoltageDivider

ADC

Δd2

VC_FLY

+ _

VIN/2ADC PWM

Gvc(z)CompensatorΣ Gpc(s)

PlantVoltageDivider

VoltageDivider

Figure 6. Block diagram of the average current mode controller (ACMC) with flying capacitor voltage adjust duty cycle control input.

Heatsink

Heatsink drawing

Three mounting screws that gothrough the heatsink and thethreaded mounting posts

26.30

A

5.20

6.54

9.80

5.06

B B

A A

B

4.70

Unit: mm

8.40

2.00

3.80

4.80

2.50

2.50

90°

2.50

32.7

0

19.0

0

6.50

16.0

0

3.507.

342.

605.

76

9.40 9.00

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 5

Figure 9: Switch-node waveform at 48 V input to 19 V, 12.5 A output

Figure 10: Total system efficiency as a function of the output current at 48 V input to 19 V output

Figure 11: Thermal image of the EPC9148 at 48 V input to 19 V, 12.5 A output with 800 LFM forced air

MEASUREMENT CONSIDERATIONS When measuring the switch-node waveform with high-frequency content, care must be taken to provide a high-fidelity measurement. It is recommended to avoid long ground connection and minimize the measurement loop.

NOTE: The switch-node probing indicated are just for sanity check, and may not be optimal for observing the switching transients. For accurate transient measurement, please use EPC9093, the development board for EPC2053. For information about measurement techniques, the EPC website offers: “AN023 Accurately Measuring High Speed GaN Transistors” and the How to GaN educational video series, including: HTG09 Design Basics - Measurement.

800 kHz1 µs/div6 V/div

99

98

97

96

95

94

93

921 2 3

Output Current (A)

Tota

l Sys

tem

E�cie

ncy (

%)

4 5 6 7 8 9 10 11 12 13

Q1: 58.5°CQ4: 59°C

Q2: 61°CQ3: 65°C

L: 45 °C

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 6

DEVELOP YOUR OWN CONTROL PROGRAMThe EPC9148 board can be programmed through the programming header J1 and used to develop control for the three-level converter. A ribbon cable such as FFSD-04-D-06.00-01 is needed for connection to the programming kit. Development tools can be found at www.microchip.com/development-tools.

MPLAB ICD 3

Programming header J1PGD, PGC, N/AGND, 3V3, MCLR

J1

Ribboncable

Figure 12: Programming connection

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 7

Table 2: Bill of MaterialsItem Qty Reference Part Description Manufacturer Part Number

1 8 C1, C3, C4, C5, C6, C15, C17, C77 10 nF ±10% 50 V Ceramic Capacitor X7R 0402 Würth 8850122050672 1 C2 51 pF ±5% 50 V Ceramic Capacitor NP0 0402 Samsung CL05C510JB5NNNC3 6 C7, C13, C43, C44, C45, C69 1 µF ±20% 100 V Ceramic Capacitor X7S 0805 TDK C2012X7S2A105M125AE4 9 C8, C14, C16, C22, C25, C68, C70, C71, C72 0.1 µF ±10% 25 V Ceramic Capacitor X7R 0402 Yageo CC0402KRX7R8BB1045 1 C9 1 µF ±10% 25 V Ceramic Capacitor X7R 0603 Würth 8850122060766 1 C10 10 µF ±10% 16 V Ceramic Capacitor X5R 0603 Murata GRM188R61C106KAALD7 4 C11, C24, C36, C55 1 µF ±20% 10 V Ceramic Capacitor X5R 0402 Würth 8850121050128 1 C12 10 µF ±20% 10 V Ceramic Capacitor X5R 0402 Samsung CL05A106MP8NUB89 3 C23, C26, C28 22 nF ±10% 25 V Ceramic Capacitor X7R 0402 Würth 885012205052

