21
Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs [email protected] 805-893-3244, 805-893-5705 fax The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) Mark Rodwell University of California, Santa Barbara Coauthors E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind , J. Koo, B. Thibeault, A.C. Gossard University of California, Santa Barbara E. Lind Lund University Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, Richard Pierson, B. Brar Teledyne Scientific Company X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.

Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

  • Upload
    shaman

  • View
    43

  • Download
    1

Embed Size (px)

DESCRIPTION

The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008). Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs. Mark Rodwell University of California, Santa Barbara. Coauthors - PowerPoint PPT Presentation

Citation preview

Page 1: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

Development of THz Transistors& (300-3000 GHz) Sub-mm-Wave ICs

[email protected] 805-893-3244, 805-893-5705 fax

The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008)

Mark Rodwell University of California, Santa Barbara

Coauthors

E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind , J. Koo, B. Thibeault, A.C. GossardUniversity of California, Santa Barbara

E. LindLund University

Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, Richard Pierson, B. BrarTeledyne Scientific Company

X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.

Page 2: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

UCSB High-Frequency Electronics Group

THz InP Bipolar Transistors.

Ultra high frequency III-V ICssub-mm-wave ICs 100-500 GHz digital logic

50-200 GHz Silicon ICsmm-waves: MIMO links, arrays, sensor networksfiber optics

III-V CMOS for Si VLSIInGaAs-channel MOSFETs for sub-22-nm scaling

Page 3: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

Multi-THz Transistors Are Coming

InP Bipolars: 250 nm generation: → 780 GHz fmax , 400 GHz f, 5 V BVCEO

125 nm & 62 nm nodes→ ~THz devices

IBM IEDM '06: 65 nm SOI CMOS → 450 GHz fmax , ~1 V operation

Intel June '07: 45 nm / high-K / metal gateproduction 65 nm: ~250 GHz fmax

→ continued rapid progress

What applications for III-V bipolars ?

What applications for mm-wave CMOS ?

0

10

20

30

40

109 1010 1011 1012

dB

Hz

U

H21

f = 424 GHz

fmax

= 780 GHz

Page 4: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

THz InP vs. near-THz CMOS: different opportunities

InP HBT: THz bandwidths, good breakdown, analog precision

10-12

10-10

10-8

10-6

10-4

10-2

0 0.25 0.5 0.75 1

I c , I

b (

A)

Vbe

(V)

Ic

Ib

340 GHz, 70 mW amplifiers (design)In future: 700 or 1000 GHz amplifiers ?

0

10

20

30

40

109 1010 1011 1012

dB

Hz

U

H21

f = 424 GHz

fmax

= 780 GHz &

200 GHz digital logic (design)In future: 450 GHz clock rate ?

→ fast blocks for microwave mixed-signal

25-40 GHz gain-bandwidth op-amps→ low IM3 @ 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers?

Z. Griffith

M. Urteaga (Teledyne)

Z. Griffith

M. Jones(UCSB)

J. Hacker (Teledyne)

Page 5: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

coherentphotonicreceiver

opticalphaserecovery

electronicadaptiveequalizer

I

Q

I

Q

I

Q

I

Q

average

I’

Q’

frequency control

+/-450

coherentphotonicreceiver

opticalphaserecovery

electronicadaptiveequalizer

I

Q

I

Q

I

Q

I

Q

average

I’

Q’

frequency control

+/-450

THz InP vs. near-THz CMOS: different opportunities

65 / 45 / 33 / 22 ... nm CMOSvast #s of very fast transistors ... having low breakdown, high output conductancewhat NEW mm-wave applications will this enable ?

massive monolithic mm-wave arrays→ 1 Gb/s over ~1 km mm-wave MIMO comprehensive equalization of

~100 Gb/s wireless, wireline, optical links

mm-wave imagingsensor networks

Page 6: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

InP DHBTs: September 2008

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

Teledyne DHBT

UIUC DHBT

NTT DHBT

EHTZ DHBT

UIUC SHBT

UCSB DHBT

NGST DHBT

HRL DHBT

IBM SiGe

Vitesse DHBT

f ma

x (G

Hz)

ft (GHz)

