21
Differences in frontotemporal dysfunction during social and non- social cognition tasks between patients with autism spectrum disorder and schizophrenia 30 3

Differences in frontotemporal dysfunction during social

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differences in frontotemporal dysfunction during social

Differences in frontotemporal dysfunction during social and non-

social cognition tasks between patients with autism spectrum

disorder and schizophrenia

30 3

Page 2: Differences in frontotemporal dysfunction during social

1

1. 2

2. 2

3. 3

4.

(1) 3

(2) 4

(3) NIRS 4

(4) 5

5.

(1) 5

(2) fNIRS 6

6. 7

7. 9

8. 9

9. 10

10. 14

Page 3: Differences in frontotemporal dysfunction during social

2

1.

n = 13 n = 15 n = 18

2.

5 Diagnostic and Statistical Manual of Mental Disorders-fifth edition; DSM-5 1

1

2-4

2

5-12

8

10

13-15

Page 4: Differences in frontotemporal dysfunction during social

3

functional magnetic resonance imaging; fMRI

13

Functional Near-Infrared Spectroscopy; fNIRSfNIRS

fMRI

fNIRS 16-18 19-23

fNIRS16-18

fNIRS 19-21

22,33

fNIRS

22,23

3.fNIRS

fMRI fNIRS

4.(1)

28 13 15 181 intelligence quotient; IQ

Japanese version of the National Reading Test; JART 24

25

22,23 3 Institutional Review Board

DSM-5

Mini-International Neuropsychiatric Interview M.I.N.I. 26

Page 5: Differences in frontotemporal dysfunction during social

4

5 12

21

M.I.N.I.

2

27

Autism Spectrum Quotient; AQ 28

Positive and Negative Syndrome Scale; PANSS 29

AQ 31

(2)

30 20 7030, 31

22

12

32 33

fNIRS

300 12 160

(mean reaction time; MRT)

(3) NIRSfNIRS ETG-4000

fNIRS 22,23,34 [oxy-Hb]0.1

Page 6: Differences in frontotemporal dysfunction during social

5

3×517 16 3cm

52 2a 10-20Fp1-Fp2 30

5

19

fNIRS(K.M.) integral mode

Integral mode10 [oxy-Hb]

10 [oxy-Hb] 2

fNIRS 19, 22, 23, 35 3122 52 2a

automated anatomical labelling36

54 NIRS 37 31fNIRS 19,30

25-28 36-38 46-4922-24 32-35 43-45 29-31 39-42

50-52 2a

(4)Kruskal-Wallis

2

methodfNIRS [oxy-

Hb]55 38 [oxy-Hb] [oxy-Hb]19 Kruskal-Wallis 3

[oxy-Hb]2 2

[oxy-Hb]

[oxy-Hb] 3 FisherLR + LR

Diagnostic odds ratio; DOR

5.(1)

IQ1

Page 7: Differences in frontotemporal dysfunction during social

6

( 2 df p 2 3 2( 2

df p 2 ( 2 df 2

( 2 df p 2

3 2 MRT 3: 2 = 22.2, df = 2, p < 0.01, 2 = 0.49

2 = 24.8, df = 2, p < 0.01, 2 = 0.55MRT

( 2 = 20.8, df = 1, p < 0.01, 2 = 0.69 2 = 4.43, df = 1, p = 0.04, 2 = 0.14)

( 2 = 9.94, df = 1, p < 0.01, 2 = 0.31 2 = 14.1, df = 1, p < 0.01, 2 = 0.44)

( 2 = 2.67, df = 1, p = 0.10, 2 = 0.102 = 0.58, df = 1, p = 0.45, 2 = 0.02)

IQ27

AQ PANSS

MRTMRT PANSS

rho = 0.59 p = 0.02 IQrho = -0.56 p = 0.029 Bonferroni

MRT

(2) fNIRS 2 b c

[oxy-Hb][oxy-Hb] 3

(Fig. 2b) ( 2 = 18.3, p < 0.01, 2 = 0.36), ( 2 = 9.1, p = 0.01, 2 = 0.20) ( 2 = 13.6, p < 0.01, 2 = 0.30)

3 [oxy-Hb]

