19
DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of Technology, Department of Physics Division of Nuclear Reactor Technology Stockholm, Sweden SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

DEVELOPMENT OF COMPUTATIONALMULTIFLUID DYNAMICS MODELS FORNUCLEAR REACTOR APPLICATIONS

Henryk AnglartRoyal Institute of Technology, Department of Physics

Division of Nuclear Reactor TechnologyStockholm, Sweden

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 2: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

2

Outline of the Presentation

• Introduction

• Prospective applications of CMFD innuclear field– focus on fuel assemblies

• Model description

• Example predictions

• Conclusions

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 3: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

3

Introduction

• CMFD is used for thermal-hydraulic analyses ofvarious parts of nuclear power plants:– Reactor cores and fuel assemblies

– Primary systems

– Containment systems

• Analysis of fuel assemblies has large potentialdue to:– Economical reasons (increased power)

– Safety reason (better estimation of thermal margins)

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 4: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

4

Typical LWR Fuel Assemblies

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Top tie plate

Fuel rod

BoxWater cross

Spacer grid

Bottom tie plate

PWR fuelassembly

BWR fuelassembly

Page 5: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

5

Typical Spacer Grid

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Spacer grid is made of platewith 0.2-0.3 mm thickness.Grid height is ~30 mm, andside length ~65 mm

There are usually 7-8 spacergrids along assembly fulllength (~3.7 m)

Page 6: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

6

Thermal Hydraulic Performanceof Fuel Assemblies

• Predictions of thermal-hydraulicperformance of fuel assemblies withspacers– Pressure drop

– Void fraction distributions

– Thermal margins, that is conditions whencritical heat flux occurs

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 7: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

7

Design of Fuel Assemblies

• For design purposes, it is interesting toknow the influence of geometry featureson the thermal performance:– Rod lattice pattern (pitch/diameter ratio, etc)

– Shape of sub-channels

– Spacer grid details (shape, mixing vanes, tabs,etc)

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 8: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

8

Four-Fluid Model – GoverningEquations

• Mass

• Momentum

• Energy

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

( ) ( ) ( )∑≠=

Γ−Γ=⋅∇+∂

∂ pN

kjjjkkjkkk

kkt ,1

Uραρα

( ) ( ) ( )( )[ ]

( ) ∑∑≠=≠=

+Γ−Γ

++∇−∇+∇⋅∇=⋅∇+∂

pp N

kjjkj

N

kjjkjkjkj

kkkkT

kkekkkkkk

kkk pUUt

,1,1

MUU

gUUU

ρααµαραρα

( ) ( ) ( ) ∑∑≠=≠=

+Γ−Γ+=∇−⋅∇+∂

∂ pp N

kjjkj

N

kjjkjkjkjkk

ekkkkkk

kkk EHHQTHt

H

,1,1

λαραρα

U

Page 9: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

9

Turbulence Model

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

∑≠=

++=pN

kjj

tkj

tkk

ek

,1

µµµµ lbbblbtlb dC UU −= αρµ µ

k

kk

tk

KC

ερµ µ

2=

Effective viscosity

laminar eddy

Interface-induced

( ) ( ) ( ) ( )kj

N

kjj

Kkj

N

kjjkjkjkj

Kkkk

ekkkkkk

kkk KKcKKSKKt

K pp

−+Γ−Γ+=∇−⋅∇+∂

∂∑∑

≠=≠= ,1,1

αµαραρα

U

( ) ( ) ( ) ( )kj

N

kjjkj

N

kjjkjkjkjkkk

ekkkkkk

kkkpp

cSt

εεεεαεµαεραερα εε −+Γ−Γ+=∇−⋅∇+

∂∑∑

≠=≠= ,1,1

U

K-_ model

Page 10: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

10

Interfacial Transfer Terms

• Mass– Homogeneous condensation

– Heterogeneous evaporation

• Momentum– Drag force

– Lift force

– Wall lubrication force

– Turbulent dispersion force

– Virtual mass

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 11: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

11

Subcooled Boiling Model

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Γlb' ' =

hlb Tsat − Tl( )hfg

Γbl

bwg

w

fg

df N subcooled

q

hsaturated

''

