23
Development of ATLAS Liquid Argon Calorimeter Frontend Electronics for the HLLHC Andy Tiankuan Liu on behalf of the ATLAS Liquid Argon Group

Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Embed Size (px)

Citation preview

Page 1: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Development  of  ATLAS  Liquid  Argon  Calorimeter  Front-­‐end  Electronics  

for  the  HL-­‐LHC  

Andy  Tiankuan  Liu    on  behalf  of    

the  ATLAS  Liquid  Argon  Group    

Page 2: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Outline  1.  IntroducGon  2.  Analog  front-­‐end  

–  65  nm  –  130  nm  –  SiGe  

3.  ADCs  4.  OpGcal  links  

–  Laser  driver  array  ASICs  – OpGcal  transmiNer  array  module      

5.  Summary  

2  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 3: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

ATLAS  LAr  Detector  and  Phase-­‐II  Upgrade  

Preamp  +  shaper  Func;onally  the  Same  as  the  current  detector    

New  Approach  Trigger-­‐less  readout    DigiGze  and  ship    all  digital  data  

LAr  Detector  @  87K  not  change  except  

potenGal  upgrade  of  FCal  

3  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

The  back  end  will  also  be  replaced  to  readout  the  new  front-­‐end  

Page 4: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Upgrade  ObjecGves  

•  Detector  capacitance  0.2  to  1.5  nF  •  Signal  dynamic  range  ~  16  bits  •  Noise  requirements  ~  100  nA  •  Selectable  input  impedance  25  or  50  Ω  for  cable  terminaGon  •  Moderate  radiaGon  tolerance  requirements  ~300  krad,  1013  cm-­‐2  

1-­‐MeV  eq.  neutrons    •  DigiGze  all  128  channels/FEB  @  14  bits,  40  or  80MS/s  with  2  gain  

scales.    •  Ship  data  from  all  channels  off  detector  (trigger-­‐less  readout).      •  Keep  the  power  dissipaGon  to  the  current  one  or  lower.    

4  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 5: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Op;ons  Being  Explored  

1.   Mul;ple-­‐ASIC  solu;on  – Preamplifier  +  shaper    – ADC    – Encoder  +  serializer    – Laser  drivers  and  op;cal  transmiLers  

2.   Front-­‐End  System-­‐On-­‐Chip  (FESOC)  solu;on  – Preamplifier  +  shaper  +  ADC  +  serializer    – Laser  drivers  and  op;cal  transmiLers  

5  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 6: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Outline  1.  IntroducGon  2.  Analog  front-­‐end    

–  65  nm  –  130  nm  –  SiGe  

3.  ADCs  4.  OpGcal  links  

–  Laser  driver  array  ASICs  – OpGcal  transmiNer  array  module      

5.  Summary  

6  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 7: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Front-­‐End  System  On  Chip  •  FESOC  (front-­‐end  system  

on  a  chip):  proposed  •  HLC1:  8-­‐ch  analog  FE  

ASIC  –  Dual  range  –  Programmable  gain  –  Programmable  

terminaGon  –  Programmable  filter  

•  To  be  integrated  with  ADCs  and  mux/encoder/serializers  

•  Power  dissipaGon  ~1.2  W  •  CMOS  65  nm      

7  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 8: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Preamp  in  65  nm  -­‐  Design  •  New  concept  •  Fully  differenGal  amplifier  •  Very  stable  terminaGon  (R  and  N  independent  of  signal  current)  

Noiseless  capaciGve  feedback  sehng  the  gain  

8  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 9: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Preamp  in  65  nm  -­‐  Performance  •  Equivalent  noise  at  

the  input  ENI  ~57nA  rms  at  260pF,  40ns    

•  Nonlinearity  now  within  0.1%  at  9mA,  within  0.5%  at  10mA  

•  Power  dissipaGon  ~100  mW/channel  from  single  1.2V  supply  

•  The  layout  design  is  being  finalized,  and  the  test  chip  submission  is  imminent.    

