14
J Anim Ecol. 2017;1–14. wileyonlinelibrary.com/journal/jane | 1 © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society Received: 28 June 2016 | Accepted: 2 March 2017 DOI: 10.1111/1365-2656.12700 ALLEE EFFECTS IN ECOLOGY AND EVOLUTION Differential dispersal and the Allee effect create power-law behaviour: Distribution of spot infestations during mountain pine beetle outbreaks James A. Powell 1 | Martha J. Garlick 2 | Barbara J. Bentz 3 | Nicholas Friedenberg 4 1 Departments of Mathematics & Statistics and Biology, Utah State University, Logan, UT, USA 2 Department of Mathematics & Computer Science, South Dakota School of Mines and Technology, Rapid City, SD, USA 3 USDA-FS Rocky Mountain Research Station, Forestry Sciences Lab, Logan, UT, USA 4 Applied Biomathematics, Setauket, NY, USA Correspondence James A. Powell Email: [email protected] Handling Editor: Anna Kuparinen Abstract 1. Mountain pine beetles (MPB, Dendroctonus ponderosae Hopkins) are aggressive in- sects attacking Pinus host trees. Pines use defensive resin to overwhelm attackers, creating an Allee effect requiring beetles to attack en masse to successfully repro- duce. MPB kill hosts, leaving observable, dying trees with red needles. Landscape patterns of infestation depend on MPB dispersal, which decreases with host den- sity. Away from contiguously impacted patches (low beetle densities), infestations are characterized by apparently random spots (of 1–10 trees). 2. It remains unclear whether the new spots are spatially random eruptions of a locally endemic population or a mode of MPB spread, with spatial distribution determined by beetle motility and the need to overcome the Allee effect. 3. To discriminate between the hypothesis of population spread versus independent eruption, a model of spot formation by dispersing beetles facing a local Allee effect is derived. The model gives rise to an inverse power distribution of travel times from existing outbreaks. Using landscape-level host density maps in three study areas, an independently calibrated model of landscape resistance depending on host density, and aerial detection surveys, we calculated yearly maps of travel time to previous beetle impact. Isolated beetle spots were sorted by travel time and compared with predictions. Random eruption of locally endemic populations was tested using artificially seeded spots. We also evaluated the relationship between number of new spots and length of the perimeter of previously infested areas. 4. Spot distributions conformed strongly to predicted power-law behaviour. The spa- tially random eruption hypothesis was found to be highly improbable. Spot num- bers grew consistently with perimeter of previously infested area, suggesting that MPB spread long distances from infestation boundaries via spots following an in- verse power distribution. 5. The Allee effect in MPB therefore accelerates, rather than limits, invasion rates, contributing to recent widespread landscape-scale mortality in western North America. KEYWORDS bark beetle, Dendroctonus ponderosae, patchy spread, power-law, travel time

Differential dispersal and the Allee effect create power ... etal_Diff dispersal and... · Journal of Animal Ecology ... , MPB population size, weather and behaviour-mod-ifying chemicals

Embed Size (px)

Citation preview

J Anim Ecol. 2017;1–14. wileyonlinelibrary.com/journal/jane  | 1© 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society

Received:28June2016  |  Accepted:2March2017DOI: 10.1111/1365-2656.12700

A L L E E E F F E C T S I N E C O L O G Y A N D E V O L U T I O N

Differential dispersal and the Allee effect create power-law behaviour: Distribution of spot infestations during mountain pine beetle outbreaks

James A. Powell1  | Martha J. Garlick2 | Barbara J. Bentz3 | Nicholas Friedenberg4

1DepartmentsofMathematics&StatisticsandBiology,UtahStateUniversity,Logan,UT,USA2DepartmentofMathematics&ComputerScience,SouthDakotaSchoolofMinesandTechnology,RapidCity,SD,USA3USDA-FSRockyMountainResearchStation,ForestrySciencesLab,Logan,UT,USA4AppliedBiomathematics,Setauket,NY,USA

Correspondence JamesA.Powell Email:[email protected]

HandlingEditor:AnnaKuparinen

Abstract1. Mountainpinebeetles(MPB,Dendroctonus ponderosaeHopkins)areaggressivein-sectsattackingPinushosttrees.Pinesusedefensiveresintooverwhelmattackers,creatinganAlleeeffectrequiringbeetlestoattackenmassetosuccessfullyrepro-duce.MPBkillhosts,leavingobservable,dyingtreeswithredneedles.LandscapepatternsofinfestationdependonMPBdispersal,whichdecreaseswithhostden-sity.Awayfromcontiguouslyimpactedpatches(lowbeetledensities),infestationsarecharacterizedbyapparentlyrandomspots(of1–10trees).

2. ItremainsunclearwhetherthenewspotsarespatiallyrandomeruptionsofalocallyendemicpopulationoramodeofMPBspread,withspatialdistributiondeterminedbybeetlemotilityandtheneedtoovercometheAlleeeffect.

3. Todiscriminatebetweenthehypothesisofpopulationspreadversusindependenteruption,amodelofspotformationbydispersingbeetlesfacingalocalAlleeeffectisderived.Themodelgives rise toan inversepowerdistributionof travel timesfromexistingoutbreaks.Using landscape-levelhostdensitymaps in threestudyareas, an independently calibratedmodel of landscape resistance depending onhostdensity,andaerialdetectionsurveys,wecalculatedyearlymapsoftraveltimetopreviousbeetle impact. Isolatedbeetle spotswere sortedby travel time andcomparedwithpredictions.Randomeruptionoflocallyendemicpopulationswastestedusingartificiallyseededspots.Wealsoevaluatedtherelationshipbetweennumberofnewspotsandlengthoftheperimeterofpreviouslyinfestedareas.

4. Spotdistributionsconformedstronglytopredictedpower-lawbehaviour.Thespa-tiallyrandomeruptionhypothesiswasfoundtobehighlyimprobable.Spotnum-bersgrewconsistentlywithperimeterofpreviouslyinfestedarea,suggestingthatMPBspreadlongdistancesfrominfestationboundariesviaspotsfollowinganin-versepowerdistribution.

5. TheAlleeeffect inMPBthereforeaccelerates, rather than limits, invasion rates,contributing to recent widespread landscape-scale mortality in western NorthAmerica.

K E Y W O R D S

barkbeetle,Dendroctonus ponderosae,patchyspread,power-law,traveltime

2  |    Journal of Animal Ecology POWELL Et aL.

1  | INTRODUCTION

TheAlleeeffectistheacceleratingimpactofconspecificnumbers/densities on some aspect of fitness for small populations (Allee,1931).At the levelofpopulations, a “demographic”Alleeeffect isthepositivedensitydependenceofpopulationgrowthrateaspop-ulation size grows from zero (Stephens, Sutherland,& Freckleton,1999). Small populations experienceAllee effects through severalgoverninginteractionsthataffectindividualfitness,includinggroupforaging,defenceagainstpredatorsandmatefinding(Lande,1998).A “strong”Alleeeffectoccurswhengrowth ratesarenegative forpopulations below a critical threshold (Wang & Kot, 2001). Alleeeffectsarecommonacrosstheanimalkingdomandalsoappearfre-quentlyinotherorganisms(Taylor&Hastings,2005andreferencestherein).

Allee effects are often associatedwith “patchy” spread or in-vasion (Morozov, Petrovskii, & Li, 2006; Petrovskii, Morozov, &Venturino,2002).Patchinesscanbeanemergent,passiveresponsetoheterogeneityofspaceand/orstochasticityofdispersal.Forex-ample,geneticdiversityofSpartina alternifloraclumpsinPacifices-tuaries improves seedproduction in plants throughhybridvigour,and consequently occasional accidents of dispersal create diverseclumpswithmuchhigher reproduction rates than individuals, cre-ating anAllee effect (Taylor, Davis, Civille, Grevstad, & Hastings,2004).Patchinesscanalsodevelopduetothegrowthof instabili-tiesandsubsequentfilteringbytheAlleeeffect(Wang,Shi,&Wei,2011),amechanismwhichalsodependsonpassivedispersal.Gypsymoths(Lymantria dispar)spreadbystratifieddispersal(i.e.short-andlong-distancedispersaloccurviadifferentprocesses,withseparatedispersal kernels), establishing stable, isolated patches only afterepisodiclong-distancedispersaleventsthatsurvivethesubsequentAlleegauntlet(Sharov&Liebhold,1998).Environmentalheteroge-neitycanleadtolocalizedpopulationsexceedingtheAlleethresh-old,suchasinpatchesoffavourablehabitatwheretheAlleeeffectislocallyreduced.Inallofthesecases,patchyspreadiscreatedbypassive dispersal, and theAllee threshold is exceeded indiscrimi-nately, resulting inpatchestablishment.Asmorepatches are cre-ated they coalesce and become a source population (Liebhold &Tobin,2008).

