22
CYPRUS2016 P.M. NIGAY 1 , C. WHITE 2 ,W. SOBOYEJO 3 , A. NZIHOU 1 Development of composite and hybrid materials from gasification biochar and clay 1 Mines Albi, RAPSODEE Research Center, CNRS, France 2 Princeton University, Civil and Environmental Engineering, USA 3 Princeton University, Mechanical and Aerospace Engineering, USA 4th International Conference on Sustainable Solid Waste ManagementLimassol, CYPRUS, 2325 June 2016

Development of composite and hybrid materials from

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Development of composite and hybrid materials from

CYPRUS2016

P.M. NIGAY1, C. WHITE 2,W. SOBOYEJO 3, A. NZIHOU1

Development of composite and hybrid materials from

gasification biochar and clay

1 Mines Albi, RAPSODEE Research Center, CNRS, France2 Princeton University, Civil and Environmental Engineering, USA3 Princeton University, Mechanical and Aerospace Engineering, USA

4th International Conference on Sustainable Solid Waste Management‐ Limassol, CYPRUS, 23‐25 June 2016

Page 2: Development of composite and hybrid materials from

CYPRUS20162

OUTLINE

I. Introduction 

II. Biochar

III. Clay

IV. Applications

V. Conclusions

Page 3: Development of composite and hybrid materials from

CYPRUS20163

Carbonaceous materials including carbon black, carbon fibers, carbon nanotubes (CNTs) and graphenes are of great interest

Carbonaceous materials can derive from  renewable resources such as Biomass and Biogenic waste

New momentum for clay energy based materials, clay  bricks, clay geopolymer mortars, clay sorbents, clay biopolymer fillers

Raw natural clay from deposite sites or processed  by chemical/thermal/mechanical treatment with additives

Engineered biochars / clays composites for various applications

Widespread utilization of Carbonaceous and Clay materials

I. Introduction

Hybrid: mixture of two or more materials to obtain a material with new propertiesComposite: mixture of carbon materials with inorganic or organic matter to produce a new material with structural and functional properties

Page 4: Development of composite and hybrid materials from

CYPRUS20164

OUTLINE

I. Introduction 

II. Biochar

III. Clay

IV. Applications

V. Conclusions

Page 5: Development of composite and hybrid materials from

CYPRUS20165

Thermochemical conversion – range of applicationsB I O G R E E N ® i n t r o d u c t i o n

conversion most of the feedstock into

methane-rich syngas which can be

valorized into energy by using it CHP

unit or steam boiler. Yield of syngas

ranges from 50 and 95%

HT pyrolysis & gasification

SYNGASSYNGAS

a mild form of pyrolysis dedicated only

for biomass conversion. Torrefaction

leads to obtaining dry product with

higher energy content. Main product is

biocoal - yield between 70 and 80%

Torrefaction

BIOCOALBIOCOAL

enables chemical conversion of

products like biomass, plastic, or rubber

into a solid, liquid or gas phase. Enables

valorization to biooil and biochar. Yield

of biooil ranges from 30 to 60%.

Yield of biochar 25 to 35%

MT pyrolysis

BIOOIL, BIOCHARBIOOIL, BIOCHAR

600 ‐ 900°C300 ‐ 550°C250 ‐ 280°C 

www.etia.fr

100‐ 150°C 

Drying

A dehydration with the release of light

hydrocarbons

GASGAS

CO+H2

II. Biochar - Biochar production

Page 6: Development of composite and hybrid materials from

CYPRUS20166

By-product for plant extract Wood sawdust Crop residue Green waste

BIOCHAR PROPERTIES DEPENDS ON BIOMASS AND OPERATING CONDITIONS

Biochar is biomass dependant !B I O G R E E N ® B i o m a s s c o n v e r s i o n I. Biochar

Page 7: Development of composite and hybrid materials from

CYPRUS20167

Energy Fuel cellsphotovoltaicSupercapacitors

ChemistryCatalystAdsorbentWater treatment

Agronomy Water retentionPlant nutrientsSoil conditioner

EnvironmentCarbon sequestrationCO2 StorageSensors

Reinforcing materialsin polymer composites.Biocomposites

Other usesBiomedical use Pharmaceutical Gas storage

II. Biochars

Page 8: Development of composite and hybrid materials from

CYPRUS20168

Van Krevelen plot for biocharStructure Various material forms within the black carbon defined

by the range in the oxygen to carbon (O/C) ratio :

Exposition of Carbon atoms

MgMg

KKCaCa

NiNi

FeFe

ZnZn

NaNaPbPb

AsAs

Mass loss,

Structure of chars vs temperatures towards graphitic structures

Carbonaceous matrix: Aromatic units /O within heterocyclic and phenolic group /Aromatic units cross-linked by ether and olefine

II. Biochar

Biochar stability

Biomass (O/C > 0.6)

Biochar (0.4 < O/C < 0.6)

Charcoal (0.2 < O/C < 0.4)

Soot (0 < O/C < 0.2)

Graphite (O/C = 0)Incr

easi

ng O

/C ra

tio

T

150°C

1000°C

H/C 

Page 9: Development of composite and hybrid materials from

CYPRUS2016

Carbon structure of the raw biochar

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800 2000

Normalized

 intensity

Raman shift (cm‐1)

