Diff Equation 7 Sys 2012 FALL

Embed Size (px)

Citation preview

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    1/71

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    2/71

    Diff_Eq_7_2012

    Outline Eigenvalues and Eigenvectors

    Homogeneous Systems of Equationswith Constant Coefficients

    Nonhomogeneous Systems ofEquations: Method of Variation of

    Parameters

    Reduction of order

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    3/71

    Diff_Eq_7_2012

    Nth Order ODEs reduces to a Linear 1st

    Order Systems

    An arbitrary nth order equation

    Is transformed into a system of n first order

    equations, by defining

    )1()( ,,,,, = nn yyyytFy K

    )1(

    321 ,,,, ==== nn yxyxyxyx K

    1 2

    2 3

    1 2( , , , )n n

    x x

    x x

    x F t x x x

    =

    =

    =M

    K

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    4/71

    Diff_Eq_7_2012

    Practical Importance:

    High-order

    System

    Converted

    First-order

    System

    Example: tyyyy sin5'2''3''' =++

    '''

    3

    2

    1

    yx

    yx

    yx

    ==

    =

    '''''''

    ''

    3

    2

    1

    yx

    yx

    yx

    ==

    =

    txxxx

    xx

    xx

    sin523'

    '

    '

    1233

    32

    21

    ++==

    =First-order System

    Linear Systems of Differential Equations

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    5/71

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    6/71

    Diff_Eq_7_2012

    Linear Systems of Differential Equations

    Example:

    '

    '

    4

    3

    2

    1

    yx

    yx

    xx

    xx

    =

    =

    =

    =

    Transform into first-order system

    yxy

    xyx

    )1(''

    )1(''

    =

    =

    314

    43

    132

    21

    )1('

    '

    )1('

    '

    xxx

    xx

    xxx

    xx

    =

    =

    =

    =

    Example:

    '

    '

    4

    3

    2

    1

    yx

    yx

    xxxx

    =

    =

    ==

    Transform into first-order system

    tyxy

    yxx

    +=

    +=

    ''

    ''

    txxx

    xx

    xxx

    xx

    +=

    =

    +==

    314

    43

    312

    21

    '

    '

    '

    '

    +

    =

    tx

    x

    x

    x

    x

    x

    x

    x

    0

    0

    0

    0101

    1000

    0101

    0010

    '

    '

    '

    '

    4

    3

    2

    1

    4

    3

    2

    1

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    7/71

    Diff_Eq_7_2012

    Example:

    yxy

    yxx

    22'26'

    =+=

    3

    2

    22'

    26'

    yxy

    yxx

    =+=

    zxzzyxy

    zyxx

    = +=

    +=

    ''

    2'

    Linear system

    yzxzzyxy

    zxyxx

    =+=

    +=

    ''

    2'

    zexz

    zyxy

    zytxx

    t=+=

    +=

    '

    '

    2' 2

    Linear Systems of Differential Equations

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    8/71

    Diff_Eq_7_2012

    Example:

    yxy

    yxx

    22'26'

    =+=

    zxz

    zyxy

    zyxx

    =

    +=

    +=

    '

    '

    2'Matrix Form

    zexz

    zyxy

    zytxx

    t=

    +=

    +=

    '

    '

    2' 2

    =

    y

    x

    y

    x

    22

    26

    '

    '

    =

    z

    y

    x

    z

    y

    x

    101

    111

    121

    '

    '

    '

    =

    z

    y

    x

    e

    t

    z

    y

    x

    t01

    111

    121

    '

    '

    ' 2

    XX =' AXX =' XX ='

    Linear Systems of Differential Equations

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    9/71

    Diff_Eq_7_2012

    Linear Systems of Differential Equations

    1 11 1 12 2 1 1

    2 21 1 22 2 2 2

    1 1 2 2

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    n n

    n n

    n n n nn n n

    x t a t x a t x a t x f t

    x t a t x a t x a t x f t

    x t a t x a t x a t x f t

    = + + + +

    = + + + +

    = + + + +

    KK

    KK

    M

    KK

    Matrix Form:

    1 11 12 1 1 1

    1 21 22 2 1 2

    1 1 2 1 1

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    n

    n

    n n nn

    x a t a t a t x f t

    x a t a t a t x f t

    x a t a t a t x f t

    = +

    K

    K

    M M M M M M

    L

    System of linear first-order DE

    'X A X F= +

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    10/71

    Diff_Eq_7_2012

    Linear Systems of Differential Equations

    'X A X F= +

    If F=0 homogeneous system

    If F 0 non-homogeneous system

    Therorem ( Existence of a Unique Solution)

    0

    all entries of ( ) are cont on

    all entries of ( ) are cont on

    t I

    A t I

    F t I

    0 0

    ' ( ) ( ) (*)

    ( )

    X A t X F t

    X t X

    = +

    =

    There exists a unique

    solution of IVP(*)

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    11/71

    Diff_Eq_7_2012

    Example:

    yxy

    tyxx

    22'26'

    =++=

    zxz

    zyxy

    zyxx

    =

    +=

    +=

    '

    '

    2'

    Homog and Non-homg

    ttezexz

    zyxy

    tzytxx

    2

    22

    '

    '

    2'

    +=

    +=

    +=

    +

    =

    022

    26

    '

    ' t

    y

    x

    y

    x

    =

    z

    y

    x

    z

    y

    x

    101

    111

    121

    '

    '

    '

    +

    =

    tte

    t

    z

    y

    x

    e

    t

    z

    y

    x

    2

    22

    0

    01

    111

    121

    '

    '

    '

    homognon

    '

    += FAXX

    homog

    ' AXX =

    homognon

    '

    += FAXX

    Linear Systems of Differential Equations

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    12/71

    Diff_Eq_7_2012

    System of Equations: First-Order Linear

    Differential Equations - Substitution

    Consider the 2x2 system of linear homogeneous differential

    equations (with constant coefficients)

    x'(t) = ax(t) + by(t)y'(t) = cx(t) + dy(t)

    We can solve this system using what we know:

    1. Isolatey(t) in the first equation =>y(t) =x'(t)/b

    ax(t)/b.

    2. Differentiate thisy(t) equation =>y'(t) =x"(t)/b

    ax'(t)/b.

    3. Solve forx(t) andy'(t)

    =>x"(t)

    (a + d)x'(t) + (ad

    bc)x(t) = 0.

    4. Go back to step 1. Solve fory(t) in terms ofx'(t) andx(t).

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    13/71

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    14/71

    Diff_Eq_7_2012

    Eigenvalue and Eigenvector:

    Eigenvalues and Eigenvectors

    The number is said to be an eigenvalue of the nxn matrix Aprovided there exists a nonzero vector v such that

    v is called an eigenvector of the matrix A. v is associated with theeigenvalue

    vAv =

    Characteristic Equation: ( )P A I = It is a polynomial of order n. ( A is nxn)

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    15/71

    Diff_Eq_7_2012

    Linear Systems of Differential Equations

    Sec(7.1+7.2): First-order Systems

    1 11 1 12 2 1 1

    2 21 1 22 2 2 2

    1 1 2 2

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    n n

    n n

    n n n nn n n

    x t a t x a t x a t x f t

    x t a t x a t x a t x f t

    x t a t x a t x a t x f t

    = + + + +

    = + + + +

    = + + + +

    KK

    KK

    M

    KK

    Matrix Form:

    1 11 12 1 1 1

    1 21 22 2 1 2

    1 1 2 1 1

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    n

    n

    n n nn

    x a t a t a t x f t

    x a t a t a t x f t

    x a t a t a t x f t

    = +

    K

    K

    M M M M M M

    L

    System of linear first-order DE

    'X A X F= +

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    16/71

    Diff_Eq_7_2012

    First-order homogeneous Systems

    THM ( Wronskian)

    solutionsnareLet 21 n,X,, XX L

    AXX ='Consider the sys of DE: (*)

    1 2( , , , ) 0nW X X X Ltindependenlinearly

    21 n,X,, XX L

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    17/71

    Diff_Eq_7_2012

    THM ( general solution for Homog)

    indeplinare21 n,X,, XX L

    XX ='Consider the sys of DE: (*)

    Example:

    =

    y

    x

    y

    x

    13

    24

    '

    '

    =

    =

    t

    t

    t

    t

    e

    etX

    e

    etX

    5

    5

    22

    2

    1

    2)(,

    3)(

    Find the general solution for (*)