SpeciesfacingstrongAlleeeffectswilladapttoovercomethem.Allee (1931)himself recognizedthataggregationwastheprimarymechanism by which species increase survival rates and arguedthatonlyinthesimplestorganismswouldaggregationbehappen-stance.Except in rare, small,well-mixedsystems,populationsarelikelytohaveactivedispersaladaptationsforaggregating individ-uals. Understanding the population-level expression of the Alleeeffect will require understanding the aggregation mechanisms.Example mechanisms include habitat selection in heterogeneousenvironments(Greene,2003),congregationviadensity-dependentdispersal (Turchin,1989)andpheromoneresponses inarthropods(Wertheim, van Baalen, Dicke, & Vet, 2005). Aggregations thatresult from active dispersal at lowpopulation densitieswill drawdownsurroundingpopulationsandleadtospatialtrade-offswhich

maybeexpressed independentlyfromthoseoccurringasaresultof landscapeheterogeneity.Moreover,whenthe landscapeoffersvaryingresistancetomovement,aggregationshouldbemorelikelyinpatchesthatareeasiertoaccessorcausebottleneckstoother-wise fluidmovement. Thus, patterns of patchy spread in speciesactivelyaggregating toovercomeAlleeeffectscouldbemarkedlydifferentthaninspecieswithindiscriminatepatchcreation.

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) provides an excellent opportunity to study active patchformationinaspeciesfacinganAlleeeffect.MPBisaneconomicallyand ecologically important native species that has caused signifi-cantmortalityinPinusforestsacrossthewesternUnitedStatesandCanada (Meddens,Hicke,&Ferguson,2012).Dueto itseconomicimpact, there isan impressiveamountofscientific informationonMPB, and it has been established that active dispersal processesat large and small spatial scales play a central role in populationoutbreakdynamics(Logan,White,Bentz,&Powell,1998;Powell&Bentz,2014).

Unlike many phytophagous insects, successful MPB reproduc-tionusuallyresultsindeathofallorpartofthehost.Hosttreeshaveevolvedvaryingchemicalandresinresponsesthatreducevulnerabil-itytoattackbybarkbeetlesandtheirfungalandbacterialassociates(Booneetal.,2013;Kane&Kolb,2010;Raffa,Powell,&Townsend,2012).Vigorous,well-defendedtreesrequirerapidattackandcoloni-zationbyalargenumberofbeetles(i.e.amassattack)tooutpacetreeresponses(Berryman,Dennis,Raffa,&Stenseth,1985), leadingtoastrongAlleeeffectforthebeetles.Conversely,treesstressedbybioticandabioticagentshavea reducedcapacity fordefenceandcanbeovercomebylownumbersofbeetles(Raffa,Aukema,Erbilgin,Klepzig,&Wallin,2005;Safranyik&Carroll,2006).Thebetterdefended,morevigorous trees tend tobe larger andhavehighernutritional qualitythereby leading toapositive feedbackasbeetlepopulationdensityincreases (Boone,Aukema,Bohlmann,Carroll,&Raffa, 2011;Raffaetal.,2008).

EpidemicMPBpopulationdynamicsarewell-describedbyphenol-ogy,host-dependentdispersalandtheAlleeeffect (Powell&Bentz,2009,2014).Beetlesemergedailyfrompreviouslyinfestedhostsanddisperse with motility decreasing exponentially with host density.Where the dispersed population exceeds the Allee threshold newhosts are successfully colonized. Powell and Bentz (2014) showedthatthiscombinationofmechanismsdescribes85%oftheobservedspatialpatternofbeetle-killedtreesonkilometrescales.Interestingly,wherethePowellandBentz(2014)modelmissedpredictingobservedimpacts(approximately8%ofthelandscape),thetypeofimpactwassmall,isolatedspots.Thesespotsrepresentatrivialportionofagivenyear'sMPBfootprintduringanepidemic,buttheevolvingpatterninsubsequentyearsdependsstronglyonthedensityandspatiallocationofspotsacrossthelandscape.

Regardless of whether satellite spots are caused by beetlesdispersingfromthemainbodyofanoutbreak,spot initiationandgrowthdependsonMPBmovement,conditionedbyhosttreeavail-abilityandsize,MPBpopulationsize,weatherandbehaviour-mod-ifying chemicals (Mitchell & Preisler, 1991; Safranyik, Linton,

     |  3Journal of Animal EcologyPOWELL Et aL.

Silversides,&McMullen,1992).Hostkairomonesplayasignificantrolebysignallingtreesthatareunderstresscausedbybioticandabioticfactors(Chapman,Veblen,&Schoennagel,2012;Goheen&Hansen,1993).Atlowerbeetledensities,afteraweakenedtreeisfound, aggregation is facilitatedbypheromones,which throughasynergistic reactionwith host defensive compounds attract addi-tionalbeetles(Raffaetal.,2005),resultinginmassattacksonasin-gletree.Followingaggregationtooneorseveralweakenedtrees,thenumberofadultbeetlesnecessarytoovercometheAlleeeffectonmorevigorouslydefendedhosttreesbecomeavailableandat-tackingbeetlesswitchtonearbytrees,creatingaspotwithonetoseveralkilledhosts.Wehypothesizethatspotcreationisnotindis-criminate,butinsteadthatthespatialdistributionofMPBspotsaretheresultofdispersersleavingtheperimeterofpreviouslyaffectedareas,spreadingdifferentiallyduetohost-dependentmotilityandaggregating locallytomassattacktrees.Furthermore,wesuggestthat thespatialdistributionofspots reflects landscaperesistancetobeetlemovement.

MPB are not likely to disperse to distant focus trees if accept-ablehostsareencounteredfirst.PowellandBentz(2014)calibratedamodelofMPBmovementbasedonhosttreedensity-derivedbee-tlemotilitywherein resistance to beetlemovement increases expo-nentially with host tree density. Assuming that potential spot fociarerandomlydistributedpercapitaamonghosts,wearguethat thedistributionofspotsshouldfollowapower-lawdistributionintraveltime along landscape paths of least resistance frombeetle sources.Thepowerlaw,inwhichspatialprobabilityofspotoccurrenceispro-portionaltoanegativepoweroftraveltime,arisesbecauseincreasingencounter rates forweakened focal trees correlatewith decreasingmotilityashostdensitiesincrease.Moreover,becausetheperimeterofpreviouslyinfestedareaswouldbetheprimarysourceofdispersers,wehypothesizethattheyearlynumberofnewspotsshouldscalewithperimetersize.

Wetest thesehypothesesusingaerial surveysofMPB-causedtreemortality and host tree density data for three study areas inIdaho, Washington and Colorado. Annual occurrence of isolatedspotswere identified and travel time between each spot and thenearest contiguous area ofMPB-killed trees that could provide abeetlesourcewas recorded.Thedistributionofobservedspots intraveltimewasdetermined,andthenumberofspotscomparedwiththeperimetersizeofpreviouslyinfestedareas.Analternatehypoth-esis,thatspotsoccurasrandomeruptionsofanendemicbeetlepop-ulation,wasalsoexamined.Theobservednumberofspotseachyearwereseededspatiallyatrandomandtestedforpossiblepower-lawbehaviour.We found that thepower-lawhypothesiswas stronglysupportedacrossmanyyearsofobservations,while randomerup-tionwashighlyimprobable.Yearlyspotnumbersscalewitharoughmeasure of the size of the perimeter of previous infested areas,supportingthecontentionthatbeetlesdispersefromtheedgesofmajor infestations to invade new areasvia spots.Accelerating in-vasionratesareoneconsequenceofpower-lawdispersal,whichisconsistentwithobservationsofMPB'sexplosivespreadinwesternNorthAmerica.

