32
Diffusion on a Graph

Diffusion on a Graph - Department of Mathematicsbertram/lectures/Diffusion.pdf · diffusion rate, which is called heterogeneous diffusion. So now the adjacency matrix has weights

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • DiffusiononaGraph

  • Diffusion

    Duetorandommotion,moleculesofahighconcentrationwilltendtoflowtowardsaregioninspacewheretheconcentrationislower.

    Examples:Adyeinjectedintosolutionspreadingthroughacontainer,orheatspreadingfromaregionofhightemperaturetoaregionoflowertemperature.

  • TheDiffusionEquation

    x=0 x=L

    Considerdiffusioninonedimension(x)overtime(t)andletu(x,t)betheconcentrationofthesubstancethatisdiffusing.Then

    𝜕𝑢𝜕𝑡 = 𝐷

    𝜕&𝑢𝜕𝑥&

    isthediffusionequationwithdiffusioncoefficientD.Onewouldalsoneedtosupplyinitialvaluesforu,u(x,0)=u0(x),andboundaryconditions ateachboundary.

  • TheDiffusionEquationTodescribediffusioninadomainwithmorethanonedimension,thesecondpartialderivativeoperatorisreplacedwiththeLaplacianoperator.Thenthediffusionequationis,

    𝜕𝑢𝜕𝑡 = 𝐷𝛻

    &𝑢

    whereinthreedimensions

    𝛻& =𝜕&

    𝜕𝑥& +𝜕&

    𝜕𝑦& +𝜕&

    𝜕𝑧&

    Laplacianoperator

  • DiffusiononaGraphWhatifthediffusingsubstancemovesalongedgesofagraphfromnodetonode?Inthiscase,thedomainisdiscrete,notacontinuum.

    Letcbethediffusionrateacrosstheedge,thentheamountofsubstancethatmovesfromnodejtonodei overatimeperioddtisc 𝑢, − 𝑢. 𝑑𝑡 andfromnodei tonodejisc 𝑢. − 𝑢, 𝑑𝑡.So

    𝑑𝑢.𝑑𝑡 = 𝑐 𝑢, − 𝑢.𝑑𝑢,𝑑𝑡 = 𝑐(𝑢. − 𝑢,)

    ui ujc

  • DiffusiononaGraphDiffusiontoandfromnodei musttakeintoconsiderationallnodesinthegraph.Theconnectivityofthegraphisencodedintheadjacencymatrix.Hereweassumethatweareworkingwithasimplegraph.

    𝑑𝑢.𝑑𝑡 = 𝑐𝐴.4 𝑢4 − 𝑢. + 𝑐𝐴.& 𝑢& − 𝑢. + ⋯+ 𝑐𝐴.6(𝑢6 − 𝑢.)

    𝑑𝑢.𝑑𝑡 = 𝑐7𝐴.,(𝑢, − 𝑢.)

    6

    ,84

    or

  • DiffusiononaGraph

    𝑑𝑢.𝑑𝑡 = 𝑐7𝐴.,𝑢, − 𝑐𝑢.7𝐴.,

    6

    ,84

    6

    ,84

    Rewritingthelastexpression,

    Degreeofnodei,di

    = 𝑐7𝐴.,𝑢, − 𝑐𝑢.𝑑.