500 GHz400 GHz300 GHz200 GHz maxff

Updated Sept. 2008

600 GHz

)(

),/(

),/(

),/(

hence ,

:digital

gain, associated ,F

:amplifiers noise low

mW/

gain, associated PAE,

:amplifierspower

)11(

2/) (

alone or

min

1max

max

max

max

cb

cbb

cex

ccb

clock

ττ

VIR

VIR

IVC

f

m

ff

ff

ff

ff

:metrics better much

:metrics popular

250 nm

600nm

350 nm

250 nm

Page 7: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

Bipolar Transistor Design eW

bcWcTbT

nbb DT 22

satcc vT 2

ELlength emitter

eex AR /contact

2through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet 612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

cccb /TAC

Page 8: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

Bipolar Transistor Design: Scaling eW

bcWcTbT

nbb DT 22

satcc vT 2

ELlength emitter cccb /TAC

eex AR /contact

2through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet 612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

Page 9: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

Bipolar Transistor Scaling Laws

parameter change

collector depletion layer thickness decrease 2:1

base thickness decrease 1.414:1

emitter junction width decrease 4:1

collector junction width decrease 4:1

emitter contact resistance decrease 4:1

current density increase 4:1

base contact resistivity decrease 4:1

Changes required to double transistor bandwidth:

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Page 10: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

emitter 512 256 128 64 32 nm width16 8 4 2 1 m2 access

base 300 175 120 60 30 nm contact width, 20 10 5 2.5 1.25 m2 contact

collector 150 106 75 53 37.5 nm thick, 4.5 9 18 36 72 mA/m2 current density4.9 4 3.3 2.75 2-2.5 V, breakdown

f 370 520 730 1000 1400 GHzfmax 490 850 1300 2000 2800 GHz

power amplifiers 245 430 660 1000 1400 GHz digital 2:1 divider 150 240 330 480 660 GHz

InP Bipolar Transistor Scaling Roadmap

industry university→industry

university2007-8

appearsfeasible

maybe

Page 11: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

512 nm InP DHBT

Production

DDS IC: 4500 HBTs 20-40 GHz op-amps

500 nm mesa HBT 150 GHz M/S latches 175 GHz amplifiers

LaboratoryTechnology

Teledyne / BAE Teledyne / UCSB

UCSB UCSB / Teledyne / GCS

500 nm sidewall HBT

f = 405 GHz

fmax = 392 GHz

Vbr, ceo = 4 V

Teledyne

20 GHz clock53 dBm OIP3 @ 2 GHzwith 1 W dissipation

( Teledyne )

Z. GriffithM. UrteagaP. RowellD. PiersonB. BrarV. Paidi

Page 12: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

256 nm GenerationInP DHBT

0

10

20

30

109 1010 1011 1012

109

101

0

101

1

1012

dB

Hz

f = 560 GHz

fmax

= 560 GHz

U

H21

0

10

20

30

40

109 1010 1011 1012

dB

Hz

UH21

f = 424 GHz

fmax

= 780 GHz

0

5

10

15

20

0 1 2 3 4V

ce

mA

/m

20

10

20

30

40

109 1010 1011 1012

dB

Hz

U

H21

ft = 660 GHz

fmax

= 218 GHz

0

10

20

30

0 1 2 3

mA

/m

2

Vce

150 nm thick collector

70 nm thick collector

60 nm thick collector

200 GHz master-slavelatch design

340 GHz, 70 mW amplifier design

Z. Griffith, E. Lind, J. Hacker, M. Jones

-20

-15

-10

-5

0

5

10

220 240 260 280 300 320

freq. (GHz)

S21

, S

11,

S22

(d

B)

S21

S22

S11

4.7 dB Gain at 306 GHz.

from one HBT

Page 13: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

324 GHz Medium Power Amplifiers in 256 nm HBT

ICs designed by Jon Hacker / Teledyne

Teledyne 256 nm process flow-

Hacker et al, 2008 IEEE MTT-S

~2 mW saturated output power

0

10

20

30

40

Cu

rre

nt,

mA

-20

-10

0

10

20

Gai

n (

dB

), P

ow

er

(dB

m),

PA

E (

%)

-20 -15 -10 -5 0 5

Input Power (dBm)

O utput Pow er (dBm )

G ain (dB )

D ra in C urrent (m A )

P AE (% )

Page 14: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

Can we make a 1 THz SiGe Bipolar Transistor ?

