22
Diffraction studies at LHeC and FCC-eh Anna Staśto Studies done by Wojciech Słomiński, Jagiellonian University, Kraków Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018 1

Diffraction studies at LHeC and FCC-eh

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Diffraction studies at LHeC and FCC-eh

Diffraction studies at LHeC and FCC-eh

Anna Staśto

Studies done by Wojciech Słomiński, Jagiellonian University, Kraków

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018 1

Page 2: Diffraction studies at LHeC and FCC-eh

Outline

• Introduction: diffraction at HERA

• Phase space for inclusive diffraction at LHeC and FCC-eh

• Reduced cross section - pseudodata simulation

• Simulation of diffractive parton distribution functions

• Diffraction on nuclei

2Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 3: Diffraction studies at LHeC and FCC-eh

DiÄractive Selection

Proton Spectrometer• clean measurement - nodouble dissociativebackground

• low statistics

Large Rapidity Gap• high statistics• contains double dissociativebackground

FCAL BCAL RCAL

η=−0.75η=1.1

electron

scattered electron

proton

Grzegorz Gach Recent Results on Diffraction at HERA 12

IntroductionWhat is diffraction ?

• Diffractive processes are characterized by the rapidity gap: absence of any activity in part of the detector.

• Diffraction is interpreted as to be mediated by the exchange of an ‘object’ with vacuum quantum numbers - usually referred to as the Pomeron.

Diffractive event in ZEUS at HERA

At HERA in electron-proton collisions: about 10% events diffractive

3Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 4: Diffraction studies at LHeC and FCC-eh

4

Diffractive kinematics in DIS

� =Q2

Q2 + M2X � t

xBj = xIP �

momentum fraction of the Pomeron w.r.t hadron

momentum fraction of parton w.r.t Pomeron

t = (p� p0)2 4-momentum transfer squared

Two classes of diffractive events in DIS:photoproduction deep inelastic scatteringQ2 ⇠ 0 Q2 � 0

y =p · qp · k

W 2 = (q + p)2

s = (k + p)2

Q2 = �q2

x =�q2

2p · q

electron-proton cms energy squared:

Standard DIS variables:

photon-proton cms energy squared:

inelasticity

Bjorken x

(minus) photon virtuality

Diffractive DIS variables:

⇠ ⌘ xIP =Q2 +M2

X � t

Q2 +W 2

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 5: Diffraction studies at LHeC and FCC-eh

5

Diffractive structure functions

d3�D

dxIP dx dQ2=

2⇡↵2em

xQ4Y+ �D(3)

r (xIP , x,Q2)

Y+ = 1 + (1� y)2

�D(3)r = FD(3)

2 � y2

Y+FD(3)L

Reduced diffractive cross section depends on two structure functions

For y not to close to unity we have: �D(3)r ' FD(3)

2

FD(3)T,L (x,Q2, xIP ) =

Z 0

�1dtFD(4)

T,L (x,Q2, xIP , t)

Integrated vs unintegrated structure functions over t:

FD(4)2 = FD(4)

T + FD(4)L

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 6: Diffraction studies at LHeC and FCC-eh

6

Collinear factorization in diffraction

Collinear factorization in diffractive DIS

• Diffractive cross section can be factorized into the convolution of the perturbatively calculable partonic cross sections and diffractive parton distributions (DPDFs).

• Partonic cross sections are the same as for the inclusive DIS.

• The DPDFs represent the probability distributions for partons i in the proton under the constraint that the proton is scattered into the system Y with a specified 4-momentum.

• Factorization should be valid for sufficiently(?) large Q2 (and fixed t and xIP).

Collins

d�ep!eXY (x,Q2, xIP , t) =X

i

fDi ⌦ d�̂ei + O(⇤2/Q2)

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 7: Diffraction studies at LHeC and FCC-eh

7

DPDF parametrization

Regge factorization (additional assumption)

fDi (x,Q2, xIP , t) = fIP/p(xIP , t) fi(� = x/xIP , Q

2)

where k=g,d. Light quarks equal u=d=s.

fIP/p(xIP , t) = AIPeBIP t

x2↵IP (t)�1

Pomeron flux is parametrized as parton distributions in the Pomeron

fDi (x,Q2, xIP , t) = fIP/p(xIP , t) fi(�, Q

2) + nIRfIR/p(xIP , t) fIRi (�, Q2)

For good description of the data usually subleading Reggeons are included

↵IP (t) = ↵IP (0) + ↵0IP t

fk(z) = AkzBk(1� z)Ck

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 8: Diffraction studies at LHeC and FCC-eh