    6

    ,84

    WenowmakeuseoftheKronecker delta,𝛿.,

    𝛿., = :0, if𝑖 ≠ 𝑗1, if𝑖 = 𝑗

  • DiffusiononaGraph

    𝑑𝑢.𝑑𝑡 = 𝑐7𝐴.,𝑢, − 𝑐7𝛿.,𝑢,𝑑,

    6

    ,84

    6

    ,84

    c𝑢.𝑑. = 𝑐 ∑ 𝛿.,𝑢,𝑑,6,84so

    Definethen-dimensionalvector 𝑢 =𝑢4…𝑢6

    Then c∑ 𝐴.,𝑢, = 𝑐 𝐴𝑢 .6,84

    Nextdefinethe𝑛×𝑛degreematrix 𝐷 =𝑑4 0 00 … 00 0 𝑑6

    Then c∑ 𝛿.,𝑢,𝑑, = 𝑐 𝐷𝑢 .6,84

  • TheGraphLaplacian

    𝑑𝑢.𝑑𝑡 = 𝑐7𝐴.,𝑢, − 𝑐7𝛿.,𝑢,𝑑,

    6

    ,84

    6

    ,84

    so

    becomes𝑑𝑢𝑑𝑡 = 𝑐𝐴𝑢 − 𝑐𝐷𝑢

    = 𝑐 𝐴 − 𝐷 𝑢

    WenowdefinetheGraphLaplacianmatrix,

    𝐿 ≡ 𝐷 − 𝐴

    Theequationfordiffusiononagraphisthen

    𝑑𝑢𝑑𝑡 + 𝑐𝐿𝑢 = 0

    or 𝑑𝑢𝑑𝑡 + 𝑐 𝐷 − 𝐴 𝑢 = 0

  • TheGraphLaplacian

    What’sinsideofL?

    𝐿., = J𝑑., if𝑖 = 𝑗

    −1, if𝑖 ≠ 𝑗andthereisanedge0, if𝑖 ≠ 𝑗andthereisnoedge

    IsLsymmetric? Yes,why?

  • SolvingtheGraphDiffusionEquation

    𝑑𝑢𝑑𝑡 + 𝑐𝐿𝑢 = 0

    ThisisalinearsystemofODEs,soitissolvable.Also,sinceL issymmetricithasrealeigenvaluesandorthogonaleigenvectors,�⃗�., i= 1,⋯ , 𝑛.

    Nowwritethesolutionasalinearcombinationoftheseeigenvectors,notingthatthecoefficientschangeovertime:𝑢 = ∑ 𝑎.(𝑡)�⃗�.6.84 .

    InsertthisintotheODE, 7𝑑𝑎.𝑑𝑡 �⃗�. +7𝑐𝑎.𝐿�⃗�. = 0

    6

    .84

    6

    .84

    7𝑑𝑎.𝑑𝑡 + 𝑐𝑎.𝜆. �⃗�. = 0

    6

    .84

    where𝜆. isaneigenvalueofL.

  • SolvingtheGraphDiffusionEquation

    Nowtaketheinnerproductofbothsidesofthelastequationwitheachoftheeigenvectors,recallingthattheyformanorthogonalset.Thisleadston differentialequationsforthecoefficients𝑎.(𝑡).

    YZ[Y\+ 𝑐𝜆.𝑎. = 0 ,i=1,…,n

    TheseODEsareuncoupledandlinear,sotheyhavesimpleexponentialsolutions:

    𝑎. 𝑡 = 𝑎.(0)𝑒^_`[\

    where𝑎.(0) istheinitialvalueofthecoefficient.

    Sinceeachcoefficienthassuchasolution,thenbythesuperpositionprinciple,alinearcombinationoftheseisalsoasolution.Thus,thegeneralsolutiontothegraphdiffusiondifferentialequationis

    𝑢 𝑡 =7𝑎.(0)𝑒^_`[\�⃗�.

    6

    .84

    SpectralSolution

  • SolvingtheGraphDiffusionEquation

    Howdowefindtheinitialvaluesofthecoefficients?

    Usetheinitialdistributionofu amongthenodes.

    𝑢 0 =7𝑎.(0)�⃗�.6

    .84

    Nowtaketheinnerproductofbothsideswithaneigenvector

    𝑢 0 a �⃗�, = 𝑎,(0) �⃗�,&

    𝑎, 0 =𝑢(0) a �⃗�,�⃗�,

    &

  • SpectralPropertiesoftheGraphLaplacian

    Byspectralproperties,wemeanpropertiesoftheeigenvaluesandeigenvectors.

    SinceL issymmetric,itseigenvaluesarerealanditseigenvectorsareorthogonal

    IsL singularornon-singular?

    Lookatanyrowi. Thediagonalelementisthedegreeofthenode,𝑑..Alltheotherelementsareeither0or,foreachedge,-1.Thereareexactly𝑑. ofthese,soifyousumacrossanyrowofL youget𝑑. − 𝑑. = 0. Thisistrueforanyoftherows.Sothesumofallcolumnsofthematrixis0.Therefore,L issingular.Thatis,ithasatleastonezeroeigenvalue.Callit𝜆4 = 0.

  • SpectralPropertiesoftheGraphLaplacian

    Whatistheeigenvectorassociatedwiththezeroeigenvalue?Thatis,thevector�⃗�4 suchthat𝐿�⃗�4 = 0?

    Itmustbeavectorof1s,1.Why?

    Because,𝐿1 isthesumofthecolumnsofL,whichweknowequals0.