2  | MATERIALS AND METHODS

2.1 | Study areas

2.1.1 | Sawtooth study area

TheSawtoothstudyarea incentral Idaho (Figure1) isa rectangularregion fromapproximately44◦22′N to43◦44′N (∼60km) and115◦

10′Wto114◦28′W(∼30km),comprisingover180,000ha,includingtheSawtoothNationalRecreationArea.Asinglehost,lodgepolepine,predominatesfrom1,650to2,000mandgrowsinstandswithrela-tivelyhomogeneousdemographicsatthelowestelevations.Theland-scape is characterizedby a valley and surroundingmountains,withelevationsfrom1,650to3,600m.Vegetationtypesrangefromshrubandgrasslandstoconiferousforestswithlodgepolepine,Douglasfir(Pseudotsuga menziesii (Mirb.) Franco), subalpine fir (Abies lasiocarpa [Hook.]Nutt),andwhitebarkpine(P. albicaulisEngelm.)athigheral-titudes.Densitiesofpineaverage450trees/ha,althoughthevalleyincludesmanydensestandsof1,000trees/haaswellasmeadowsandpasturelandwithnohosts.Extensivebarrenareasexistabovetree-lineatthehighestelevations.Between1995and2005,aMPBout-breakoccurredthroughouttheSawtoothstudyarea,impactingmorethanathirdofthepinehosttype(Pfeifer,Hicke,&Meddens,2011).

2.1.2 | Chelan study area

TheChelanstudyareainnorthernWashington(Figure1)encompasses446,000ha, fromapproximately47◦56′N to48◦35′Nand from119◦

F IGURE  1  Studyareasusedinthispaper.Allstudyareashadatleast10yearsofcontinuousaerialdetectionsurveyformountainpinebeetleimpact.Anoutbreakoccurredbetween1995and2005intheSawtoothandbetween2001and2010inColorado.IntheChelanstudyarea,multi-modalimpactoccurredover20years,peakingin2008

WA

ID

CO

Sawtoothstudy area

Coloradostudy area

Chelanstudy area

CA

MT

AZ

NV

NM

OR

UT

TX

WY

ND

SD

NE

KS

0 250 500 km

4  |    Journal of Animal Ecology POWELL Et aL.

52′W to120◦44′W.Elevations range from336mat LakeChelan topeaks at 2,700m. The study area is comprisedof public andprivatelands, including portions of the Methow Valley and Chelan RangerDistricts,Okanagan-WenatcheeNational Forest andNorthCascadesNational Park. TheMethowRiver drainage characterizes the easternhalf of the study area. Coniferous vegetation within the study areaincludeponderosapine(P. ponderosa),lodgepolepine,whitebarkpine,Englemannspruce(Picea englemanniiParry)andDouglasfir,withhostpinetreesaveraging500trees/ha.TheChelanstudyareaboundarywaschosentoencompasspinevegetationsusceptibletoMPB infestationandactiveMPBpatchesbasedongroundsurveys.MPBimpactbeganinthelate1990sandpeakedin2008(Crabb,Powell,&Bentz,2012).

2.1.3 | Colorado study area

The Colorado study area contains over 4,380,000ha in northernColorado, including Rocky Mountain National Park, North Park andseveralofColorado'shighestpeaks (Figure1). Elevations range from1,700mon theFrontRangewestofFortCollins toover4,300matLongsPeak.ThestudyareabeginsroughlyatInterstate70inthesouthand reaches in the north to approximately 41◦50′N (into southernWyoming),intheeastto105◦0′W,andinthewestto108◦0′W,encom-passing portions of theMedicineBow-Routt andArapaho-RooseveltNationalForests.ThesouthernboundaryalongtherouteofI-70waschosen as a natural break inMPB impacts, andwestern boundarieswere chosen to encompass impacted regions as far to the west asGlenwoodSprings.Conifersincludelodgepoleandlimberpines(P. flexi-lis),Engelmannspruce,subalpinefirandDouglasfir,andaveragepinehostdensitiesare780trees/haacrossthearea.SignificantMPBimpactbeganintheearly2000sandpeakedin2007(Crabbetal.,2012).

2.2 | Data sources

2.2.1 | Pine density data

Spatiallyexplicitdatasetsofpinedensityat30-mresolutionwerede-rivedforthestudyareasusingexistinggeospatialdatasetsofvegeta-tioncompositionandstructure.Briefly,fortheSawtoothandColoradostudyareasforestdensity(treesperhectare>2.54cmDBH)at250-mresolution,developedbytheUSDAForestServiceFIA(Blackardetal.,2008),weredownscaledto30-mresolutionusingdatafromtheinter-agency Landscape Fire and Resource Management Planning ToolsProject(LANDFIRE).DatafromtheGNNFireproject(LEMMA,2005;Pierce,Ohmann,Wimberly,Gregory,&Fried,2009)wereusedtode-rivepinedensitymatricesofpotentialpinehostsfortheChelanstudyareaat30-mresolutions.MethodsforallstudyareasaredescribedindetailbyCrabbetal.(2012).

2.2.2 | Aerial detection survey data

Geo-referenced data describing the annual number of MPB-killedtreeswereobtainedforallthreestudyareasbeginningin1991fortheSawtooth, 1980 forChelan and2001 fornorthernColorado (USDA

Forest Service, http://www.foresthealth.info/portal). The aerial de-tectionsurveys(ADS)areconductedinfixed-wingaircraftbytrainedobserverswhomanuallyrecordnumbersofkilledtreesbasedonthecolouroftreefoliage(Halsey,1998).Foliageofdead,beetle-killedtreeschangesfromgreentoredwithinasingleyear,andinsubsequentyearsthefoliageturnsgreyandneedlesarelost.ADSdatasetsincludepoly-gonshapefileswithmetadatadescribingtheestimatednumberoftreesperacreaffectedandacodeforthedamagecausalagent(s).PolygonsdepictingMPBimpactwerequeriedusingtheiruniquecode.RastersoftotalMPBimpactbyyearwerecreatedbysummingMPBimpactsacrossallpinehosttypesforeachpolygonthenconvertingto30-mrasters.Forpurposesof this study, rasterswereconverted toeitheroneorzerotoindicatewhetherornotMPBinfestationwasobservedinapixelonagivenyear.RasterswerekeptinthecoordinatesystemoftheADSshapefiles,NorthAmericanDatum1983Albers,andothergeospatialrasterdatausedinthisstudywereconvertedtothisprojec-tionat30-mresolutionusingArcGIS9.3software(ESRI,2008).

2.2.3 | Diagnosing isolated spots

We defined a spot as a single 30-m pixel withMPB impact, sur-roundedbypixelswithno impact.LetADSn

i,j indicatethepresence

(1)orabsence(0)ofMPBimpactinapixelinrowi, column joftheADSrasterforyearn.Todeterminethelocationofapotentialiso-latedspot,weappliedadiscretesecondderivativetest,recordingallpositionsbelow50%ofthemaximumsecondderivativefortheyear,

whereΔx is thepixelwidth (30m).Theminussign isusedbecausespotsarelocalmaximawithlargenegativeconcavity.Eachpotentialspotwasthenscreenedtotestwhethertheeightsurroundingpixelswere impact-free (guaranteeing it to be separated from contiguousregionsof impact).The listofverifiedspot locations inayearwererecordedforfurtheranalysis.

2.3 | Determining travel times to spots from previously infested areas

2.3.1 | Resistance to movement, motility and pixel residence time

Theecologicaldiffusionmodel(Turchin,1998)describesthepopula-tion-level distribution,P(x,y,t), that emerges from individual randomwalkswithmovementprobabilitiesbasedonlocalhabitatinformation:

(Okubo&Levin,2001;Patlak,1953).Theindividualmovementprob-abilityat anypoint in space isproportional to the “motility” at thatpoint,μ(x,y),resultinginvariablepatchresidencetimeswhicharein-versely proportional to μ. In a homogeneous environment, motility

ΔADSn

i,j

def=

1

Δx2

(ADS

n

i+1,j+ ADS

n

i−1,j+ ADS

n

i,j+1+ ADS

n

i,j−1− 4ADS

n

i,j

)

≤−1

2maxi,j

|||ΔADS

n

i,j

|||,

∂P

∂t=

(∂2

∂x2+

∂2

∂y2

)[μ(x, y)P

]

     |  5Journal of Animal EcologyPOWELL Et aL.

isthesameasthediffusionconstantandhasunitsofareapertime.In variable environments, ecological diffusion is verydifferent fromstandard(“Fickian”)diffusion,inwhichthediffusionconstantisinter-mingledwithderivatives

(e.g. ∂

∂x(D(x) ∂

P

∂x

) inonedimension). Ineco-

logicaldiffusion,allspatialderivativesapplytotheproductofmotilityandpopulationdensity(μ(x, y)P),supporting“weak”solutionswithdis-continuitieswherehabitattypeschangeandlong-termsolutionswithdensities inverselyproportional tomotility leadingtoaggregation infavourable(highresidencetime)habitat.Intuitively,themathematicaljustificationforecologicaldiffusion is that thediffusionprocessap-pliesonlytothoseindividualschoosingtoleaveapatch(thenumberofwhichisproportionaltoμP,theproductofmovementprobabilityandthedensityavailabletodepart).Thus,theLaplacian, ∂

2

∂x2+ ∂

2

∂y2,ap-

pliesonly to themovingpopulation,μP.Moremathematical detailsaboutthedifferencesbetweenecologicalandFickiandiffusion,andtheconsequencesforlarge-scalepopulationmovement,canbefoundinGarlick,Powell,Hooten,andMcFarlane(2011).