8

Diffractive fits⇠ = xIP

Comparison of H1-2006B and ZEUS-SJ fits to the H1-LRG 2012 dataZEUS-SJ fit seems to better describe the data in the low β region

Example of the DGLAP fit to the diffractive dataHERA models vs. recent HERA data

2017-11-15 Wojtek Slominski - PDFs and Low x at LHeC/FCC-he WG meeting 4

Compatible description ZEUS-SJ chosen for simulations

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 9: Diffraction studies at LHeC and FCC-eh

Phase space: HERA to LHeC to FCC-ehQ

2 [G

eV2 ]

x = βξ

θ > 1°θ = 10°ZEUS-LRGH1-LRGHERA-FLPS

10-2

10-1

100

101

102

103

104

105

106

107

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

0.001 < y < 0.96β < 1ξ < 0.4

0.001 < y < 0.96β < 1ξ < 0.4

50 TeV60 GeV50 TeV60 GeV

1.3 GeV2

m2t

Q2

[GeV

2 ]

x = βξ

10-2

10-1

100

101

102

103

104

105

106

107

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

0.001 < y < 0.96β < 1ξ < 0.4

0.001 < y < 0.96β < 1ξ < 0.4

7 TeV60 GeV7 TeV

60 GeV

1.3 GeV2

m2t

Q2

[GeV

2 ]

x = βξ

10-2

10-1

100

101

102

103

104

105

106

107

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

0.001 < y < 0.96β < 1ξ < 0.4

0.001 < y < 0.96β < 1ξ < 0.4

HERAHERA

1.3 GeV2

m2t

Phase space ― HERA ! LHeC ! FCC-he

• CD = 7TeV vs. HERA– HIJK down by factor ~20

– -ILM0 up by factor ~100

• CD = 50TeV vs. 7TeV– HIJK down by factor ~10

– -ILM0 up by factor ~10

2017-11-15 Wojtek Slominski - PDFs and Low x at LHeC/FCC-he WG meeting 6

The grid shows suggested binning:4 bins per order of magnitude

for each of 3, -0, 5

CO = 60G1RCO = 60G1R

p, e energies

⇠ =

9Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 10: Diffraction studies at LHeC and FCC-eh

LHeC phase space: (β,Q2) fixed ξ

10Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

LHeC phase space ― Ep = 7 TeV

V W X. Z[# bins for V W X. Z[• no top

– 1589 for '( \ 1.3GeV(– 1229 for '( \ 5GeV(

• with top quark– 17 bins more

2017-11-15 Wojtek Slominski - PDFs and Low x at LHeC/FCC-he WG meeting 7

Page 11: Diffraction studies at LHeC and FCC-eh

FCC-eh phase space: (β,Q2) fixed ξ

11Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

FCC-he phase space ― Ep = 50 TeV

2017-11-15 Wojtek Slominski - PDFs and Low x at LHeC/FCC-he WG meeting 8

V W X. Z[# bins for V W X. Z[• no top

– 2171 for '( \ 1.3GeV(– 1735 for '( \ 5GeV(

• with top quark– 275 (255) bins more

Page 12: Diffraction studies at LHeC and FCC-eh

Data simulations

• Simulations based on extrapolation from ZEUS-SJ DPDFs

• VFNS scheme but no top at HERA so top contribution neglected in the simulation

• Errors simulated with 5% Gaussian noise

• Reggeon contribution is included but hard to constrain at HERA, could lead to large uncertainty in the extrapolation at ξ>0.01

• Binning to assume negligible statistical errors

12Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 13: Diffraction studies at LHeC and FCC-eh

Example of data: large ξ, LHeC

13Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Simulated data ― an example

2017-11-15 Wojtek Slominski - PDFs and Low x at LHeC/FCC-he WG meeting 9

Extrapolationsand data

simulated with5% Gaussian noise

Page 14: Diffraction studies at LHeC and FCC-eh

Example of data: large ξ, FCC-ehσred for Ep = 50 TeV, Ee = 60 GeV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1×10-5 0.0001 0.001 0.01 0.1 1β

ξ = 0.018

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1×10-5 0.0001 0.001 0.01 0.1 1β

ξ = 0.032

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1×10-5 0.0001 0.001 0.01 0.1 1β

ξ = 0.056

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1×10-5 0.0001 0.001 0.01 0.1 1β

ξ = 0.1

Q2 = 1.8Q2 = 3.2Q2 = 5.6Q2 = 10Q2 = 18Q2 = 32Q2 = 56

Q2 = 100Q2 = 180Q2 = 320Q2 = 560

Q2 = 1000Q2 = 1800Q2 = 3200Q2 = 5600

Q2 = 10000Q2 = 18000

14Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 15: Diffraction studies at LHeC and FCC-eh