3 [oxy-Hb]3

3 ( 2 =6.40, p = 0.04, 2 = 0.14) (Fig. 2c)

[oxy-Hb]3

fNIRS[oxy-

Hb] AQ (rho = 0.62, p = 0.03 rho = 0.75, p < 0.01) 3(a) (b)

Bonferroni [oxy-Hb]

Page 8: Differences in frontotemporal dysfunction during social

7

AQ[oxy-Hb] PANSS

rho = 0.56, p = 0.03 rho = 0.68, p < 0.01) (Fig. 3c and 3d) Bonferroni

[oxy-Hb]

[oxy-Hb]

75.0% 84.6% 66.7% LR+ 2.54 LR 0.23 DOR 11.0

83.9% 92.3% 77.8% LR+ 4.15 LR 0.10 DOR 42.054.5%

66.7% 55.6% LR+ 1.50 LR 0.60 DOR 2.50

6.1

2

3

PANSS

fMRI39

fMRI

40 Suda fNIRSface-to-face AQ

42

41

41

Page 9: Differences in frontotemporal dysfunction during social

8

42 /43

44

45, 46

fMRI 47

fMRI 48

fMRI

fNIRS 19, 30, 31

12 fNIRS

49

3 fNIRS3cm 1 41 fMRI

34

32

5n = 8

n = 5fNIRS

[oxy-Hb] ( U = 21.0, p < 0.01) (U = 35.0, p = 0.04) (U = 26.0, p = 0.01)

[oxy-Hb] (U = 29.0, p = 0.02) (U = 34.0, p = 0.04)

(U = 21.5, p = 0.013)

Page 10: Differences in frontotemporal dysfunction during social

9

[oxy-Hb] 3 (, U = 10.0, p = 0.02; , U = 10.0, p = 0.02; , U = 10.0,

p = 0.02) (U = 4.0, p = 0.02)

fNIRS

fNIRS fNIRSfNIRS 50, 51

fNIRS

6 Autism Diagnostic Interview-Revised Autism Diagnostic Observation Schedule -Second Edition

7

IQ

52, 53 IQ 8

9AQ

PANSSAQ PANSS

fNIRS 30

31

fNIRS54, 55 fNIRS

7.

2

8.

Page 11: Differences in frontotemporal dysfunction during social

10

9.1 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders,

Fifth Edition. (American Psychiatric Publishing, 2013). 2 Jarbrink, K. & Knapp, M. The economic impact of autism in Britain. Autism 5, 7-22,

doi:10.1177/1362361301005001002 (2001). 3 Howlin, P., Goode, S., Hutton, J. & Rutter, M. Adult outcome for children with autism. J

Child Psychol Psychiatry 45, 212-229 (2004). 4 an der Heiden, W. & Häfner, H. in Schizophrenia, Third Edition (eds Daniel R. Weinberger

& Paul J. Harrington) Ch. 7, 104-141 (Wiley-Blackwell, 2010), doi: 10.1002/9781444327298.ch7.

5 Tobe, R. H. et al. Differential profiles in auditory social cognition deficits between adults with autism and schizophrenia spectrum disorders: A preliminary analysis. J Psychiatr Res79, 21-27, doi:10.1016/j.jpsychires.2016.04.005 (2016).

6 Sasson, N. J., Pinkham, A. E., Weittenhiller, L. P., Faso, D. J. & Simpson, C. Context Effects on Facial Affect Recognition in Schizophrenia and Autism: Behavioral and Eye-Tracking Evidence. Schizophr Bull 42, 675-683, doi:10.1093/schbul/sbv176 (2016).

7 Bliksted, V., Ubukata, S. & Koelkebeck, K. Discriminating autism spectrum disorders from schizophrenia by investigation of mental state attribution on an on-line mentalizing task: A review and meta-analysis. Schizophr Res 171, 16-26, doi:10.1016/j.schres.2016.01.037 (2016).

8 Sachse, M. et al. Facial emotion recognition in paranoid schizophrenia and autism spectrum disorder. Schizophr Res 159, 509-514, doi:10.1016/j.schres.2014.08.030 (2014).

9 Chung, Y. S., Barch, D. & Strube, M. A meta-analysis of mentalizing impairments in adults with schizophrenia and autism spectrum disorder. Schizophr Bull 40, 602-616, doi:10.1093/schbul/sbt048 (2014).