Motilityinapatchisinverselyrelatedtomeanresidencetimesforindividuals in thepatch (Turchin,1998); inapixelwithareaΔx2 theexpectedresidencetimeofindividualsis

ForMPB,PowellandBentz(2014)showedthatbeetlepopulationshavemotilityfollowinganegativeexponentialwithhostdensity,

where Si,j is the density of hosts in pixel i,j, scaled in thousands ofhostsperhectare,μ0 is themaximummotility (3.79km

2/day) in theabsenceofhosts,andμ1 = −10.9 is therelativerateofmotilityde-cline with host density. This model for motility reflects the timespent by beetles searching an increasingly complex environmentfor chemical plumes and potentially susceptible hosts. The param-eter μ̂1 =

μ1+ln (μ0)

1000= 1.3472×10−3 is introduced for convenience.

Converting tominutesduringa10-hr flightday, thismodel gives ameanresidencetimeof64minina30-mpixelcontainingadensityof500hosts/ha.Residencetimeinapixelwithnotreesis8.5s(corre-spondingtoanaveragespeedof3.5m/sforMPBcrossingunforestedpixels).Thisvariability inresidencetimescausesbeetlestodisperserapidly through areas with few hosts and aggregate in areas withhigherhostdensity.

2.3.2 | Minimum travel time for attacking MPB

If a beetle follows a path passing throughK pixels,{(ik, jk)}Kk=1, theexpectedtraveltimeis

Pathsfollowedbybeetleswhenparticipatinginaspotattackcannotbeknownapriori.However,beetlesaremorelikelytobesuccessfulatovercominghostdefencesinlocationswheretraveltimestobeetle

sourcesare shorter.We thereforehypothesize thatobservedspotswillbestructuredaccordingtominimaltraveltimesfromthenearestbeetlesources.

Theminimumtraveltimetoapointinalandscape,T,satisfiestheeikonalequation,

whichconnectsminimumtraveltimes(T)andresidencetimesthroughthe gradient vector, (Tx,Ty) = ∇T (subscripts indicate partial deriva-tives).InEquation(1),thetemporalcostofmovementfromonepixeltothenext (i.e. therateofchangeoftravel time) isproportional tohowlongbeetlesspendinthespacebetween(i.e.theresidencetime).Theeikonalequation isdifficult tosolveanalytically,butcanbeef-ficiently solved numerically using the fast sweepingmethod (Zhao,2004). This approach iterates to a solution in a pixel by examiningneighbourstodeterminewhichhasthelowesttraveltime,thenup-datingprojected travel timebyadding thecurrentpixel's residencetimetotheminimumamongnearestneighbours.

BecausebeetlescomefromtreesinfestedinthepreviousyearweuseADSdatainyearn−1tosetTi,j = 0 inpixelswithsourcepopu-lationsofbeetles.ThefastsweepingmethodthengeneratesminimaltraveltimesfromtheperimeterofobservedADSimpact inthepre-viousyeartoallotherpointsonthelandscape,conditionedbyinter-veninghostdensitywhichaltersmotilityinpixelsbetweenspotsandthenearestsources(1).Ineveryyear,thetraveltimemapisdifferentbecausethelocationofsourcepopulationschanges.Figure2depictsprojected travel times for a portionof the Sawtooth study area for2001.

Observed travel times at spot locations were recorded yearly,using that year's spatial pattern of travel times resulting from hostdensitiesandADSimpactfromthepreviousyear.Acrossallyearsineachstudyarea(8intheSawtooth,10inColoradoand20inChelan),ahistogramofobservedtraveltimetospotswascreated.Thenumberofbinswaschosensothatthebincorrespondingtothelargesttraveltimesheldat leastonepercentofthetotalnumberofobservations.Thebincontainingzerotraveltimewasignored(asapeculiarityoftheADSdataisthatisolatedspotsaresometimesobservedinsidepoly-gons indicatingcontiguous impact inthepreviousyear,seeFigure2foranexample).Ineachcase,apower-lawcurvewasfittothebinnedobservations using nonlinearmaximum likelihood on the arithmeticscaleandassumingnormaldistributionoferrors.

2.4 | Predicted distribution of spots

We assume that spotswhere beetles have overcome theAllee ef-fect are most likely at foci located with minimal travel time fromsourcepopulations.ConsiderabeetlepathpassingthroughKpixels,{(ik, jk)}

K

k=1.Ifpotentialfociarerandomlydistributedamonghosts,the

probabilityofpassingthroughpixelk and notencounteringaweak-enedfocustreeisexp [−αΔx2Sik ,jk ],whereαisthepercapitaencoun-terrateforweakenedtrees.TheprobabilityofpassingpixelKonthepathistherefore

ΔT =Δx2

μ.

(1)μ = μ0 exp

[

−(μ1+ ln (μ0)

) Si,j

1,000

]

= μ0 exp[−μ̂1Si,j

],

(2)K∑

k=1

Δx2

μ0eμ̂1Sik , jk .

(3)‖∇T‖ =

�T2x+T2

y=

Δx

μ0eμ̂1S,

6  |    Journal of Animal Ecology POWELL Et aL.

Minimizingtraveltimetothefinalpixelrequiresthatthepathencoun-terasfewhostsaspossibletoreducetime in interveningpixels,soSik ,jk ≪SiK ,jKonpathsthatendinisolatedspots.Theprobabilityofpass-ingpixelKbecomes

becauseexp (−αΔx2Sik ,jk )≈1 for theearlier, low-densitypixelsalongthepath.Actualtraveltimealongthepathwillbedominatedbythecontributionofthefinal,mostdenselystockedpixel,givinganapprox-imatetraveltimetopixelKof

Wecannowfind thecumulativedensity function (CDF) forT≤TK, using(4),

Equation(5)canberearrangedtoexpressdensityinthefinalpixelasafunctionofTK,

andnowtheCDF,(6),canbewrittenintermsofTK alone,

Theprobabilitydensityfunction,p(T), fortraveltimestospots isproportionaltothederivativeof(7),

givingapowerlawinminimaltraveltime.

2.5 | Relating spot numbers and perimeter of previously impacted areas

IfactivespotformationisamodeofdispersalthatallowsMPBtoinvadenewareas,onewouldexpectthenumberofnewspotsformedeachyeartoscaleroughlywiththeperimeteroftheinfestedareainthepreviousyear,astheperimeteristheprimarysourceofdispersers.However,theshapesof contiguously impacted regions are spatially complex, making directmeasurementofthetotalperimeterlengthuntenable.Instead,weadopttheapproachofShigesadaandKawasaki(1997),whousedsquarerootofimpactedareaasasurrogateforperimeter.Ineachyear,thetotalimpactedareawascalculatedbysummingallpixelswithADSimpactandsubtractingthenumberofnewspotsforthatyear(aseachspothasbeenfilteredtoimpactonlyasinglepixel).Thenumberofspotsinyearnwasthenfittothesquarerootofimpactedareainyearn−1usinglinearregression.