9  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

40  ns  

57  nA  

Peaking  Gme  sehng  

Page 10: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Analog  FE  in  130  nm  -­‐  Design  

Noise  

Line  termina;on  

10  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 11: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Analog  FE  in  130  nm  -­‐  Performance  

10  kHz  

1  MHz  

100  MHz  

Frequency  (Hz)  

Inpu

t  impe

dance  (Ω

)  

25.5Ω  @1MHz  

High  gain  (0-­‐1-­‐mA)  

High  gain  (1-­‐10  mA)  

Integral  nonlinearity  with  CR-­‐RC2  (40  ns  peaking  Gme)    

Impedance  flat  from  10  kHz  to  100  MHz    <  1  Ω  variaGon  versus  current  due  to    Super  Common  base  Zin  variaGon    

Noise  dominated  by  R0  and  NMOS:  150  nA  with  1.5  nF    

±0.2%  

±0.2%  

11  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 12: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

FE  analog  in  130  nm  -­‐  Prototype  

LAUROC  :  8  Channel  prototype    •  Super  Common  Base  type  Preamp  •  Programmable  Zin:  25  or  50Ω  •  2  Gain  Ranges:  2  or  10mA  •  Input  Noise  eq.  <  10Ω  •  High  current  SaturaGon  miGgaGon  •  Preamp  Power  7mA  @  2.5V  ~  18mW  •  SubmiNed  April  2016  

12  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Compare  130  nm  and  65  nm:    •  Test  boards/benches  similar  •  ComparaGve  measurements  of  65/130  nm  chips  Goal  -­‐  Converge  

Page 13: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

FE  Analog  in  SiGe  (180  nm)  •  Similar  to  the  current  design  which  is  implemented  with  discrete  components    •  Bonding  opGon  for  25/50  Ω.  No  impedance/dynamic  range  tuning    •  Might  be  marginal  at  High  frequency  (>  30  MHz)  and  large  current    •  Good  noise  performance  on  simulaGon  :  25  Ω  preamp  :  86  mW,  97  nA  for  1.0  nF  

with  CR-­‐RC2  shaping    •  Layout  exists.  Submission  is  under  discussion  

13  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 14: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Outline  1.  IntroducGon  2.  Analog  front-­‐end    

–  65  nm  –  130  nm  –  SiGe  

3.  ADCs  4.  OpGcal  links  

–  Laser  driver  array  ASICs  – OpGcal  transmiNer  array  module      

5.  Summary  

14  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 15: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

ADC  in  -­‐  Specs  

•  High  resoluGon:  14  bits  •  High  speed:  40-­‐80  MS/s  •  Low  power,  small  area  •  RadiaGon-­‐tolerant  

Detector Output Signal

Phase-II Upgrade FEB (On detector)

MUX

& Serializer

Optical Links

To Back-end -1000 200400600800100012001400

0

0.5

1

Time [ns]

Nor

mal

ized

Am

plitu

de

Analog Shaper

ADC

Preamp

ADC

16-bit DR 10 Gbps ?

15   15  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 16: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Chip  Architecture  

16  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

•  The  work  is  sGll  “in-­‐progress”  and  the  chip  FEB2  context  study    started  

•  65  nm  CMOS  •  8-­‐channel  14-­‐

bit  ADCs  at  40  MS/s  

•  QFN  package  preferred  (100  pins,  0.5  mm  pitch,  12  mm  x  12  mm  

Power  cut  

Page 17: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Possible  Layout  

17  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Power  cuts  

Digital  side  

Analog  side  

ADC  channels.    Silicon  space  0.2  mm  x  1  mm  per    channel    

References  •  Chip  produces  

data  volume  of  5.12  Gbit/s  

•  Die  size  1.98  x  1.95  mm  

•  136  die  I/O  pads  

Page 18: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Outline  1.  IntroducGon  2.  Analog  front-­‐end    

–  65  nm  –  130  nm  –  SiGe  

3.  ADCs  4.  OpGcal  links  

–  Laser  driver  array  ASICs  – OpGcal  transmiNer  array  module      

5.  Summary  

18  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Page 19: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

OpGcal  Links:  Overview  •  The  opGcal  link  part  will  take  advantage  of  lpGBT  and  VersaGle  Link  +,  together  

aiming  at  the  development  of  rad-­‐tol  opGcal  links.    •  The  major  parts  (Mux,  encoder  and  serializer)  of  lpGBT  (65-­‐nm  CMOS  technology)  

will  be  integrated  with  the  analog  front-­‐end  and  ADCs.    •  Laser  array  driver  ASICs  and  opGcal  transmiNer  modules  are  designed  for  VersaGle  

Link  +.    

19  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Related  talks:    •  Paulo  Moreira,  RadiaGon  hard  High-­‐Speed  OpGcal  Links  for  HEP,  9:00-­‐9:45,  Thursday.    •  Csaba  Soos,  VersaGle  Link  PLUS  Transceiver  Development,  11:10  AM,  Thursday.  