DPDFs from simulations

15Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

DPDFs for LHeC

Krzysztof Golec-Biernat Di↵raction studies for future colliders 18 / 25

Page 16: Diffraction studies at LHeC and FCC-eh

DPDFs error bands

16Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

DPDF accuracy improvement wrt. HERA

Krzysztof Golec-Biernat Di↵raction studies for future colliders 20 / 25

Page 17: Diffraction studies at LHeC and FCC-eh

Luminosity studyGluon DPDF error bands from 5% simulations

Ep = 50 TeV, Q2min ≈ 5 GeV2, ξmax = 0.1

-0.04

-0.02

0

0.02

0.04

10-5 10-4 10-3 10-2 10-1

zg

z

Lumi = 2 fb-1

infinite Lumi

-0.04

-0.02

0

0.02

0.04

10-5 10-4 10-3 10-2 10-1

μ2 = 6 GeV2 -0.04

-0.02

0

0.02

0.04

10-5 10-4 10-3 10-2 10-1

z

-0.04

-0.02

0

0.02

0.04

10-5 10-4 10-3 10-2 10-1

μ2 = 20 GeV2

Quark DPDF error bands from 5% simulationsEp = 50 TeV, Q2

min ≈ 5 GeV2, ξmax = 0.1

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

10-5 10-4 10-3 10-2 10-1

z

Lumi = 2 fb-1

infinite Lumi

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

10-5 10-4 10-3 10-2 10-1

μ2 = 6 GeV2

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

10-5 10-4 10-3 10-2 10-1

z

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

10-5 10-4 10-3 10-2 10-1

μ2 = 20 GeV2

Ee = 60 GeVEp = 50 TeV

Q2min ' 5 GeV2

Comparison of ‘infinite’ Lumi simulation and Lumi=2 fb-1

For this measurement there is negligible difference

17Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 18: Diffraction studies at LHeC and FCC-eh

Dependence on Qmin2 and EpGluon DPDF error bands from the 5% simulations

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

Ep = 7 TeV, #1229, Q2min = 4.2 GeV2

Ep = 50 TeV, #1735, Q2min = 4.2 GeV2

Ep = 7 TeV, #1589, Q2min = 1.3 GeV2

Ep = 50 TeV, #2171, Q2min = 1.3 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Gluon DPDF error bands from the 5% simulations

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

Ep = 7 TeV, #1229, Q2min = 4.2 GeV2

Ep = 50 TeV, #1735, Q2min = 4.2 GeV2

Ep = 7 TeV, #1589, Q2min = 1.3 GeV2

Ep = 50 TeV, #2171, Q2min = 1.3 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Gluon DPDF error bands from the 5% simulations

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

Ep = 7 TeV, #1229, Q2min = 4.2 GeV2

Ep = 50 TeV, #1735, Q2min = 4.2 GeV2

Ep = 7 TeV, #1589, Q2min = 1.3 GeV2

Ep = 50 TeV, #2171, Q2min = 1.3 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Improvement of accuracy of factor about 3 ÷ 5 for low Qmin2

Low Q2 region sensitive to higher twists, saturation etcespecially in diffraction. DGLAP fits may not work/be reliable in this region.

18

Quark DPDF error bands from the 5% simulations

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

Ep = 7 TeV, #1229, Q2min = 4.2 GeV2

Ep = 50 TeV, #1735, Q2min = 4.2 GeV2

Ep = 7 TeV, #1589, Q2min = 1.3 GeV2

Ep = 50 TeV, #2171, Q2min = 1.3 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 19: Diffraction studies at LHeC and FCC-eh

19

DPDF accuracy: top contributionGluon DPDF error bands from the 5% simulations

Ep = 50 TeV

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

#1735, no top, Q2min = 4.2 GeV2

#1990, w. top, Q2min = 4.2 GeV2

#2171, no top, Q2min = 1.3 GeV2

#2446, w. top, Q2min = 1.3 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Quark DPDF error bands from the 5% simulationsEp = 50 TeV

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

#1735, no top, Q2min = 4.2 GeV2

#1990, w. top, Q2min = 4.2 GeV2

#2171, no top, Q2min = 1.3 GeV2

#2446, w. top, Q2min = 1.3 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Gluon DPDF error bands from the 5% simulationsEp = 50 TeV

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

#1735, no top, Q2min = 4.2 GeV2

#1990, w. top, Q2min = 4.2 GeV2

#2171, no top, Q2min = 1.3 GeV2

#2446, w. top, Q2min = 1.3 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Gluon DPDF error bands from the 5% simulationsEp = 50 TeV