''

''=

πρ

3

6

convection evaporation quenching

convection evaporation quenching

Page 12: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

12

Computational Grid Used forSVEA Fuel Assembly

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 13: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

13

Phase Distribution in Two-PhaseBubbly Flows

Measured void fraction distribution in a 5x5 bundle: G = 1460.6 kg/m2/sp = 31.9 bar, q’’ = 543 kW/m2, inlet subcooling 6 K

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 14: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

14

Phase Distribution in Two-PhaseBubbly Flows

0

5

10

15

20

25

30

35

40

25 26 27 28 29 30

Subchannel Number

Voi

d fr

acti

on

MeasuredCalculated

Predicted void fraction distribution in a 5x5 bundle: G = 1460.6 kg/m2/sp = 31.9 bar, q’’ = 543 kW/m2, inlet subcooling 6 K

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 15: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

15

Two-Phase Annular Flow Model

• Additional mass, momentum and energyconservation equations are solved for liquid filmin annular flow

• Interfacial mass transfer includes– Evaporation– Entrainment– Deposition

• Wall shear model based on local film thickness• The modal enables prediction of dryout of the

liquid film

Workshop on Modelling and Measurements of Two-Phase Flows and Heat Transfer in NuclearFuel Assemblies, October 10-11 2006, KTH, Stockholm, Sweden

Page 16: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

16

thinnest film measured dryout

G = 450 kg/m2/s,

p = 70.8 bar,

q = 1259 kW/m2,

inlet subcooling 15.8 K

Predicted thinnest liquid film is inneighborhood of rods which wentunder dryout

Annular Two-Phase Flows

6.344.7845.2

5.83.6633.6

6.213.9634.9

5.53.4132.3

6.163.9834.2

5.663.5533.1

6.653.8331.6

5.362.927.6

5.432.9427.8

6.043.9635.6

5.43.3432.0

5.973.3229.4

6.343.6030.6

6.623.8031.5

6.244.0635.9

5.303.2531.5

5.302.8427.2

5.773.1828.8

6.003.3630.3

5.904.0036.8

6.143.9434.0

5.433.4833.4

6.103.9435.3

5.934.0337.0

Inlet film mass flux, 10 -2 kg/ms

Outlet film mass flux, 10 -2 kg/ms

Outlet film thickness, 10 -6 m

Inlet film mass flux, 10-2 kg/ms

Outlet film mass flux, 10-2 kg/ms

Liquid film thickness, 10-6 m

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 17: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

17

thinnest film measured dryout

G = 1571 kg/m2/s,

p = 70.9 bar,

q = 2612 kW/m2,

inlet subcooling 10.5 K

Predicted thinnest liquid film is onthe rod which went under dryout

Annular Two-Phase Flows

42.1 30.6 30.6 29.3 29.9

29.8 26.5 26.0 26.0 32.1

29.2 25.7 25.7 26.4 31.2

28.8 25.6 24.9 25.9 32.9

29.4 31.1 30.9 32.8

SIAMUF-Seminarium, Forskningsöversikt – Flerfasströmning, Orenäs Slott, Glumslöv, 25-26 oktober 2006

Page 18: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

18

Conclusions

• Current model can be applied for prediction ofphase distribution and heat transfer in dispersedtwo phase flows (bubbly and annular flows)

• Challenges for future development include:– Prediction of turbulence structure in fuel assembly

– Phase distributions in two-phase non-disperse flows

– Prediction of CHF (DNB and dryout) based onmechanistic principles

Workshop on Modelling and Measurements of Two-Phase Flows and Heat Transfer in NuclearFuel Assemblies, October 10-11 2006, KTH, Stockholm, Sweden

Page 19: DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS … · DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henryk Anglart Royal Institute of

19

Conclusions (cont’ed)

• Future focus will be on development ofsub-models suitable for rod bundlegeometry

• Validation should be performed againstdetailed measurements in rod bundles– Validation against data obtained in pipes is

not enough

Workshop on Modelling and Measurements of Two-Phase Flows and Heat Transfer in NuclearFuel Assemblies, October 10-11 2006, KTH, Stockholm, Sweden