10 Eack, S. M. et al. Commonalities in social and non-social cognitive impairments in adults with autism spectrum disorder and schizophrenia. Schizophr Res 148, 24-28, doi:10.1016/j.schres.2013.05.013 (2013).

11 Barneveld, P. S., de Sonneville, L., van Rijn, S., van Engeland, H. & Swaab, H. Impaired response inhibition in autism spectrum disorders, a marker of vulnerability to schizophrenia spectrum disorders? J Int Neuropsychol Soc 19, 646-655, doi:10.1017/S1355617713000167 (2013).

12 Couture, S. M. et al. Comparison of social cognitive functioning in schizophrenia and high functioning autism: more convergence than divergence. Psychol Med 40, 569-579, doi:10.1017/S003329170999078X (2010).

13 Sugranyes, G., Kyriakopoulos, M., Corrigall, R., Taylor, E. & Frangou, S. Autism spectrum disorders and schizophrenia: meta-analysis of the neural correlates of social cognition. PLoS One 6, e25322, doi:10.1371/journal.pone.0025322 (2011).

14 Pinkham, A. E., Hopfinger, J. B., Pelphrey, K. A., Piven, J. & Penn, D. L. Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophr Res 99, 164-175, doi:10.1016/j.schres.2007.10.024 (2008).

15 Ciaramidaro, A. et al. Schizophrenia and autism as contrasting minds: neural evidence for the hypo-hyper-intentionality hypothesis. Schizophr Bull 41, 171-179, doi:10.1093/schbul/sbu124 (2015).

16 Ishii-Takahashi, A. et al. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults. NeuroImage. Clin 4, 53-63, doi:10.1016/j.nicl.2013.10.002 (2014).

17 Kawakubo, Y. et al. Developmental changes of prefrontal activation in humans: a near-

Page 12: Differences in frontotemporal dysfunction during social

11

infrared spectroscopy study of preschool children and adults. PloS one 6, e25944, doi:10.1371/journal.pone.0025944 (2011).

18 Kuwabara, H. et al. Decreased prefrontal activation during letter fluency task in adults with pervasive developmental disorders: a near-infrared spectroscopy study. Behav Brain Res 172, 272-277, doi:10.1016/j.bbr.2006.05.020 (2006).

19 Takizawa, R. et al. Neuroimaging-aided differential diagnosis of the depressive state. NeuroImage 85 Pt 1, 498-507, doi:10.1016/j.neuroimage.2013.05.126 (2014).

20 Pu, S. et al. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia. Sci Rep 6, 22500, doi:10.1038/srep22500 (2016).

21 Pu, S. et al. Associations between depressive symptoms and fronto-temporal activities during a verbal fluency task in patients with schizophrenia. Sci Rep 6, 30685, doi:10.1038/srep30685 (2016).

22 Watanuki, T. et al. Precentral and inferior prefrontal hypoactivation during facial emotion recognition in patients with schizophrenia: A functional near-infrared spectroscopy study. Schizophr Res 170, 109-114, doi:10.1016/j.schres.2015.11.012 (2016).

23 Egashira, K. et al. Blunted brain activation in patients with schizophrenia in response to emotional cognitive inhibition: a functional near-infrared spectroscopy study. Schizophr Res162, 196-204, doi:10.1016/j.schres.2014.12.038 (2015).

24 Matsuoka, K., Uno, M., Kasai, K., Koyama, K. & Kim, Y. Estimation of premorbid IQ in individuals with Alzheimer's disease using Japanese ideographic script (Kanji) compound words: Japanese version of National Adult Reading Test. Psychiatry Clin Neurosci 60, 332-339, doi:10.1111/j.1440-1819.2006.01510.x (2006).

25 Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97-113 (1971).

26 Otsubo, T. et al. Reliability and validity of Japanese version of the Mini-International Neuropsychiatric Interview. Psychiatry Clin Neurosci 59, 517-526, doi:10.1111/j.1440-1819.2005.01408.x (2005).

27 Inada, T. & Inagaki, A. Psychotropic dose equivalence in Japan. Psychiatry Clin Neurosci69, 440-447, doi:10.1111/pcn.12275 (2015).