GBTLDD

TIA PD

Laser

TRx

Versatile Link FPGA

On-DetectorCustom Electronics & Packaging

Radiation HardOff-Detector

Commercial Off-The-Shelf (COTS)Custom Protocol

Timing and Trigger

DAQ

Slow Control

Timing and Trigger

DAQ

Slow Control

GigaBit Laser Driver (GBLD)

Mux+ENC  +SER  

Page 20: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Laser  Driver  Array:  Design  and  Layout  

20  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

Two-­‐stage  pre-­‐driver  

VLAD    output  driver  

lpVLAD  output  driver  

1.9  mm  

1.7  mm   Pitch  0.25  mm  

1.9  mm  

VLAD  (VCSEL  Array  Driver)  and  lpVLAD  (low-­‐power  VCSEL  Array  Driver)  are  4-­‐channel,  10-­‐Gbps-­‐per-­‐channel  VCSEL  array  driver  ASICs  designed  in  a  65-­‐nm  CMOS  technology  with  different  output  structures.    

Related    Talk:  Di  Guo,  Developments  of  two  4  ×  10-­‐Gbps  radiaGon-­‐tolerant  VCSEL  array  drivers  in  65  nm  CMOS,  3:40  PM,  Wednesday.    Poster:  Zhiyao  Zeng,  LDQ10P:  A  Compact  Low-­‐Power  4x10  Gb/s  VCSEL  Driver  Array  IC,  today.    

Page 21: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Laser  Driver  Array:  OpGcal  mulG-­‐channel  test  Results  •  Total  jiNer  =  48  ps  •  Total  power  consumpGon  33.9  mW/ch  

•  10  Gbps  opGcal  eye  with  adjacent  channel  working  simultaneously  

•  Input:  diff,  swing  200  mV,  PRBS  27-­‐1  •  Tested  rad-­‐tol  above  to  300  Mrad.    

•  Signal  source:  Agilent  J-­‐BERT  N4903B  (12.5  Gb/s)  

•  Oscilloscope:    Agilent  DSA91204A    (12  GHz)  with  opGcal  receiver  Agilent    81495    

•  Total  jiNer  35  ps  •  Total  power  consumpGon  21.6  mW/

ch.  This  is  a  world  record  now.    

21  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

100  ps   845  µW   100  ps  975  µW  

VLAD  lpVLAD  

Page 22: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Laser  Driver  Array:  Module  Development  •  ATx  (Array  opGcal  TransmiNer)  is  a  12-­‐channel,10  Gbps-­‐per-­‐channel  opGcal  transmiNer  module  

developed,  based  on  the  MOI  and  Prizm  from  US  Connec  and  the  AZ8  connector  from  Samtec  with  custom  acGve-­‐alignment  method  for  the  module  assembly.  

•  ATx  is  used  as  a  test  vehicle  for  VLAD/lpVLAD.    •  MOI  and  prizm  tested  rad-­‐tol  up  to  96  Mrad.    

22  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016    

ATxfootprint:10mmx15mm.MOIwithaPrizmconnecttoa12-wayfiberribbon.

2mm

1.51mm1.78mm

Thebasewillbereducedfrom2mmto1.2mm.ATxmoduleswillbe5.3mmtallfornow.Inthefinaldesignwehopetoreducetheheightto4.5mm.

1.2mm

Page 23: Developmentof*ATLAS*Liquid*Argon* Calorimeter*Frontend ... · Outline* 1. IntroducGon* 2. Analog*frontend* – 65nm – 130nm – SiGe* 3. ADCs* 4. OpGcal*links* – Laser*driver*array*ASICs*

Summary  

•  The  ATLAS  LAr  front-­‐end  readout  electronics  without  trigger  is  under  development  to  meet  the  high  luminosity  requirements.    

•  An  approach  of  System-­‐On-­‐Chip  is  being  targeted:  integraGng  all  front-­‐end  funcGonal  blocks  (preamplifiers/shapers/ADCs/mux/encoders/serializers).    

•  Three  analog  front-­‐end  ASICs  in  early  development  stages  show  promising  performances  within  terminaGon,  capacitance  range,  input  signal  dynamic  range  and  power  requirements.  

•  New  ADC  design  has  been  started.      •  Two  radiaGon-­‐tolerant  laser  driver  array  ASICs  and  an  opGcal  transmiNer  modules  are  prototyped  and  tested.      

23  Tiankuan  Liu,  TWEPP,  Karlsruhe,    Germany,  September  27,  2016