2.6 | An alternative: Random spot formation

Totestanalternativehypothesisthatspotsformrandomlyinspace,wegeneratedartificialdatasetsofisolatedspots.Foreachyearandineachstudyarea,randomindiceswerechosenfromdiscreteuniformdistributionswiththeonlyrestrictionbeingthata“spot”locationmustappearinanareawithhostcovertype.Randomlocationsweregener-ateduntilthenumberof“spots”wasequaltothenumberofobservedspots inthatyearforthatstudyarea.Therandomspotdistributionwasfittoapower-lawusingnonlinearregression,andthepredictedcumulativedistributioncalculateddirectlybyanalyticintegrationfromthesmallesttraveltime:

where1+α̂ is the (negative) fitted exponent and the coefficientin front of the integral normalizes the distribution. To test the

P(k>K)=

K∏

k=1

e−αΔx2Sik ,jk

(4)P(k>K)=

K∏

k=1

e−αΔx2Sik ,jk ≈e

−αΔx2SiK,jK

(5)TK≈Δx2

μ0eμ̂1Si

K,jK

(6)P(T≤TK

)=1−P(k>K)≈1−e

−αΔx2SiK,jK

eSiK,jK ≈

[μ0

Δx2TK

] 1

μ̂1

(7)P(T≤TK

)≈1−

[μ0

Δx2TK

]− αΔx2

μ̂1

(8)p(T)∝T−

(

1+αΔx2

μ̂1

)

,

F(T)=α̂Tmin∫

T

Tmin

t−(1+α̂) dt=1−Tα̂min

Tα̂,

F IGURE  2  Traveltime(inminutes,seecolourbartoright)frombeetlesources(boundariesindicatedbysolidcontours)tootherlocationsina10×15kmportionoftheSawtoothstudyarea,2001.NewspotsidentifiedintheannualADSappearascircles.Occasionallyspotsareobservedinpreviouslyimpactedarea,asindicatedbycirclesinsideofsolidcontours

     |  7Journal of Animal EcologyPOWELL Et aL.

hypothesisthatthedatawereactuallygeneratedbyapower-lawdis-tribution“spots”werebinnedaccordingtotraveltimefrompreviousyear's impactedareaandgoodnessof fit testedusingCramér-vonMises’ A2 (as recommended by Choulakian, Lockhart, & Stephens,1994). The statistic tests the correspondence between observedandpredicted cumulative distributions, and is defined for discreteobservations:

whereNisthenumberofspots,kisthenumberofbins,andifej and ojarethenumberofexpectedandobservedspotsinbinj,thenpj=

ej

N

and

(Choulakianetal.,1994).CalculatedA2werecomparedwithtabulatedcritical values,A2

crit, usingdegreesof freedomcorresponding to the

numberofbins (k) +number fittedparameters (2)−1 todeterminewhetherthenullhypothesis(randomspotsfollowapower-lawdistri-bution)canberejectedwith90%confidence.

3  | RESULTS

3.1 | Spot distributions and relation to perimeter size of previous year infestations

In the Sawtooth study area, nonlinear regression gave an expo-nentof−2.398andr2 = .990(Figure3).Thepredictedexponentis1+

αΔx2

μ̂1,indicatingαΔx2 = 0.0102,or10.2potentialfocustreesper

1,000trees.InChelan,thepredictedexponentwaslower,−1.215,fittedwithr2 = .998(Figure4).Thislowerexponentindicatesthattheper-capitarateoffocustreeencounterwasαΔx2 = 0.00158, or 1.58focustreesper1,000trees.ResultsfromColoradowereclosetotheChelanresults,withαΔx2 = 0.00201 and r2 = .985(Figure5).Viewed in terms of focus trees per hectare, using average hostdensitiestoconvertencounterratestopotentialfocustreedensi-ties, rates varied from 0.79 trees/ha in Chelan to 1.56 trees/hainColoradoandupto4.59trees/ha in theSawtoothstudyarea.Thesespot initiationratescomparefavourablywiththeobserva-tionsofCarroll etal. (2006) inBritishColumbia.Onsevenstudyplots,theseauthorsobservedisolatedmassattacksofMPBcorre-spondingtoincipientepidemicsin2000–2004andreportedspotdensities varying from a low of .403 trees/ha to a high of 4.04trees/hawithameanof1.78trees/ha.

Thenumberofspotsformedinayearisexpectedtoincreasewiththe perimeter of area impacted in the previousyear, and perimeterscaleswiththesquarerootofimpactedarea,providedtheshapeoftheimpactedareasisnottoocomplex.FollowingShigesadaandKawasaki(1997),wefitthenumberofspotsobservedinyearn, Nn,tothesquareroot of the previous year's impacted area, An−1 = Σi,jADS

n−1

i,j, using

simple regression. Regression coefficientswere consistent, althoughgoodnessoffitvaried:

A2=1

N

k−1∑

j=1

Z2jpj

Hj(1−Hj),

Sj=

j∑

i=1

oj, Tj=

j∑

i=1

ej, Zj=Sj−Tj, andHj=1

NTj

F IGURE  3  Distributionofpredictedtraveltimes(minutes)toobservedspotsintheSawtoothstudyareabetween1997and2003.Traveltimestoobservedspotswereplacedin20bins;thebincontainingzerowasnotincluded.Bestmaximumlikelihoodfitofapowerlawtothehistogramisdepictedinasasolidline;linearityofthedataandthefittedcurvearedepictedonlog–logscaleintheinset.Thefittedcurvedescribes99.0%ofthevariabilityinthedataaccordingtor2 20 40 60 80 100 120 140 160 180 200

0

500

1000

1500

2000

2500

T (min)

Num

ber o

f spo

ts

Sawtooth spots 1997−2003

ObservedT−2.398

3 3.5 4 4.5 5 5.53

4

5

6

7

8

log(T)

log(

N)

15.56 − 2.398 log(T)

Study area Fitted modelCoeff. determination Graph

Sawtooth Nn = 82.7√An−1

r2 = .939 Figure6

Chelan Nn = 78.9√An−1

r2 = .327 Figure7

Colorado Nn = 75.9√An−1

r2 = .784 Figure8

8  |    Journal of Animal Ecology POWELL Et aL.

ThefittedcurvesaredisplayedintermsofimpactedareaandyearofimpactinFigures6–8.Asexpected,thenumberofspotsincreaseswith the sizeof themain infestation and in particularwith a roughmeasureofinfestationperimeter,withbetween75and83spotsgen-eratedperkilometreofperimeter.Thissupportstheideathatbeetlescreatingisolatedspotstravelfromtheperimeterofmajorinfestationsinthesurroundinglandscape.

3.2 | Random seeding of spots

To illustrate the differences between random formation of spotsand the power-law distribution of spots,we seeded forested areaswithartificial“spots”whoselocationswereselectedfromauniform

distributionover areaswithhost cover type. In each study area, ineach year as many random “spots” were generated as were actu-ally observed in that year, and the spot numbers binned accordingtotheyear'straveltimemapinthesamewayastheobservedspots(Figure9).TheCramér-vonMisesA2statisticwascalculatedforeachstudyarea.

F IGURE  4  Distributionofpredictedtraveltimes(minutes)toobservedspotsintheChelanstudyareabetween1990and2009.Traveltimestoobservedspotswereplacedin22bins;thebincontainingzerowasnotincluded.Bestmaximumlikelihoodfitofapowerlawtothehistogramisdepictedasasolidline;linearityofthedataandthefittedcurvearedepictedonlog–logscaleintheinset.Thefittedcurvedescribes99.8%ofthevariabilityinthedataaccordingtor2 50 100 150 200 250 300 350 400 450

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T (min)

Num

ber o

f spo

tsChelan spots 1990−2009

ObservedT−1.215

2 3 4 5 6 74

5

6

7

8

9

10

log(T)

log(

N)

12.34 − 1.215 log(T)

F IGURE  5  Distributionofpredictedtraveltimes(minutes)toobservedspotsintheColoradostudyareabetween2002and2010.Traveltimestoobservedspotswereplacedin25bins;thebincontainingzerowasnotincluded.Bestmaximumlikelihoodfitofapowerlawtothehistogramisdepictedasasolidline;linearityofthedataandthefittedcurvearedepictedonlog–logscaleintheinset.Thefittedcurvedescribes98.5%ofthevariabilityinthedataaccordingtor2 0 50 100 150 200 250 300 350 400 450

0

0.5

1

1.5

2

2.5

x 104

T (min)

Num

ber o

f spo

ts

Colorado spots 2001−2010

ObservedT−1.291

3 3.5 4 4.5 5 5.5 6 6.56

7

8

9

10

11

log(T)

log(

N)

14.15 − 1.291 log(T)

Study area A2 df A2

critResult

Sawtooth 63.95 20 1.834 Reject(p<.0001)

Chelan 1.842 22 1.835 Reject?(p<.1)

Colorado 73.12 25 1.837 Reject(p<.0001)

     |  9Journal of Animal EcologyPOWELL Et aL.