    (*)

    nnXcXcXctX +++= L2211)(solutionsare21 n,X,, XX L

    The general sol for (*) is

    Example:

    =

    y

    x

    y

    x

    13

    24

    '

    '

    Solve IVP

    (*)

    =

    1

    1

    )0(

    )0(

    y

    x

    First-order homogeneous Systems

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    18/71

    Diff_Eq_7_2012

    How to solve the system of DE

    System of Linear First-Order DE

    (constant Coeff) 'X AX=

    Distinct realEigenvalues

    repeated realEigenvalues

    complexEigenvalues

    System of Linear First-Order DE

    (Non-homog)

    'X AX F= +

    Variation of

    Parameters

    E

    igenvalueM

    ethod

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    19/71

    Diff_Eq_7_2012

    Eigenvalue Method

    Our Goal: 'X AX=Solve the Homog linear system

    Method:Find all eigenvalues of the matrix A1 n ,,, 21 L

    Distinct real

    Eigenvalues

    repeated real

    Eigenvalues

    complex

    Eigenvalues

    Solution: 1) Find n linearly independent solutions

    2) The general solution is: their linear combination

    nXXX ,,, 21 L

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    20/71

    Diff_Eq_7_2012

    'X AX=

    Method: Find all eigenvalues of the matrix A1n ,,, 21 L Distinct real Eigenvalues

    Find all eigenvectors of the matrix A2nvvv ,,, 21 L

    N-lin. Independent solutions are:

    3 111 veX t= 22

    2 veX t= ntn veX n=LLL

    The general solution is:4nnXcXcXctX +++= L2211)(

    Eigenvalue Method

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    21/71

    Diff_Eq_7_2012

    'X AX=Method:

    Find all eigenvalues of the matrix A1i =2,1 Complex conjugate eigenvalues

    Find an eigenvector for21v

    solution is:

    31

    1 veX t=

    Two-lin independent solutions are:4

    i +=1Complex vector

    1)]sin()[cos( vtite t +=1

    )(ve

    ti+=

    )real(1 XX = )Imag(2 XX =

    Two-lin independent solutions are:52211)( XcXctX +=

    Eigenvalue Method

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    22/71

    Diff_Eq_7_2012

    'X AX=Method:Find all eigenvalues of the matrix A1

    i =2,1 Complex conjugate eigenvalues

    Find an eigenvector for

    2iBBv 211 +=

    Two-lin independent solutions are:

    3

    i +=1

    Two-lin independent solutions are:4

    2211

    )( XcXctX +=

    1 1 2

    2 2 1

    [ cos sin ]

    [ cos sin ]

    t

    t

    X B t B t e

    X B t B t e

    =

    = +

    Eigenvalue Method

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    23/71

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    24/71

    Diff_Eq_7_2012

    Fundamental Matrices Suppose that x(1)(t),, x(n)(t) form a fundamental set of

    solutions for x'

    = P(t

    )x on 0),

    Ifx < 0,

    2 3 4 0x y xy y + =

    / lndx x x=/ ln( )dx x x=

    ( )

    3ln( ) 32 2

    2 4 4

    2 2

    ( )

    ( )

    1 ln

    xe x

    y x x dx x dxx x

    x dx x xx

    = =

    = =

    Example 2

    when

    x

    (, 0)

    ( ) 2 21 2 lny x c x c x x= +

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    41/71

    Diff_Eq_7_2012

    Case

    of the Higher Order Linear DE

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( 1)

    1 1 0( )n n

    n na x y x a x y x a x y x a x y g x

    + + + + =L

    Solution of the associated homogeneous equation:

    1 1 2 2 3 3( ) ( ) ( ) ( )c n ny c y x c y x c y x c y x= + + + +LL

    Theparticular solution

    is assumed as:

    1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p n ny u x y x u x y x u x y x u x y x= + + + +LL

    ( ) kk

    Wu x

    W = ( ) ( )k ku x u x dx=

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    42/71

    Diff_Eq_7_2012

    ( ) k

    k

    W

    u x W =

    1 2 3

    1 2 3

    1 2 3

    ( 1) ( 1) ( 1) ( 1)

    1 2 3

    n

    n

    n

    n n n n

    n

    y y y y

    y y y y

    W y y y y

    y y y y

    =

    L

    L

    L

    M M M O M

    L

    1 2 1 1

    1 2 1 1

    ( 2) ( 2) ( 2) ( 2) ( 2)