10 1 C27 0.22 µF ±10% 25 V Ceramic Capacitor X7R 0402 TDK CGA2B3X7R1E224K050BB11 6 C34, C35, C46, C47, C67, C78 4.7 µF ±10% 100 V Ceramic Capacitor X7S 1210 TDK CGA6M3X7S2A475K200AB12 5 C39, C40, C41, C42, C73 0.22 µF ±10% 100 V Ceramic Capacitor X7S 0603 Taiyo Yuden HMK107C7224KAHTE13 6 C48, C49, C50, C51, C52, C53 2.2 µF ±10% 50 V Ceramic Capacitor X5R 0603 Murata GRM188R61H225KE11D14 1 C54 33 pF ±5% 50 V Ceramic Capacitor NP0 0402 Würth 88501200505815 2 C57, C58 100 µF 25 V Tantalum Polymer Capacitor 2917 Kemet T521X107M025ATE0316 8 C59, C60, C61,C62, C63, C64, C65, C66 22 µF ±20% 25 V Ceramic Capacitor X5R 0805 TDK C2012X5R1E226M125AC17 1 C76 2.2 µF ±20% 25 V Ceramic Capacitor X5R 0402 TDK C1005X5R1E225M050BC18 6 D1, D2, D3, D6, D8, D10 Diode Schottky 40 V 200 mA (DC) Diodes BAS40LP-7 19 3 D5, D7, D9 Zener Diode 5.1 V 250 mW ±6% Diodes BZT52C5 V1LP-720 1 J1 Connector Header Surface Mount 6 position 0.050 Würth 6213062102121 1 L1 68 µH Shielded Wirewound Inductor 540 mA 840 mΩ Würth 7440404268022 1 L3 2.4 µH Ferrite Inductor 15 A 1mΩ Würth 744376250402223 1 Q1 N-Channel 100 V 3.8 mΩ GaN FET EPC EPC205324 3 Q2, Q3, Q4 N-Channel 40 V 3.5 mΩ GaN FET EPC EPC205525 3 Q8, Q9, Q10 100 V Internal Gate Diode 3300 mΩ GaN FET EPC EPC203826 1 R1 15 kΩ ±0.1% 0.063 W, 1/16 W Chip Resistor 0402 Panasonic ERA-2AEB153X 27 1 R2 2 kΩ ±0.1% 0.063 W, 1/16 W Chip Resistor 0402 Yageo RT0402BRD072KL28 3 R3, R4, R5 39 kΩ ±0.1% 0.2 W, 1/5 W Chip Resistor 0603 Panasonic ERJ-PB3B3902V29 2 R6, R8 2 kΩ ±0.1% 0.1 W, 1/10 W Chip Resistor 0603 Panasonic ERA-3AEB202V 30 1 R7 2.2 kΩ ±0.1% 0.2 W, 1/5 W Chip Resistor 0603 Panasonic ERJ-PB3B2201 V31 1 R9 0 Ω Jumper 0.1 W, 1/10 W Chip Resistor 0603 Panasonic ERJ-3GEY0R00V32 4 R10, R11, R12, R14 15 kΩ ±0.5% 0.063 W, 1/16 W Chip Resistor 0402 Yageo RT0402DRE0715KL33 1 R13 1 kΩ ±5% 0.063 W, 1/16 W Chip Resistor 0402 Yageo RC0402JR-071KL34 1 R15 36 kΩ ±0.1% 0.2 W, 1/5 W Chip Resistor 0603 Panasonic ERJ-PB3B3602V35 1 R16 100 kΩ ±1% 0.063 W, 1/16 W Chip Resistor 0402 Yageo RT0402FRE07100KL36 1 R17 20 Ω ±1% 0.1 W, 1/10 W Chip Resistor 0402 Panasonic ERJ-2RKF20R0X37 1 R18 31.6 kΩ ±1% 0.063 W, 1/16 W Chip Resistor 0402 Panasonic RC0402FR-0731K6L38 1 R23 10 kΩ ±5% 0.063 W, 1/16 W Chip Resistor 0402 Yageo RC0402JR-0710KL39 4 R25, R54, R47, R48 0 Ω Jumper 0.1 W, 1/10 W Chip Resistor 0402 Panasonic ERJ-2GE0R00X40 7 R27, R28, R31, R32, R38, R39, R40 1 Ω ±1% 0.063 W, 1/16 W Chip Resistor 0402 Yageo RC0402FR-071RL41 3 R29, R33, R41 27 kΩ ±5% 0.1 W, 1/10 W Chip Resistor 0402 Panasonic ERJ-2GEJ273X42 3 R30, R37, R42 4.7 Ω ±1% 0.063 W, 1/16 W Chip Resistor 0402 Stackpole RMCF0402FT4R7043 2 R44, R45 50 Ω @ 100 mHz Ferrite Bead 1206 12A 1.6mΩ Murata BLM31SN500SH1L44 1 R46 1 mΩ ±5% 1 W Chip Resistor Wide 0805 Susumu KRL2012E-M-R001-J-T545 3 S2, S3, S5 Round Standoff Threaded M2x0.4 Steel 0.039 Würth 9774010243R46 4 TP1, TP2, TP3, TP4 PC Test Point Keystone 501547 1 U1 Current Sense Amplifier 1 Circuit SOT-23-6 Microchip MCP6C02T-100E/CHY