28 Wakabayashi, A., Tojo, Y., Baron-Cohen, S. & Wheelwright, S. [The Autism-Spectrum Quotient (AQ) Japanese version: evidence from high-functioning clinical group and normal adults]. Shinrigaku Kenkyu 75, 78-84 (2004).

29 Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13, 261-276 (1987).

30 Takizawa, R. et al. Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr Res 99, 250-262, doi:10.1016/j.schres.2007.10.025 (2008).

31 Suto, T., Fukuda, M., Ito, M., Uehara, T. & Mikuni, M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry 55, 501-511, doi:10.1016/j.biopsych.2003.09.008 (2004).

32 Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M. & Moberg, P. J. Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr Bull 36, 1009-1019, doi:10.1093/schbul/sbn192 (2010).

33 Bora, E. & Pantelis, C. Meta-analysis of social cognition in attention-deficit/hyperactivity disorder (ADHD): comparison with healthy controls and autistic spectrum disorder. Psychol Med 46, 699-716, doi:10.1017/S0033291715002573 (2016).

34 Matsubara, T. et al. Prefrontal activation in response to emotional words in patients with bipolar disorder and major depressive disorder. NeuroImage 85 Pt 1, 489-497, doi:10.1016/j.neuroimage.2013.04.098 (2014).

35 Ohtani, T. et al. Association between longitudinal changes in prefrontal hemodynamic responses and social adaptation in patients with bipolar disorder and major depressive

Page 13: Differences in frontotemporal dysfunction during social

12

disorder. J Affect Disord 176, 78-86, doi:10.1016/j.jad.2015.01.042 (2015).36 Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a

macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273-289, doi:10.1006/nimg.2001.0978 (2002).

37 Tsuzuki, D. et al. Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage 34, 1506-1518, doi:10.1016/j.neuroimage.2006.10.043 (2007).

38 Sato, H. et al. A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. NeuroImage 83, 158-173, doi:10.1016/j.neuroimage.2013.06.043 (2013).

39 Kleinhans, N. M. et al. Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia 48, 3665-3670, doi:10.1016/j.neuropsychologia.2010.07.022 (2010).

40 Carter, E. J., Williams, D. L., Minshew, N. J. & Lehman, J. F. Is he being bad? Social and language brain networks during social judgment in children with autism. PLoS One 7, e47241, doi:10.1371/journal.pone.0047241 (2012).

41 Suda, M. et al. Autistic traits and brain activation during face-to-face conversations in typically developed adults. PLoS One 6, e20021, doi:10.1371/journal.pone.0020021 (2011).

42 Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3, 201-215, doi:10.1038/nrn755 (2002).

43 Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15, 483-506, doi:10.1016/j.tics.2011.08.003 (2011).

44 Abu-Akel, A. & Shamay-Tsoory, S. Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia 49, 2971-2984, doi:10.1016/j.neuropsychologia.2011.07.012 (2011).

45 Corradi-Dell'Acqua, C., Hofstetter, C. & Vuilleumier, P. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex. Soc Cogn Affect Neurosci 9, 1175-1184, doi:10.1093/scan/nst097 (2014).

46 Saxe, R. & Kanwisher, N. People thinking about thinking people. The role of the temporo-parietal junction in "theory of mind". Neuroimage 19, 1835-1842 (2003).

47 Di Martino, A. et al. Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol Psychiatry 65, 63-74, doi:10.1016/j.biopsych.2008.09.022 (2009).

48 Uddin, L. Q. et al. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869-879, doi:10.1001/jamapsychiatry.2013.104 (2013).

49 Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. Human neural systems for face recognition and social communication. Biol Psychiatry 51, 59-67 (2002).

50 Matsuo, K., Kato, N. & Kato, T. Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy. Psychol Med 32, 1029-1037 (2002).

51 Yokoyama, C. et al. Dysfunction of ventrolateral prefrontal cortex underlying social anxiety disorder: A multi-channel NIRS study. Neuroimage Clin 8, 455-461, doi:10.1016/j.nicl.2015.05.011 (2015).

52 Fett, A. K. et al. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev 35, 573-588, doi:10.1016/j.neubiorev.2010.07.001 (2011).