    DoesL haveanynegativeeigenvalues?

    SoL hasnon-negativeeigenvalues,whichiscalledpositivesemidefinite.

    Supposethat𝜆& < 0.Thentheterminthespectralsolution

    𝑎&(0)𝑒^_`e\�⃗�& → ∞

    whichweknowcan’thappen(thinkaboutspreadingdie,doesitsconcentrationgotoinfinityanywhereinthedomain?)

    as 𝑡 → ∞

  • SpectralPropertiesoftheGraphLaplacianSupposethatthegraphhastwocomponents.Howisthatreflectedintheeigenvalues?

    Labelthenodessothatthefirst𝑛4correspondtoonecomponentandthelast𝑛& = 𝑛 − 𝑛4 correspondtotheothercomponent.ThisresultsinablockdiagonalgraphLaplacianmatrix

    L =

    L1

    L20

    0

    n1

    n2

  • SpectralPropertiesoftheGraphLaplacian

    L =

    L1

    L20

    0

    n1

    n2

    Define �⃗�4 = (1,1,1,⋯ , 0,0,0,0⋯)

    n1

    �⃗�& = (0,0,0,⋯ , 1,1,1,1⋯)

    n2

    𝐿�⃗�& = 𝐿&1 = 0Then 𝐿�⃗�4 = 𝐿41 = 0 and

    So�⃗�4and�⃗�& arebotheigenvectorsofL with0eigenvalues,andL hastwo0eigenvalues.

  • SpectralPropertiesoftheGraphLaplacian

    Ingeneral,thenumberof0eigenvaluesofthegraphLaplacianisequaltothenumberofcomponentsofthegraph.

    OnecanordertheeigenvaluesofL fromsmallesttolargest.Then

    𝜆4 = 0

    If 𝜆& ≠ 0 thenthegraphisconnected

    If 𝜆& = 0 thenthegraphisdisconnected

    So𝜆&iscalledthealgebraicconnectivityofthegraph.

  • AsymptoticSolution

    𝑢 𝑡 =7𝑎.(0)𝑒^_`[\�⃗�.

    6

    .84

    Recallthatthespectralsolutiontothegraphdiffusionequationis

    Supposethatthegraphisconnected.Then𝜆4 = 0 andallothereigenvaluesarepositive.Therearen termsinthesolutionabove.Whathappenstothesetermsas𝑡 → ∞?

    Allapproach0,exceptforthefirstterm,whichisindependentoftime.Sotheasymptoticsolutionisjustthefirsttermofthespectralsolution,

    𝑢h = 𝑎4 0 �⃗�4

  • AsymptoticSolution

    𝑢h = 𝑎4 0 �⃗�4

    But 𝑎4 0 �⃗�4 =𝑢(0) a �⃗�4�⃗�4 &

    1 = 𝑢4 0 +⋯+ 𝑢6(0)

    𝑛 1

    So 𝑢h =𝑢4 0 +⋯+ 𝑢6(0)

    𝑛 1

    Howcanweinterpretthisphysically?

    Inthelongterm,eachnodeintheconnectedgraphgetsthesameshareofthedye(orwhateverisdiffusing),whichisequaltothetotalamountinitiallypresentdividedbythenumberofnodes.

  • AsymptoticSolutionThiscanalsobederiveddirectlyfromthediffusionequation

    𝑑𝑢𝑑𝑡 + 𝑐𝐿𝑢 = 0

    Settimederivativeto0,

    𝐿𝑢h = 0

    SotheequilibriumvectorisaneigenvectorofthegraphLaplaciancorrespondingtothe0eigenvalue,whichiswhatwejustsawusingthedifferentapproach.

  • AsymptoticSolutionWecanrewritethisequilibriumequationbydeconstructingthegraphLaplacian

    𝐿𝑢h = 0

    or

    (D-A)𝑢h = 0

    D𝑢h = 𝐴𝑢h

    𝑢h = 𝐷^4𝐴𝑢h

    Holdonnow,isD invertible? Yes,aslongasthegraphisconnected

  • TheFilterMatrixDefineanewmatrix,W,whichI’llcallafiltermatrix

    𝑊 ≡ 𝐷^4𝐴

    𝑢h = 𝑊𝑢h

    Then

    Howcanweinterpretthis?Onewayistothinkaboutthefollowingfirst-order linearrecursionor differenceequation:

    𝑢jk4 = 𝑊𝑢j

    startingfromtheinitialvector𝑢l.Whathappensifyouiterateforever?