48 1 U2 dsPIC dsPIC™ 33CK Microcontroller IC 16-Bit 100 mHz 32KB (32K x 8) FLASH 28-UQFN (6x6) Microchip DSPIC33CK32MP102-I/2N

49 1 U4 Buck Switching Regulator IC Output 150 mA 10-VFDFN Exposed Pad Texas Instruments LM5165DRCR

50 1 U5 Linear Voltage Regulator IC 500 mA 6-WSON Texas Instruments TLV75533PDRVR51 3 U9, U10, U11 Dual-Channel Gate Driver for GaN FETs uPI uP1966E

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 8

Table 3. Optional Components

Item Qty Reference Part Description Manufacturer Part Number

1 1 C56 33 pF ±5% 50 V Ceramic Capacitor NP0 0402 Würth 885012005058

2 3 N/A Black-Oxide 18-8 Stainless Steel Phillips Flat Head Screws, M2 x 0.4 mm Thread, 5 mm McMaster-Carr 91698A201

3 1 N/A Ribbon Cable Samtec FFSD-04-D-06.00-01 4 1 N/A Thermal Pad t-global TGX

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 9

Figur

e 13:

EPC9

148 h

ouse

keep

ing po

wer s

upply

and c

ontro

ller s

chem

atic

15 K

R1 2 K

R2

10 n

F , 2

5 V

C1

39 K

R3 2 K

R6

10 n

F , 2

5 V

C3 Volta

ge s

ense

10 n

F , 2

5 V

C4

VCN

10 n

F , 2

5 V

C5

VCN

_SN

S

Pick

it/PS

-ID p

rogr

am h

eade

r

Prog

ram

min

g an

d Co

mm

unic

atio

ns

10 k

1 2

R23

Curr

ent s

ense1

26

4

5

3G

M1

GM

2

RM3

VO

UT

VRE

F

VIMVIP

VSS

VD

DU

1M

CP6C

02T

-100

E/CH

Y

51pF

, 50V

C2

39 K

R4 2.2

KR7

2 K

R839 K

R5

68 μ

H 5

40 m

A

L1

10 μ

F , 1

6 V

C10

1 μF

, 10

0 V

C7

10

Reg

Osc

3

HYS

Logic

SS

2

5

Gnd

Vin

Ilim

1 8

UVLO

RTEN

SW

47 9

FB6

Pgoo

d 1.223

V

U4

LM51

65D

RCR

1 μF

, 25

VC9

31.6

KR1

8

100K

R16

10 μ

F , 1

0 V

C12

1 μF

, 25

V C11

Hou

seke

epin

g po

wer

sup

ply

Vin

to 5

V5

V to

3.3

V

3V3

IN ENG

ND

OU

T

NC

NC

U5

TLV7

5533

PDR

VR

0.1

μF ,

25 V

C68

2.2

μF ,

25 V

C76

10 n

F, 50

VC7

7

ISN

S+

ISEN

SE

MCL

RVD

DRE

TPC

DPC

KN

/A

J1M

CLR

3V3

PGD

0 Ω

R9

1 K

R13

VOU

T

VOU

T_SN

S

VIN

_SN

S

VIN

VCP

VCP_

SNS

ISEN

SE3V

33V

3

3V3

MCL

R

3V3

VIN

PGC

0 Ω

R25

5VCC

5VCC

ISN

S+IS

NS-

0 Ω

R54

0.1

μF ,

25 V

C80.