    1 2 1 1

    ( 1) ( 1) ( 1) ( 1) ( 1)

    1 2 1 1

    0

    0

    0

    ( )

    k k n

    k k n

    k

    n n n n n

    k k n

    n n n n n

    k k n

    y y y y y

    y y y y y

    W

    y y y y y

    y y y f x y y

    +

    +

    +

    +

    =

    L L

    L L

    M M O M M M O M

    L L

    L L

    ( ) ( ) ( )/ nf x g x a x=

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    43/71

    Diff_Eq_7_2012

    0

    0

    0

    ( )f x

    MWk: replace the kth

    column of Wby

    For example, when n = 3,

    2 3

    1 2 3

    2 3

    0

    0

    ( )

    y y

    W y y

    f x y y

    =

    1 3

    2 1 3

    1 3

    0

    0

    ( )

    y y

    W y y

    y f x y

    =

    1 2

    3 1 2

    1 2

    0

    0

    ( )

    y y

    W y y

    y y f x

    =

    ( ) ( )( )ng xf xa x=

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    44/71

    Diff_Eq_7_2012

    Process

    of the Higher Order Case

    Step 2-1 standard form

    Step 2-2 Calculate W, W1

    , W2

    , ., Wn

    11

    Wu

    W

    = 22W

    uW

    =Step 2-3

    Step 2-4 .( )1 1u u x dx= ( )2 2u u x dx=

    ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2p n ny x u x y x u x y x u x y x= + + +LLStep 2-5

    ( ) ( )

    ( ) ( )

    ( )( )

    ( )( )

    ( )( )

    ( ) ( 1)1 1 0( )n nn

    n n n n

    a x a x a x g xy x y x y x y

    a x a x a x a x + + + + =L

    nn

    Wu

    W

    =

    ( )n nu u x dx=

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    45/71

    Diff_Eq_7_2012

    Non-homogeneous Cauchy-Euler

    Equation

    ( ) ( ) ( )( ) 1 ( 1)1 1 0( )n n n n

    n na x y x a x y x a xy x a y g x

    + + + + =L

    not constant coefficients

    but the coefficients ofy(k)

    (x) have the form ofak is some constantk

    ka x

    associated homogeneous

    equation

    particular solution

    ( ) ( )( ) 1 ( 1)1

    1 0( ) 0

    n n n n

    n na x y x a x y x

    a xy x a y

    + +

    + + =L

    k

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    46/71

    Diff_Eq_7_2012

    Guess the solution asy(x) =xm

    , then

    Associated homogeneous equation of the Cauchy-Euler equation( ) ( )( ) 1 ( 1)1 1 0( ) 0

    n n n n

    n na x y x a x y x a xy x a y

    + + + + =L

    ( )

    ( )

    ( )

    1 11

    2 2

    2

    1

    1

    0

    ( 1)( 2) 1

    ( 1)( 2) 2

    ( 1)( 2) 3

    0

    n m n

    n

    n m nn

    n m n

    n

    m

    m

    a x m m m m n x

    a x m m m m n x

    a x m m m m n x

    a xmx

    a x

    +

    +

    + +

    + + + +

    +

    + =

    LL

    LL

    LL

    M

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    47/71

    Diff_Eq_7_2012

    ( )

    ( )( )

    1

    2

    1

    0

    ( 1)( 2) 1

    ( 1)( 2) 2( 1)( 2) 3

    0

    n

    n

    n

    a m m m m n

    a m m m m na m m m m n

    a m

    a

    +

    + ++ +

    ++ =

    LL

    LL

    LL

    M

    auxiliary function

    with constant

    coefficient

    0 0 0 02 1ln (ln ) (ln, , , ),m m m m k

    x x x x x x x

    LL

    ( ) ( ) ( )( )

    ( ) ( ) ( )

    ( )

    2

    1

    2

    1

    , , , ,cos ln cos ln ln cos ln (ln )

    cos ln (ln )

    sin ln sin ln ln sin ln (ln )

    sin ln (ln

    , , , ,

    )

    k

    k

    x x x x x x x x

    x x x

    x x x x x x x x

    x x x

    LL

    LL

    31 2, , , , km mm m

    x x x xLL

    A.

    B.