F IGURE  6  ObservedspotsintheSawtoothstudyareabetween1996and2004asafunctionofinfestedareaperimeter.In(a)observedspots(*)arefittedto

√Impacted Area;fithasr2 = .939.In(b)bothnumberofobservedspots(*)andpredictednumberofspots(solidline)are

plottedasafunctionofyear.Thequalityofthefitindicatesthatthenumberofspotsispredictedbytheperimeteroftheinfestedarea,aswouldbeexpectedifbeetlesfromtheedgeoftheinfestedareaovercometheAlleeeffectbyactivedispersaltospots

1996 1998 2000 2002 20040

2000

4000

6000

8000

10000

12000

14000

16000

18000

Year

Sawtooth spots

0 50 100 150 200 250 300 3500

2000

4000

6000

8000

10000

12000

14000

16000

18000

ADS area, (ha)

Num

ber o

f spo

tsSawtooth spots

Observed

N = 82.70 ADS1/2

(a) (b)

F IGURE  7  ObservedspotsintheChelanstudyareabetween1990and2010asafunctionofinfestedareaperimeter.In(a)observedspots(*)arefittedto

√Impacted Area;fithasr2 = .327.In(b)bothnumberofobservedspots(*)andpredictednumberofspots(solidline)

areplottedasafunctionofyear.TheChelanseriesofinfestationsoccurredinseveralgeographicallyseparatedareas,andtheyearswithverylowspotformationcorrespondtothecollapseofasub-infestationbecauseavailablehostswereexhausted

1990 1995 2000 2005 20100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 104 Chelan spots

Year0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5x 104

ADS area, (ha)

Num

ber o

f spo

ts

Chelan spots

ObservedN = 78.89 ADS1/2

(a) (b)

10  |    Journal of Animal Ecology POWELL Et aL.

In the cases of the Sawtooth and Colorado study areas,the hypothesis that the randomly generated “spots” followeda power-law distribution in travel time from previously im-pacted areas could be rejected with a high degree of con-fidence. In the Chelan study area, the pattern of spots wasmore random.While it is not clearwhy the Chelan data did notmore closely adhere to the power-law prediction, we note thatthe area had substantially lower spot densities and stronger spatialstructuretoitshostpopulation.

4  | DISCUSSION

WehaveshownthatastrongAlleeeffect,requiringbeetleaggrega-tiontoovercomehostpinedefences,incombinationwithlandscaperesistance, inwhichmotilitydecreasesexponentiallywithhostden-sity,leadstodispersivespreadviaspotsunderapower-lawdistribu-tionoftraveltimesfromsourcepopulations.Lowdensitiesofbeetles,dispersing fromtheperimeterofprevious infestedareas,aggregateatweakened focus treeswhichnucleate isolated spots.The impactoftheAlleeeffect is thataggregationawayfrommajor infestationsdrawsdownthedispersingbeetlepopulationsothatmorespotsarepossibleatlocationswithlowertraveltime,withalgebraicallyfewerspotsinregionswithhighertraveltime.AerialsurveysofannualMPBinfestationinIdaho,WashingtonandColoradostudyareaswereana-lysedandfoundtoconformverystronglytothepower-lawprediction(r2 ≥ .985).Thealternatehypothesisthatspotsarisespontaneously,

wasnotsupportedinIdahoandColorado,however,spontaneousspotcreationcouldnotberuledoutintheWashington(Chelan)studyarea.

Ourresultsalsosuggestthatdispersingbeetles leavetheperim-eterofsource infestations (asmeasuredbysquarerootof impactedarea),althoughthiswas lessstronglysupported(.327 ≤ r2≤ .939).Alowcorrelationwaspotentiallyduetothepoorrelationshipbetweenthe actual and estimated (square root of impacted area) perimetersize,inadditiontothefactthatwedidnotaccountfortemperature- dependentdifferentialMPBproductivityamongyears,whichisknowntohaveasubstantial impactonpopulationgrowth (Powell&Bentz,2009).Nevertheless,thenumberofspotscreatedhadaconsistentre-lationshiptopreviousyearinfestationperimeter,andtherelationshipwasstrongestinthesmallest(Sawtooth)studyarea,wherethespatialstructureofMPB-causedtreemortalitywasgeographicallysimplest.In Colorado, the largest study area, hosts had a relatively homoge-neousdistributionbutmountainoustopographybrokeuplargeareasofinfestation,weakeningtherelationshipbetweenperimeterandspotnumbers.IntheChelanarea,wheretherelationshipwasonlymargin-allysignificant,theMPBoutbreakwasdissectedintothreeareassepa-ratedbydeeprivervalleys,causingasynchronousandseparatedMPBactivity.Clear outlierswith lownumbersof spotsoccurred inyearswhentheintensityofMPBactivityshiftedbetweentheareas.Largebodiesofwater,deepvalleyswithnohostsandhigh-altituderidgesmayhaveobscuredthepower-lawprocessofspotformationthroughdisruptionofdispersalandstrongspatialstructuringofpotentialhosts.

Inheterogeneousenvironments,thepower-lawtheorypredictsthat MPB spread preferentially along corridors of relatively high

F IGURE  8  ObservedspotsintheColoradostudyareabetween2002and2010asafunctionofinfestedareaperimeter.In(a)observedspots(*)arefittedto

√Impacted Area;fithasr2 = .784.In(b)bothnumberofobservedspots(*)andpredictednumberofspots(solidline)

areplottedasafunctionofyear.TheColoradooutbreakspreadthroughamuchlargerarea,butnumberofspotscorrelatesstronglywithperimeter,indicatingthatbeetlesfromtheedgesareovercomingAlleeeffectsbyactivedispersaltospots

2002 2004 2006 2008 20100.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4x 105 Colorado spots

Year0 1000 2000 3000 4000 5000 6000 7000

0

0.5

1

1.5

2

2.5x 105

ADS area, (ha)

Num

ber o

f spo

tsColorado spots

ObservedN = 75.93 ADS1/2

(a) (b)

     |  11Journal of Animal EcologyPOWELL Et aL.

motilityhabitat,whichreducestraveltime,withimpactoccurringattheboundaries.ForMPB,thisincludesforestedgesandboundariesof areaswith lowhost density.Thinning is a control strategypre-scribedtoreducetheoverallnumberofhostsandencounterratesforweakenedhosts,inadditiontoincreasinghostvigour(Fettig,Gibson,Munson,&Negrón, 2014;Waring&Pitman, 1985). Inconsistencyin the spatial pattern of thinning, however, could produce move-mentcorridorswithfewhoststherebyresultinginacceleratedMPBspreadacrossalandscape.Ontheotherhand,directlymanipulatingvariation in host densitymay be a strategy for control ofMPB. If

patchesofhighhostdensityaresmallenough,theymayactaseco-logicaltraps(Gilroy&Sutherland,2007)fordispersingbeetles.Forexample, in the related species southern pine beetle (D. frontalis),spot extinction risk increases dramatically as the number of hostsinvolveddecreases(Friedenberg,Powell,&Ayres,2007;Hedden&Billings,1979).

IndirectcontrolmeasurestoreduceMPBpopulationsize(e.g.in-secticides,semiochemicalsandremovalofinfestedhosts)couldben-efit by considering thatMPB spreadmay be fastest through areasof low host density including along meadows and other clearings.

F IGURE  9  Comparisonoftraveltimehistogramsforobserved(solidbars)andrandomlyseeded(openbars)spotsinthethreestudyareas.Thesamenumberofrandomspotsweregeneratedyearlyaswereobserved,withrandomspotssampledfromauniformdistributioninlocationswithhostcovertype.IntheSawtooth(a)andColorado(c)studyareas,thedistributionsofrandomlyselectspotsaremulti-modalandclearlynotofpower-lawtype.InChelan(b)thedistributionisunimodal,andcouldnotberejectedasapotentialpower-lawdistribution.SpotdensitiesweresubstantiallylowerinChelanandmanybarrierstobeetlemovementwerepresent(deepvalleys,broadbodiesofwaterandhigh-altituderidges),potentiallyobscuringthepowerlawrelationship

50 100 150 200 2500

1000

2000

3000

4000

5000

Sawtooth study area

50 100 150 200 250 3000

1000

2000

3000

4000

5000

Chelan study area

Num

ber o

f spo

ts Observed

Randomly seeded

50 100 150 200 250 300 350 4000

0.5

1

1.5

2

x 104 Colorado study area

T (min)

(a)

(c)

(b)

12  |    Journal of Animal Ecology POWELL Et aL.

Consequently, controlmeasures directed along boundaries ofmini-mumtraveltimecorridorsare likelytohavedisproportionately largerewards.Usingthepower-lawmodelandestimatesofhosttreeden-sity,traveltimemapsforMPBspreadacrossalandscapecanbecalcu-lated,helpingtoprioritizetreatmentapplication.

5  | CONCLUSION

The relationshipbetweenactiveaggregation toovercometheAlleeeffectandthepatchyspreadofpopulationshasnotbeenpreviouslyconsidered.Themechanismsevaluatedhere,differentialdispersalre-flectinglandscaperesistancetomovementandactiveaggregationtoovercomeastrongAlleeeffectat lowpopulationdensities,arerea-sonablygeneral.Exponentialrepresentationsofhabitatinfluenceonresidencetimesarethemostfrequentmodelforlandscaperesistancetomovement(e.g.Hanks&Hooten,2013).AnyPoissonprocessforencountering spot nucleation conditions will generate exponentialfailureprobabilities for stopping inpixels.Asdiscussed inNewman(2005),thecombinationofsuchexponentialeffectsisacommonwayforpowerlawstoariseinnature.WehaveshownthatforMPBtheseexponential mechanisms do, in fact, combine to create power-lawdistributionsofobservablepatchyspread.