1 μF

, 25

VC1

410

nF ,

25

VC6

0.1

μF ,

25 V

C16

RP46

/PW

M1H

/RB1

41

RP47

/PW

M1L

/RB1

52

/MCL

R3

OA

1OU

T/A

N0/

CMP1

A/IB

IAS0

/RA

04

OA

1IN

-/A

NA

1/RA

15

OA

1N+

/AN

9/RA

26

DA

COU

T/A

N3/

CMP1

C/RA

37

AN

4/CM

P3B/

IBIA

S3/R

A4

8

AVD

D9

AVSS

10

VDD

11

VSS

12

OSC

I/CLK

I/AN

5/RP

32/R

B013

OSC

O/C

LKO

/AN

6/RP

33/R

B114

OA

2OU

T/A

N1/

AN

7/A

NA

0/CM

P1D

/CM

P2D

/CM

P3D

/RP3

4/IN

T0/R

B215

PGD

2/O

A2I

N-/

AN

8/RP

35/R

B316

PGC2

/OA

2IN

+/R

P36/

RB4

17PG

D3/

RP37

/SD

A2/

RB5

18PG

C3/R

P38/

SCL2

/RB6

19TD

O/A

N2/

CMP3

A/R

P39/

RB7

20PG

D1/

AN

10/R

P40/

SCL1

/RB8

21PG

C1/A

N1

1/RP

41/S

DA

1/RB

922

VSS

23VD

D24

TMS/

RP42

/PW

M3H

/RB1

025

TCK/

RP43

/PW

M3L

/RB1

126

TDI/R

P44/

PWM

2H/R

B12

27RP

45/P

WM

2L/R

B13

28U

2

DSP

IC33

CK32

MP1

02-I/

2N

MCL

R

3V3

3V3

3V3

PWM

Q1

PWM

Q4

OA

IN-

OA

IN+

VIN

_SN

S

ISEN

SEPGD

PGC

VOU

T_SN

S

PWM

Q2

PWM

Q3

0 Ω

R19

DN

P

0 Ω

R20

DN

P

VCN

_SN

S

VCP_

SNS

3V3

3V3

3V3

3V3

10 n

F , 2

5 V

C15

3V3

10 n

F , 2

5 V

C17

3V3

15 K

R12

15 K

R14

15 K

R10

15 K

R11

VCP_

SNS

VCN

_SN

SO

AIN

-

OA

IN+

OA

1OU

T

OA

1OU

T

Op-

amp

Dec

oupl

ing

Caps

for t

he P

IC

20 Ω

R17

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 10

Figur

e 14:

EPC9

148 g

ate d

river

schem

atic

U9

uP19

66A

U10

uP19

66A

U11

uP19

66A

GN

D1 Ω

R40

G4

1 Ω

R38

G3

1 μF

, 25

VC3

6

BTST

R3

GN

D

GN

D

1 Ω

R32

G2

BTST

R2

GN

D

1 Ω

R28

1 μF

, 25

VC2

4

GN

D

22 n

F , 2

5 V

C23

100

V 2

.8 Ω

Q8

EPC2

038

5 VC

C

D5

BZT5

2C5

V1LP

-7

27 K

R29

4.7

ΩR3

0

G3O

N

Sync

hron

ous

boot

stra

p

Gat

e dr

iver

cir

cuit

G4O

N

1 Ω

R27

0.1

μF ,

25 V

C22

22 n

F , 2

5 V

C26

100

V 2

.8 Ω

Q9

EPC2

038

D7

BZT5

2C5

V1LP

-7

27 K

R33

4.7

ΩR3

7

G3O

N

1 Ω

R31

0.1

μF ,

25 V

C25

BTST

R2 SW

SW

5 VC

C

22 n

F , 2

5 V

C28

100

V 2

.8 Ω

Q10

EPC2

038

D9

BZT5

2C5

V1LP

-7

27 K

R41

4.7

ΩR4

2

1 Ω

R39

0.22

μF ,

25

VC2

7

BTST

R3VC

N

5 VC

C

1 μF

, 25

VC5

5

GN

D

D6

D8

D10

0.1

μF ,

25 V

C72

GN

D5 VC

C

0.1

μF ,

25 V

C71

0.1

μF ,

25 V

C70

GN

D

D1

BTST

R2

D2 D

3

5 VC

C

VCP

BTST

R1

SW

BTST

R2

G2O

N

BTST

R3 VCN

BTST

R3

G4O

N

VCN

PWM

Q1

BTST

R1

G1

VCP

5 VC

C

G2O

N

PWM

Q2

5 VC

C

PWM

Q3

PWM

Q4

5 VC

C

AK

AK

A K

AK

AK AK AK

A K A K

GN

D

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 11

Figur

e 15:

EPC9

148 p

ower

stage

sche

mat

ic

GN

D

VIN

2.2

μF ,

50 V

C50

2.2

μF ,

50 V

C48

2.2

μF ,

50 V

C53

2.2

μF ,

50 V

C51

2.2

μF ,

50 V

C49

2.2

μF ,

50 V

C52

G4

G3

G2

G1

Pow

er s

tage

EPC2

055

Q2 EP

C205

5

Q3

EPC2

055

Q4

VOU

T

0 Ω

R47

33 p

F , 5

0 V

C56

DN

P

0 Ω

R48

12

50 Ω

@ 1

00 M

Hz

R45

33 p

F , 50

V

C54 G

ND

12

50 Ω

@ 1

00 M

Hz

R44

22 μ

F , 2

5 V

C62

1 μF

, 10

0 V

C43

1 μF

, 10

0 V

C44

1 μF

, 10

0 V

C45

220

nF ,

100

VC3

9

GN

D

220

nF ,

100

VC4

0

GN

D

220

nF ,

100

VC4

1

GN

D

220

nF ,

100

VC4

2

GN

D

GN

D

4.7

μF ,

100

VC4

64.