• Raw biochar complex carbon containing: 

‐ Ordered structures 

‐ Disordered structures

• turbostratic carbon:

‐ Diffuse SAED

‐ No organization of the graphene layers

HRTEM

Raman spectrum

II. Biochar

Page 10: Development of composite and hybrid materials from

CYPRUS201610

OUTLINE

I. Introduction 

II. Biochar

III. Clay

IV. Applications

V. Conclusions

Page 11: Development of composite and hybrid materials from

CYPRUS201611

KAl3Si3O10(OH)2 → KAl3Si3O11 + H2O

 

CaCO3 + SiO2  → CaSiO3 + CO2 

Dehydroxylation of clay minerals at 500°C:

Degradation of calcium carbonates at 700°C:

Combination as stable silicates up to 1200°C

Stability and structure

Stacking of alumina and silica sheets

III. Clay

Page 12: Development of composite and hybrid materials from

CYPRUS201612

OUTLINE

I. Introduction 

II. Biochar

III. Clay

IV. Applications

V. Conclusions

Page 13: Development of composite and hybrid materials from

CYPRUS201613

0

10

20

30

40

50

0 200 400 600 800 1000 1200

Poro

sity

(%)

Temperature (°C)

Clay + 15% Biomass (N2)Clay + 10% Biomass (N2)Clay + 5% Biomass (N2)Clay (N2)

[*] Calculation of the porosity via experimentalcoupling between TGA and TMA

0

10

20

30

40

50

0 200 400 600 800 1000 1200Po

rosit

y(%

)Temperature (°C)

Clay + 15% Biochar (N2)Clay + 10% Biochar (N2)Clay + 5% Biochar (N2)Clay (N2)

Control of the porosity rate and morphology of the composites

IV. Applications

Release of H2O and CO2

Page 14: Development of composite and hybrid materials from

CYPRUS201614

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Poro

sity

(%)

Temperature (°C)

Clay + 15% Biochar (Air)Clay + 10% Biochar (Air)Clay + 5% Biochar (Air)0

10

20

30

40

50

0 200 400 600 800 1000 1200

Poro

sity

(%)

Temperature (°C)

Clay + 15% Biochar (N2)Clay + 10% Biochar (N2)Clay + 5% Biochar (N2)Clay (N2)

Control of the porosity rate and morphology of the composites

Page 15: Development of composite and hybrid materials from

CYPRUS201615

0

10

20

30

40

50

0 5 10 15 20

Spec

ific

surfa

ce a

rea

(m²/

g)

Biochar rate (%)

Clay + Biochar

Clay-Biochar composites

Filters for effluents treatment Sensors for pollutants removal

IV. Applications

SensorInlet gas Outlet gas

Inlet gas

Outlet gas

Page 16: Development of composite and hybrid materials from

CYPRUS201616

Sensors

0

20

40

60

80

Claymaterials

Clay + 5%Biomass

Clay + 5%Biochar

Clay + 10%Biomass

Clay + 10%Biochar

Clay + 15%Biomass

Clay + 15%Biochar

Colle

ctio

n of

Cd

(%)

Collection of Cadmium into the composite[*]

[*] Concentration of cadmium using ICP

Page 17: Development of composite and hybrid materials from

CYPRUS2016

Intermittent nature of the renewable energy sources

Exclusive production of energy with sun or wind ...

Grading of the excess by means of a storage

Storage by sensible heat (Q) of materials

Q=m.cp.∆T

Require materials with a high thermal capacity (cp)

Addition of organics and firing under inert atmosphere (N2)

Conservation of organics with a high cp in inorganic structure 

IV. Applications – Energy storage

Page 18: Development of composite and hybrid materials from

CYPRUS201618

1,0

1,1

1,2

1,3

1,4

1,5

0 5 10 15 20

Ther

mal

cap

acity

(kJ/

kg.K

)

Addition rate (%)

Clay + Biochar (300°C)Clay + Biomass (300°C)

Improvement of thermal capacity with biochar addition of 15% Easy production and handling in comparison to rivals (molten salts)

[*] Thermal properties of the materials fired to 950°C using hot disk method at 300°C

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

Ther

mal

cap

acity

(kJ/

kg.K

) Ceramics

Concrete

Clay/Biochar

Molten Salts

Clay-Biochar compositesIV. Applications

Materials for energy storage

Page 19: Development of composite and hybrid materials from

CYPRUS201619

OUTLINE

I. Introduction 

II. Biochar

III. Clay

IV. Applications

V. Conclusions

Page 20: Development of composite and hybrid materials from

CYPRUS201620

Advantages using carbon additives Improvement of the reactivity Increase of the functionnality

Motivation for further studiesProduction of advanced composites from biochar and clay : Sensors Catalysts Materials for insulation Materials for energy storage Soil amendement

V. Conclusions

Wide range of possibilities for biochar / clay composites

Page 21: Development of composite and hybrid materials from

CYPRUS201621

ACKNOWLEDGMENTS

My group:

Page 22: Development of composite and hybrid materials from

CYPRUS2016

Thank you for your attention!

22

Contact:ange.nzihou@mines‐albi.fr

Institut Mines‐Télécom

4th International Conference on Sustainable Solid Waste Management‐ Limassol, CYPRUS, 23‐25 June 2016