ThereisalonghistoryofconsideringtheconsequencesofAlleeeffects on the passive dispersal and spread of organisms (see re-viewsbyLiebhold&Tobin,2008;Taylor&Hastings,2005).Generallyspeaking, theAlleeeffect isexpectedtoslowdown invasions (Kot,Lewis,&denDriessche, 1996).The inertia of a strongAllee effectdiminishesspreadratesbecausesmallpopulations(belowthreshold)cannotestablishawayfromtheperimeterand“pull”thewaveofinva-sion;sourcepopulationsbehindtheperimeterofthewaveofinvasionmustgrowsufficientlyto“push”outenoughdisperserstoovercometheAlleeeffect.Putmoremathematically,theAlleeeffecttruncatesthepassivedispersal kernel so that even fat-tailed (includingpow-er-law) kernels end up with finite moments, making the effective meandispersaldistancemuchsmallerthanthekernel'smeandisper-saldistance.Thus,withpassivedispersalAlleeeffectssloworstopthe spread of invasives. Invasions thatwould otherwise acceleratebecomeconstantspeedinvasionsinthepresenceoftheAlleeeffect(Wang,Kot,&Neubert,2002); inheterogeneousenvironments,theAlleeeffectcanstopinvasionsthrough“rangepinning”(Keitt,Lewis,&Holt,2001).

Wehaveshownthatactivedispersalandspot formationduetotheAllee effect result in power-law dispersal of propagules (spots)spreading fromtheperimeterof invadedareas.This isanalogous toclassicexamplesofspeciesinvasionswithouttheAlleeeffect(Andow,Kareiva,Levin,&Okubo,1990;Shigesada&Kawasaki,1997;Skellam,1951),andwethereforeproposethatthedispersedspotsofimpact“pull”thewaveofinvasion.Aslow-exponentpower-lawkernelsmayhaveonlyonemoment,spreadratesarelimitedonlybythenumberoftimesthedispersalpatternissampled(i.e.75–83timesperkilometreofever-expandingperimeter),leadingtoacceleratinginvasions(Clark,Lewis, & Horvath, 2001) in spite of an obviousAllee effect. These

mechanismscouldhavecontributedtotherecentrapidspreadofMPBacrosswesternCanada(delaGiroday,Carroll,&Aukema,2012).

ACKNOWLEDGEMENTS

TheauthorsthankTomEdwardsandEthanWhitefor formativedis-cussionsandfeedback,aswellasthreeanonymousreviewerswhoof-feredmanyexcellentsuggestions.TheUSDAForestServiceWesternWildlandsEnvironmentalThreatAssessmentCenterprovidedsupportthrough a cooperative agreement with USU. This project was alsosupported in part by the Small Business Innovation Research (SBIR)programmeof theUSDANational Institute forFoodandAgriculture(NIFA).

AUTHORS’ CONTRIBUTIONS

B.B.andJ.P.procureddatausedinthispaper;N.F.,B.B.andJ.P.de-signedanalyses;whileM.G.andJ.P.organizedandimplementedcom-putational approaches used in the analyses;B.B. andN.F. providedecologicalbackgroundonmountainpinebeetle;andJ.P.ledthewrit-ingofthemanuscript.Allauthorscontributedcriticallytothedraftsandgavefinalapprovalforpublication.

DATA ACCESSIBILITY

DatausedinthispaperarearchivedinUtahStateUniversity'sDigitalCommons, http://digitalcommons.usu.edu/all_datasets/24/ (Powell,2017;https://doi.org/10.15142/T31C73).

REFERENCES

Allee, W. C. (1931). Co-operation among animals. American Journal of Sociology, 37, 386–398.

Andow,D.A.,Kareiva,P.M.,Levin,S.A.,&Okubo,A. (1990).Spreadofinvadingorganisms.Landscape Ecology, 4, 177–188.

Berryman,A.A.,Dennis,B.,Raffa,K.F.,&Stenseth,N.C.(1985).Evolutionof optimal group attack, with particular reference to bark beetles(Coleoptera:Scolytidae).Ecology, 11, 898–903.

Blackard,J.A.,Finco,M.V.,Helmer,E.H.,Holden,G.R.,Hoppus,M.L.,Jacobs,D.M.,...Tycio,R.P.(2008).MappingU.S.forestbiomassusingnationwideforestinventorydataandmoderateresolutioninformation.Remote Sensing of Environment, 112, 1658–1677.

Boone, C. K., Aukema, B. H., Bohlmann, J., Carroll, A. L., & Raffa, K. F.(2011). Efficacy of tree defense physiology varies with bark beetlepopulationdensity:Abasis forpositivefeedback ineruptivespecies.Canadian Journal of Forest Research, 41, 1174–1188.

Boone,C.K.,Keefover-Ring,K.,Mapes,A.C.,Adams,J.,Bohlmann,A.S.,&Raffa,K.F.(2013).Bacteriaassociatedwithatree-killinginsectre-duceconcentrationsofplantdefensecompounds.Journal of Chemical Ecology, 39, 1003–1006.

Carroll, A. L., Aukema, B. H., Raffa, K. F., Linton, D.A., Smith, G. D., &Lindgren,B. S. (2006).Mountainpinebeetleoutbreakdevelopment:The endemic-incipient epidemic transition. Canadian Forest Service, Mountain Pine Beetle Initiative Project, 1, 22.

Chapman,T.B.,Veblen,T.T.,&Schoennagel,T.(2012).Spatiotemporalpat-ternsofmountainpinebeetleactivityinthesouthernRockyMountains.Ecology, 93, 2175–2185.

     |  13Journal of Animal EcologyPOWELL Et aL.

Choulakian,V.,Lockhart,R.A.,&Stephens,M.A.(1994).Cramér-vonMisesstatistics for discrete distributions.The Canadian Journal of Statistics, 22, 125–137.

Clark, J. S., Lewis, M., & Horvath, L. (2001). Invasion by extremes:Population spreadwith variation in dispersal and reproduction. The American Naturalist, 157, 537–554.

Crabb, B. A., Powell, J. A., & Bentz, B. J. (2012). Development and as-sessment of 30-m pine density maps for landscape-level modelingof mountain pine beetle dynamics. Res. Pap. RMRS-RP-96WWW (p.43).U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation,FortCollins,CO.

delaGiroday,H.M.C.,Carroll,A.L.,&Aukema,B.H.(2012).BreachofthenorthernRockyMountaingeoclimaticbarrier:Initiationofrangeexpan-sionbythemountainpinebeetle.Journal of Biogeography, 39, 1112–1123.

ESRI. (2008). ArcGIS desktop: Release 9.3. Redlands, CA: EnvironmentalSystemsResearchInstitute.

Fettig,C.J.,Gibson,K.E.,Munson,A.S.,&Negrón,J.F. (2014).Culturalpracticesforpreventionandmitigationofmountainpinebeetleinfes-tations.Forest Science, 60, 450–463.

Friedenberg,N.A.,Powell,J.A.,&Ayres,M.P. (2007).Synchrony'sdou-bleedge:TransientdynamicsandtheAlleeeffect instagestructuredpopulations.Ecology Letters, 10, 564–573.

Garlick, M. J., Powell, J. A., Hooten, M. B., & McFarlane, L. R. (2011).Homogenizationof large-scalemovementmodels inecology.Bulletin of Mathematical Biology, 73, 2088–2108.

Gilroy,J.J.,&Sutherland,W.J.(2007).Beyondecologicaltraps:Perceptualerrorsandundervaluedresources.Trends in Ecology and Evolution, 22, 351–356.

Goheen,D.&Hansen,E.(1993).Effectsofpathogensandbarkbeetlesonforests.InT.D.Schowalter&G.M.Filip(Eds.),Beetle-pathogen inter-actions in conifer forests(pp.175–196).London,UK:AcademicPress.

Greene,C.M.(2003).HabitatselectionreducesextinctionofpopulationssubjecttoAlleeeffects.Theoretical Population Biology, 64, 1–10.

Halsey, R. (1998). Aerial detection survey metadata for the Intermountain Region 4.Ogden,UT:U.S.DepartmentofAgricultureForestService,ForestHealthProtection.