7 μF

, 10

0 V

C47

22 μ

F , 2

5 V

C63

22 μ

F , 2

5 V

C61

22 μ

F , 2

5 V

C59

22 μ

F , 2

5 V

C60

22 μ

F , 2

5 V

C66

22 μ

F , 2

5 V

C65

22 μ

F , 2

5 V

C64

FD1

PCB

Fidu

cial

FD2

FD3

1 μF

, 10

0 V

C69

220

nF ,

100

VC7

3

GN

D

36 K

R15*

* St

art-

up p

aten

t pen

ding

4.7

μF ,

100

VC3

44.

7 μF

, 10

0 V

C35

4.7

μF ,

100

VC6

74.

7 μF

, 10

0 V

C78

SMD

pro

be lo

op1

TP2

SMD

pro

be lo

op

1

TP1

2.4

μHL3

VIN

VIN

SW

ISNS+

ISNS-

Q1

EPC2

053

S2 9774

0102

43R

S5 9774

0102

43R

GN

D

Hea

tspr

eade

r Sta

ndo�

s

S3 9774

0102

43R

1 μF

, 10

0 V

C13

1 m

Ω

R46

VCN

VCN

VCN

VCP

VCP

VCP

VCN

VCN

VCN

VCP

VCP

VCP

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

VIN

VIN

VIN

VIN

VIN

VIN

VIN

VIN

VIN

VIN

VIN

VIN

VIN

VIN

Flyi

ng c

apac

itor

s

Inpu

t cap

acit

ors

SMD

pro

be lo

op

1

TP3

SMD

pro

be lo

op1

TP4

+10

0 μF

, 25

VC5

7+

100

μF, 2

5 V

C58

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

GN

D

VOU

T

Out

put c

apac

itor

sVCN

VCP

QUICK START GUIDE EPC9148

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 12

EPC would like to acknowledge Microchip Technology Inc. (www.microchip.com) for their support of this project.

Microchip Technology Incorporated is a leading provider of smart, connected and secure embedded control solutions. Its easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs, which reduce risk while lowering total system cost and time to market. The company’s solutions serve customers across the industrial, automotive, consumer, aerospace and defense, communications and computing markets.

The EPC9148 system features the dsPIC33CK32MP102 16-Bit Digital Signal Controller with High-Speed ADC, Op Amps, Comparators and High-Resolution PWM. Learn more at www.microchip.com.

EPC would like to acknowledge Würth Elektronik (www.we-online.com) for their support of this project.

Würth Elektronik is a premier manufacturer of electronic and electromechanical passive components. EPC has partnered up with WE for a variety of passive component requirements due to the performance, quality and range of products available. The EPC9148 development board features various WE product lines including power inductors, capacitors, and connectors.

One of the highlights on the board is a custom super-thin power inductor which helps to enable the power density of this design. Also featured on the board are the WE-LQS SMT power inductors, the WCAP-CSGP MLCC capacitors, and WR-PHD 1.27 mm SMT Dual Pin Header connectors. Learn more at www.we-online.com.

Demonstration Board NotificationThe EPC9148 board is intended for product evaluation purposes only. It is not intended for commercial use nor is it FCC approved for resale. Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Quick Start Guide. Contact an authorized EPC representative with any questions. This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. As an evaluation tool, this board is not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations. As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that are not RoHS compliant. Efficient Power Conversion Corpora-tion (EPC) makes no guarantee that the purchased board is 100% RoHS compliant.The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this Quick Start Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Disclaimer: EPC reserves the right at any time, without notice, to make changes to any products described herein to improve reliability, function, or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, or other intellectual property whatsoever, nor the rights of others.

EPC Products are distributed through Digi-Key.www.digikey.com

For More Information:

Please contact [email protected] your local sales representative

Visit our website: epc-co.com

Sign-up to receive EPC updates atbit.ly/EPCupdates or text “EPC” to 22828