    C.

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    48/71

    Diff_Eq_7_2012

    Example 1

    (text page 164)

    ( )2

    2 ( ) 4 0x y x xy x y =

    Example 2 (text page 164)( )24 8 ( ) 0x y x xy x y + + =

    Example 3

    (text page 165)

    ( )24 17 0x y x y + = ( )1 1y = ( )112

    y =

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    49/71

    Diff_Eq_7_2012

    Example 4

    ( ) ( )

    3 25 7 ( ) 8 0x y x x y x xy x y + + + =

    ( )( )22 4 0m m+ + =

    ( )( ) ( )1 2 5 1 7 8 0m m m m m m + + + =

    auxiliary function

    3 2 23 2 5 5 7 8 0m m m m m m + + + + =3 22 4 8 0m m m+ + + =

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    50/71

    Diff_Eq_7_2012

    Example 5

    ( )2 43 ( ) 3 2 xx y x xy x y x e + =

    auxiliary function

    ( )1 3 3 0m m m + =3

    1 2cy c x c x= +

    2 4 3 0m m + =

    2 3m =1

    1m =

    Step 1

    solution of the associated homogeneous equation

    Step 2-2

    Particular solution

    3

    3

    22

    1 3

    x xW x

    x

    = =

    3

    5

    1 22

    02

    2 3xxx

    Wx

    exe

    x= =

    211

    xWu x e

    W= =

    2

    3

    2

    02

    1 2

    x

    xx e

    xW x e= =

    22

    xWu e

    W= =Step 2-3

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    51/71

    Diff_Eq_7_2012

    2 2xu u dx e= =

    2

    1 1 2 2x x x

    u u dx x e xe e= = + Step 2-4

    2

    1 1 2 2 2 2x x

    py u y u y x e xe= + =

    Step 3 3 21 2 2 2

    x xy c x c x x e xe= + +

    Step 2-5

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    52/71

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    53/71

    Diff_Eq_7_2012

    N-th order linear DE

    Constant Coeff variable Coeff

    Homog(find yp)NON-HOMOG

    (find yp)

    Variational of

    Parameters

    Cauchy-Euler In General

    Power Series

    Series Solutions of Linear Equations

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    54/71

    Diff_Eq_7_2012

    Sec 6.1: Solution about Ordinary Points

    Sec 6.2: Solution about Singular Points

    Sec 6.1.1: Review of Power Series

    Sec 6.1.2: Power Series Solutions

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    55/71

    Diff_Eq_7_2012

    Power SeriesRepresenting Function by series

    ( ) ( ) ( ) ( )

    21 2

    0

    2

    1 2

    0

    power series

    An expression of the form

    is a .

    An expression of the form

    i

    centered at

    s

    0

    a

    n nn o n

    n

    n n

    n o n

    n

    c x c c x c x c x

    c x a c c x a c x a c x

    x

    a

    =

    =

    = + + + + +

    = + + + + +

    =

    Power SDefinition eries

    L L

    L L

    ( ). The term is

    the

    power series cent

    ; the number of is the

    ered at

    .

    n

    nc xa a

    a

    x =

    nth terms center

    Power Series

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    56/71

    Diff_Eq_7_2012

    ( )

    =

    >

    0

    There are three possibilities for with respect to

    convergence:

    1. There is a positive number such that the series diverges fo

    r

    n

    n

    na x a

    R

    x a R

    The Convergence Theorem for Power Seriesheore 5

    0

    Identity Property

  • 8/12/2019 Diff Equation 7 Sys 2012 FALL

    69/71

    Diff_Eq_7_2012

    Identity Property

    0

    ( ) 0nnn

    c x a

    =

    =If0nc =

    :Example

    1( ) xf x e=

    2 ( ) sinx x=

    3 ( ) cosx x=

    2 3

    1( ) 11! 2! 3!

    x x xx = + + + +KK

    3 5

    2 ( )3! 5!

    x xx x= + KK

    2 4

    3( ) 1 2! 4!

    x x

    f x = + KK

    R =

    Any polynomial such as 2 33 2 4 6x x x+ +

    Definition: ( )f x Is analytic at 0x

    IF: Can be represented by power series centerd at 0x( )x

    (i.e) 00

    ( ) ( )nnn

    f x c x x

    =

    = with R>0 0x x R