    Thenultimatelyifthesystemconverges(anditwill),thek+1iteratewillbethesameasthekiterate.Thisgivestheequilibriumequationabove.Theequilibriumvector𝑢h isthereforethefixedpointoftherecursionwiththefiltermatrix.It’swhatyougetifyoukeepperformingthefilteringoverandoveragain.

  • TheFilterMatrix

    Since 𝑢h = 𝐷^4𝐴𝑢h

    𝑢h,. =∑ 𝐴.,𝑢h,,6,84∑ 𝐴.,6,84

    wherewenotethat𝐴.. = 0whentherearenoself-edges.

    If𝑢h isthesameateachnode,thenthisequationissatisfied.Sotheequilibriumvalueateachnodeistheaverageoftheinitialamountofdiffusiblesubstance.Thisisthepropertyofdiffusion,andmoreparticularly,theLaplacianoperator.Thusthename“graphLaplacian”forL.

  • HeterogeneousDiffusion

    Sofarwehavethoughtofthegraphasanunweightedgraph.Thatis,diffusionbetweenanypairofnodeshasthesamerate,c.Thisiscalledhomogeneousdiffusion.Moregenerally,eachedgecanhaveitsowndiffusionrate,whichiscalledheterogeneousdiffusion.Sonowtheadjacencymatrixhasweightsasitselements(or0s),and

    𝐿., = J𝑑., if𝑖 = 𝑗

    −𝑐.,, if𝑖 ≠ 𝑗andthereisanedge0, if𝑖 ≠ 𝑗andthereisnoedge

    wheredegreedi isthesumoftheweightededgesatnodei and𝑐., istheweightconnectingnodesi andj.

    𝑢h,. =∑ 𝐴.,𝑢h,,6,84∑ 𝐴.,6,84

    Again,

    Asolutiontothisis𝑢h,. = 𝑢h foreachnodeinthenetwork.Thatis,onceagain,atequilibriumthenodesequallydividetheinitialamountofsubstance.

  • ImageProcessing

  • PixelatedImageasaNetwork

    Eachpointonthegridhasagreylevel:0=white,1=black,withshadesofgreycorrespondingtointermediatevalues.Thesegridpointsarethenodes ofanetworkandtheirgreylevelisthevalueofu atthatnode.

  • PixelatedImageasaNetwork

    Whataretheedges?

    Mostgenerally,connecteachnodepairwithanedge,butmaketheedgesweighted(𝑐.,)bytheaffinity oftheconnectednodes.Here,affinitymeanshowsimilartheyare.

    Similarcouldmeanlocation(nearestneighborsgethighestaffinity).Oritcouldmeanthegreylevelofthepixels(similaru valuesofnodes).Ifitisbasedonlocation,thentheedgeweightsarefixed.Ifbasedongreylevel,edgeweightsarefunctionsoftheu values.

  • ModifyinganImageWiththeFilterMatrix

    Let𝑢l bethegreylevelvaluesoftheoriginalimage.Imageprocessingmultipliesthatvectorbythefiltermatrixtogetaproductvector,𝑢4 = 𝑊𝑢l.Ittypicallydoesthismorethanonce,applyingtherecursionrelationwesawearlier,𝑢jk4 = 𝑊𝑢j.

    TheeffectthishasontheimagedependsonW.Iftheaffinitiesarechosentobeneighborsinphysicalspace,thentheeffectofthefilteringwillbetoaverageoutdifferencesamongneighbors.Theimagebecomessmootherandblurrier.

  • ModifyinganImageWiththeFilterMatrix

    Iftheaffinitiesarechosenaccordingtosimilarityingreylevel,thenapplyingthefilterwillhavetheeffectofmakingsimilarpixelsmoresimilar,whichtendstosharpentheimage.Inthiscase,theweights𝑐.,andthereforetheelementsofWareupdatedwitheachiterationoftherecursionformula.

    Inpractice,combinationsofaffinitybasedonlocationandbasedongreylevelsareused,anditerationstopswhensomemeasureofimagegoodnesshasbeenreached.

  • ForaGreatVideoonImageProcessing

    Thefollowinglinkhasanhour-longlecturebyaresearcherfromGoogleonhowthegraphLaplacianisusedinimageprocessing:

    https://www.youtube.com/watch?v=_ItmFYCr7ag

  • TheEnd