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

zg

z

#1735, no top, Q2min = 4.2 GeV2

#1990, w. top, Q2min = 4.2 GeV2

#2171, no top, Q2min = 1.3 GeV2

#2446, w. top, Q2min = 1.3 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 6 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 20 GeV2

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

zgz

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 60 GeV2 -0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

z

-0.04

-0.02

0

0.02

0.04

10-6 10-5 10-4 10-3 10-2 10-1 100

μ2 = 200 GeV2

Top quark phase space region does not have big effect on

the DPDF extraction

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 20: Diffraction studies at LHeC and FCC-eh

20

Nuclear diffractive structure functionsPb208 FGS-2018 F2 sig NSuppr. at Q2 = 10, Ep = 7

0

0.2

0.4

0.6

0.8

1

10-4 10-3 10-2 10-1 100

RT ZM

ξ = 10-5

β

F2 FGS-L F2 FGS-H sig FGS-L sig FGS-H

0

0.2

0.4

0.6

0.8

1

10-4 10-3 10-2 10-1 100

RT ZM

ξ = 0.0001

β

0

0.2

0.4

0.6

0.8

1

10-4 10-3 10-2 10-1 100

RT ZM

ξ = 0.001

β

0

0.2

0.4

0.6

0.8

1

10-4 10-3 10-2 10-1 100

RT ZM

ξ = 0.01

β

0

0.2

0.4

0.6

0.8

1

10-4 10-3 10-2 10-1 100

RT ZM

ξ = 0.05

β

0

0.2

0.4

0.6

0.8

1

10-4 10-3 10-2 10-1 100

RT ZM

ξ = 0.1

β

• Model for nuclear shadowing: Frankfurt,Guzey,Strikman

• Two models: high and low shadowing

• Results for nuclear ratio:

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 21: Diffraction studies at LHeC and FCC-eh

21

Nuclear diffractive cross sections

ξσred for e-Pb at EPb/A = 19.7 TeV Ee = 60 GeV

0

0.02

0.04

0.06

0.01 0.1 1

ξ = 0.0001

ξσred

β

FGS18-LFGS18-H

0

0.02

0.04

0.06

0.08

0.01 0.1 1

ξσred

β

0.01 1

ξ = 0.001

β

0.1 1β

0

0.02

0.04

0.06

0.01 0.1 1

ξσred

β

0.01 1

ξ = 0.01

β

0.01 1β

0.1 1β

0

0.01

0.02

0.01 0.1 1

ξσred

β

0.0001 0.01 1

Q2

= 10

GeV

2

ξ = 0.1

β

0.01 1

Q2

= 10

0 G

eV2

β

0.01 1

Q2

= 10

3 G

eV2

β

0.1 1

Q2

= 10

4 G

eV2

β

ξσred for e-Pb at EPb/A = 2.76 TeV Ee = 60 GeV

0

0.01

0.02

0.03

0.04

0.05

0.01 0.1 1

ξ = 0.0001

ξσred

β

FGS18-LFGS18-H

0.1 1

ξ = 0.001

β

0

0.01

0.02

0.03

0.04

0.05

0.01 0.1 1

ξσred

β

0.01 1

ξ = 0.01

β

0.1 1β

0

0.01

0.02

0.03

0.01 0.1 1

ξσred

β

0.01 1

Q2

= 10

GeV

2

ξ = 0.1

β

0.01 1

Q2

= 10

0 G

eV2

β

0.1 1

Q2

= 10

3 G

eV2

β

0

0.005

0.01

0 0.2 0.4 0.6 0.8 1

Q2

= 10

4 G

eV2

ξσred

β

LHeC FCC-eh

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018

Page 22: Diffraction studies at LHeC and FCC-eh

Summary and Outlook

22

• New possibilities for studies of diffraction at LHeC and FCC-eh.

• DPDF accuracy increased by about factor 10 at LHeC and 20 at FCC-eh.

• It is possible to constrain gluon by inclusive data alone. Diffractive dijet production was necessary at HERA to constrain the gluon, such constraints could also be included at LHeC/FCC-eh further reducing accuracy.

• Possibility of producing diffractive top. DPDF determination does not seem to be affected much by the top though.

• Lowering initial Q2 increases the accuracy. This is the region that is expected to be very sensitive to higher twists in diffraction. Further analysis with better modeling of this region is necessary to estimate the impact of such correction.

• First analysis for diffraction in e-Pb at LHeC/FCC-eh.

Electrons for the LHC-LHeC/FCC-eh and Perle workshop, LAL-Orsay, June 28, 2018