Hanks,E.M.,&Hooten,M.B.(2013).Circuittheoryandmodel-basedin-ference for landscape connectivity. Journal of the American Statistical Association, 108, 22–33.

Hedden,R.L.,&Billings,R.F.(1979).Southernpinebeetle:Factorsinflu-encing thegrowthanddeclineof summer infestations ineastTexas.Forest Science, 25, 547–556.

Kane, J.M., & Kolb,T. E. (2010). Importance of resin ducts in reducingponderosa pine mortality from bark beetle attack. Oecologia, 164, 601–609.

Keitt,T.H.,Lewis,M.A.,&Holt,R.D.(2001).Alleeeffects,invasionpinning,andspeciesborders.The American Naturalist, 157, 203–216.

Kot,M.,Lewis,M.A.,&denDriessche,P. (1996).Dispersaldataandthespreadofinvadingorganisms.Ecology, 77, 2027–2042.

Lande, R. (1998).Demographic stochasticity andAllee effect on a scalewithisotropicnoise.Oikos, 83, 353–358.

LEMMA.(2005).LEMMA:TheGNNFireproject[HomepageoftheLandscapeEcology, Modeling, Mapping & Analysis research group of the USDAForest Service Pacific Northwest Research Station and Oregon StateUniversity].[Online].Retrievedfromhttp://www.fsl.orst.edu/lemma/main. php?project=gnnfire&id=mapProducts(accessedOctober24,2010).

Liebhold,A.M.,&Tobin,P.C.(2008).Populationecologyofinsectinvasionsandtheirmanagement.Annual Review of Entomology, 53, 387–408.

Logan,J.A.,White, P., Bentz,B. J.,&Powell, J.A. (1998).Model analy-sisof spatialpatterns inmountainpinebeetleoutbreaks.Theoretical Population Biology, 53, 236–255.

Meddens,A.J.H.,Hicke,J.A.,&Ferguson,C.A. (2012).Spatiotemporalpatterns of observed bark beetle-caused tree mortality in BritishColumbia and thewesternUnitedStates.Ecological Applications, 22, 1876–1891.

Mitchell, R. G., & Preisler, H. K. (1991). Analysis of spatial patterns oflodgepolepineattackedbyoutbreakpopulationsofthemountainpinebeetle.Forest Science, 37, 1390–1408.

Morozov,A.,Petrovskii,S.,&Li,B.L.(2006).Spatiotemporalcomplexityofpatchyinvasioninapredator-preysystemwiththeAlleeeffect.Journal of Theoretical Biology, 238, 18–35.

Newman,M. E. (2005). Power laws, Pareto distributions and Zipf's law.Contemporary Physics, 46, 323–351.

Okubo,A.,&Levin,S.A.(2001).Diffusion and ecological problems: Modern perspectives(Vol.14).NewYork,NY:Springer-Verlag.

Patlak,C.S.(1953).Randomwalkwithpersistenceandexternalbias.The Bulletin of Mathematical Biophysics, 15, 311–338.

Petrovskii,S.V.,Morozov,A.Y.,&Venturino,E.(2002).Alleeeffectmakespossi-blepatchyinvasioninapredator-preysystem.Ecology Letters, 5, 345–352.

Pfeifer,E.M.,Hicke,J.A.,&Meddens,A.J.H. (2011).Observationsandmodeling of aboveground tree carbon stocks and fluxes followinga bark beetle outbreak in thewesternUnited States.Global Change Biology, 17, 339–350.

Pierce,K.B.,Ohmann,J.L.,Wimberly,M.C.,Gregory,M.J.,&Fried,J.S.(2009).Mappingwildlandfuelsandforeststructureforlandmanage-ment:Acomparisonofnearestneighbor imputationandothermeth-ods.Canadian Journal of Forest Research, 39, 1901–1916.

Powell, J. A. (2017).MPB spot infestation data. [email protected],https://doi.org/10.15142/T31C73

Powell, J.A., &Bentz, B. J. (2009). Connecting phenological predictionswithpopulation growth rates formountainpinebeetle, anoutbreakinsect.Landscape Ecology, 24, 657–672.

Powell,J.A.,&Bentz,B.J.(2014).Phenologyanddensity-dependentdis-persalpredictpatternsofmountainpinebeetle(Dendroctonus pondero-sae)impact.Ecological Modelling, 273, 173–185.

Raffa,K.F.,Aukema,B.H.,Erbilgin,N.,Klepzig,K.D.,&Wallin,K.F.(2005).ChapterFourInteractionsamongconiferterpenoidsandbarkbeetlesacrossmultiplelevelsofscale:Anattempttounderstandlinksbetweenpopulation patterns and physiological processes. Recent Advances in Phytochemistry, 39, 79–118.

Raffa,K.F.,Aukema,B.H.,Bentz,B.J.,Carroll,A.L.,Hicke,J.A.,Turner,M.G.,&Romme,W.H.(2008).Cross-scaledriversofnaturaldisturbancesprone toanthropogenicamplification:Dynamicsofbiome-widebarkbeetleeruptions.BioScience, 58, 501–518.

Raffa,K.F.,Powell,E.N.,&Townsend,P.A. (2012).Temperature-drivenrangeexpansionofanirruptiveinsectheightenedbyweaklycoevolvedplantdefense.PNAS, 110, 2193–2198.

Safranyik, L., & Carroll,A. (2006). The biology and epidemiology of themountain pine beetle in lodgepole pine forests. In L. Safranyik&B.Wilson(Eds.),The mountain pine beetle: A synthesis of biology, manage-ment, and impacts on lodgepole pine (pp. 3–66).Victoria, BC:NaturalResourcesCanada,CanadianForestService.

Safranyik, L., Linton, D. A., Silversides, R., & McMullen, L. H. (1992).Dispersal of releasedmountain pine beetles under the canopy of amature lodgepole pine stand. Journal of Applied Entomology, 113, 441–450.

Sharov,A.A.,& Liebhold,A.M. (1998).Model of slowing the spreadofgypsymoth(Lepidoptera:Lymantriidae)withabarrierzone.Ecological Applications, 8, 1170–1179.

Shigesada,N.,&Kawasaki,K.(1997).Biological invasions: Theory and prac-tice.Oxford,UK:OxfordUniversityPress.

Skellam, J. G. (1951). Random dispersal in theoretical populations.Biometrika, 38, 196–218.

Stephens,P.A.,Sutherland,W.J.,&Freckleton,R.P. (1999).WhatistheAlleeeffect?Oikos, 87, 185–190.

Taylor,C.M.,&Hastings,A. (2005).Alleeeffects inbiological invasions.Ecology Letters, 8, 895–908.

Taylor,C.M.,Davis,H.G.,Civille,J.C.,Grevstad,F.S.,&Hastings,A.(2004).ConsequencesofanAlleeeffectintheinvasionofaPacificestuarybySpartina alterniflora. Ecology, 85, 3254–3266.

14  |    Journal of Animal Ecology POWELL Et aL.

Turchin,P.(1989).Populationconsequencesofaggregativemovement.The Journal of Animal Ecology, 58, 75–100.

Turchin, P. (1998). Quantitative analysis of movement. Sunderland, MA:SinauerAssociates,Inc.

Wang,M.H.,&Kot,M.(2001).SpeedsofinvasioninamodelwithstrongorweakAlleeeffects.Mathematical Biosciences, 171, 83–97.

Wang,M.H.,Kot,M.,&Neubert,M.G. (2002). Integrodifferenceequa-tions,Alleeeffects,andinvasions.Journal of Mathematical Biology, 44, 150–168.

Wang,J.,Shi,J.,&Wei,J.(2011).Dynamicsandpatternformationinadif-fusivepredator-preysystemwithstrongAlleeeffectinprey.Journal of Differential Equations, 251, 1276–1304.

Waring, R.H., & Pitman,G. B. (1985).Modifying lodgepole pine standsto change susceptibility tomountain pine beetle attack.Ecology, 66, 889–897.

Wertheim, B., van Baalen, E. J. A., Dicke, M., & Vet, L. E. (2005).Pheromone-mediated aggregation innonsocial arthropods:Anevo-lutionary ecological perspective. Annual Review of Entomology, 50, 321–346.

Zhao,H.(2004).Afastsweepingmethodforeikonalequations.Mathematics

of Computation, 74, 603–627.

How to cite this article:PowellJA,GarlickMJ,BentzBJ,FriedenbergN.DifferentialdispersalandtheAlleeeffectcreatepower-lawbehaviour:Distributionofspotinfestationsduringmountainpinebeetleoutbreaks.J Anim Ecol. 2017;00:1–14.https://doi.org/10.1111/1365-2656.12700