53 Ventura, J., Hellemann, G. S., Thames, A. D., Koellner, V. & Nuechterlein, K. H. Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: a meta-analysis. Schizophr Res 113, 189-199, doi:10.1016/j.schres.2009.03.035 (2009).

54 Brigadoi, S. et al. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage 85 Pt 1, 181-191,

Page 14: Differences in frontotemporal dysfunction during social

13

doi:10.1016/j.neuroimage.2013.04.082 (2014).55 Tak, S. & Ye, J. C. Statistical analysis of fNIRS data: a comprehensive review. Neuroimage

85 Pt 1, 72-91, doi:10.1016/j.neuroimage.2013.06.016 (2014).

Page 15: Differences in frontotemporal dysfunction during social

14

10.

1.

(n = 13) (n = 15) (n = 18) p

( ) 30 [23.3 38.5]

36 [29 47]

34.5 [28 38.5] 0.18a

( / ) 12/1 12/3 13/5 0.38b

IQ 106.0 [99.5 115.9]

100.0 [91.3 109.6]

102.9 [94.9 107.9] 0.32a

AQ

8 [5 9] - - - 8 [5 9] - - - 5 [3 7] - - -

6 [4 8] - - -

5 [4 6] - - -

31 [25 34.5] - - -

PANSS

- 9 [7 10] - -

- 14 [12 21] - -

- 21 [19 24] - -

- 45 [41 53] - -

(mg)0 [0 75] 800 [489.4 1300] - < 0.01c

(mg) 38 [6.3 12.5] 0 [0 0] - < 0.01c

( ) - 11 [8 23] -

AQ, autism spectrum quotient PANSS, Positive and Negative Syndrome Scalea, Kruskal-Wallis b, Pearson 2 c, Mann-Whitney U

Page 16: Differences in frontotemporal dysfunction during social

15

2.

ap < 0.01 by Kruskal-Wallis Test bp < 0.05 vs. cp< 0.01 vs. dp < 0.01 vs. MRT, mean reaction time

a 16 [10.5 19]b

10 [8 14]

11.5 [8.8 16]

(%) 100 [100 100]

100 [100 100]

100 [100 100]

MRT (ms)a1483.1

[1431.41614.8]c

1079.2 [900.81593.4]d

852.1 [779.4 1006.6]

(%) 100 [91.7 100]

100 [91.7 100]

100 [100 100]

MRT (ms)a 2001.7 [1784.8 2231.7]c

1946.5 [1472.52270.3]d

1251.5 [1076.6

1426.7]

Page 17: Differences in frontotemporal dysfunction during social

16

3. fNIRS

vs.

2 = 7.86, p < 0.01,

2 = 0.26

2 = 14.5, p < 0.01,

2 = 0.48

2 = 12.7, p < 0.01,

2 = 0.42

vs. 2 = 0.63,

p = 0.43, 2 = 0.02

2 = 4.70, p =0.03,

2 = 0.15

2 = 3.81, p = 0.05,

2 = 0.12

vs.

2 = 5.41, p = 0.20,

2 = 0.20

2 = 5.20, p = 0.02,

2 = 0.19

2 = 3.66, p = 0.06,

2 = 0.14

vs.

2 = 5.77, p = 0.02,

2 = 0.19- -

vs. 2 = 3.40,

p = 0.07, 2 = 0.11

- -

vs.

2 = 0.06, p =0.80,

2 = 0.02- -

Kruskal Wallis

Page 18: Differences in frontotemporal dysfunction during social

17

1.

ìè ­ ìè ­ ìè ­ ìè ­ ìè ­

Page 19: Differences in frontotemporal dysfunction during social

18

2. fNIRS[oxy-Hb]

a fNIRS

25-28 36-38 46-49

Page 20: Differences in frontotemporal dysfunction during social

19

22-24 32-35 43-45 29-31 39-42 50-52b c

3[oxy-Hb]

Kruskal-Wallis ASD(SCZ) (Healthy) [oxy-Hb]

Page 21: Differences in frontotemporal dysfunction during social

20

3. [oxy-Hb]AQ

[oxy-Hb] :(a)(b) (

[oxy-Hb] PANSS (c) (d)rho Spearman rho