emitter 18 nm width1.2 m2 access

base 56 nm contact width, 1.4 m2 contact

collector 15 nm thick 125 mA/m2 current density??? V, breakdown

f 1000 GHzfmax 2000 GHz

PAs 1000 GHz digital 480 GHz(2:1 static divider metric)

Assumes collector junction 3:1 wider than emitter.Assumes contacts 2:1 wider than junctions

Simple physics clearly drives scaling transit times, Ccb/Ic → thinner layers,

higher current density high power density → narrow junctions small junctions→ low resistance contacts

Key challenge: Breakdown 15 nm collector → very low breakdown (also need better Ohmic contacts)

Solutions Eliminating excess collector area would partly ease scaling

Page 15: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

What Would You Do With a THz Transistor ?

microwave ADCs and DACsmore resolution & more bandwidth

High-Performance 2-20 GHz Microwave Systemshigh excess transistor bandwidth + precision design--> high linear, highly precise microwave systems

670-1000 GHz imaging systems

sub-mm-wave communications

single-chip 300-600 GHz spectrometers(gas detection)

microwave op-amps high IP3 at low DC power translinear mixers

high IP3 at low DC power

Page 16: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

input power, dBm

outp

ut p

ower

, dBm

linear response

2-tone intermodulation

increasing feedback

mm-wave Op-Amps for Linear Microwave Amplification

Reduce distortion withstrong negative feedback

R. Eden

DARPA / UCSB / Teledyne FLARE: Griffith & Urteaga

measured 20-40 GHz bandwidth measured 54 dBm OIP3 @ 2 GHz

new designs in fabrication simulated 56 dBm OIP3 @ 2 GHz

300 GHz / 4 V InP HBT

Page 17: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

What Would You Do With a THz Transistor ?

microwave ADCs and DACsmore resolution & more bandwidth

High-Performance 2-20 GHz Microwave Systemshigh excess transistor bandwidth + precision design--> high linear, highly precise microwave systems

670-1000 GHz imaging systems

sub-mm-wave communications

single-chip 300-600 GHz spectrometers(gas detection)

microwave op-amps high IP3 at low DC power translinear mixers

high IP3 at low DC power

Page 18: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

150 GHz carrier, 100 Gbs/s QPSK radio: 30 cm antennas, 10 dBm power, fair weather→ 1 km range

150 & 250 GHz Bands for 100 Gb/s Radio ?

6 24 QkTFBQP QPSKreceived ;)(

2216 )/)(/(/ RDDPP rttransreceived

24 effAD

125-150 GHz, 200-300 GHz: enough bandwidth for 100 Gb/s QPSK

Wiltse, 1997IEEE APS-Symposium,

sealevel

4 km

9 km

150 GHz band: Expect ~10-20 dB/km attenuation for rainBut, for > 300 GHz : expect >30 db/km from 90% humidity

Page 19: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

mm-wave (60-80 GHz) MIMO → wireless at 40+ Gb/s rates ?

)()

)/(

/

11( channels,adjacent resolve To

1 :resolutionangular array Receive

: sransmitteradjacent t of separationangular Spatial

:Criterion Rayleigh

NRDN

DN

RD

rr

r

t

70 GHz, 1 km, 16 elements, 2 polarizations, 3.6 x 3.6 meter array, 2.5 GBaud QPSK → 160 Gb/s digital radio ?

Page 20: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

mm-wave MIMO: 2-channel prototype, 60 GHz, 40 meters

(a) (b)500ps per division

50m

V p

er d

ivis

ion

500ps per division

50m

V p

er d

ivis

ion

(a) (b)500ps per division

50m

V p

er d

ivis

ion

500ps per division

50m

V p

er d

ivis

ion

Page 21: Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs

mm-Wave & Sub-mm-Wave Wireless Links

The ICs will soon make this possibleSiGe BiCMOS: up to 150 GHz now,

future uncertain

Si CMOS: up to 150 GHz now, 200-300 GHz soon, low output power

InP HBT: up to 500 GHz now, up to 1000 GHz soonmoderate to high power, moderate noise

Propagation characteristics will determine applications

Foul-Weather Attenuation, Highly Directional (LOS only) propagation

Massive mm-wave IC complexity in future→ aggressive system adaptations / corrections