Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

  • Upload
    naveed

  • View
    232

  • Download
    0

Embed Size (px)

Citation preview

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    1/51

    Combinational

    CircuitMemory

    elements

    Inputs

    Outputs

    Block diagram of a Sequential Logic

    Circuit

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    2/51

    Q

    QS (set)

    R (reset)1

    0

    1

    0

    1

    2

    S R Q Q

    1 0 1 0

    0 0 1 0

    0 1 0 1

    0 0 0 1

    1 1 0 0

    (after S=1, R=0)

    (after S=0, R=1)

    Basic flip-flop circuit with NOR gates

    (Asynchronous Sequential Circuits)

    (a) Logic Diagram

    (b) Truth Table

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    3/51

    Q

    Q

    S (set)

    R (reset)

    1

    2

    1

    0

    1

    0

    S R Q Q

    1 0 0 1

    1 1 0 1

    0 1 1 0

    1 1 1 0

    0 0 1 1

    (after S=1, R=0)

    (after S=0, R=1)

    Basic flip-flop circuit with NAND gates

    (Asynchronous Sequential Circuits)

    (a) Logic Diagram

    (b) Truth Table

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    4/51

    1

    1

    Q

    Q

    1

    2

    (a) Logic diagram

    Q S R Q(t+1)

    0 0 0 0

    0 0 1 0

    0 1 0 1

    0 1 1 Indeterminate

    1 0 0 1

    1 0 1 0

    1 1 0 1

    1 1 1 indeterminate

    (c) Characteristic table

    Q Q

    R S

    X 1

    1 X 1

    00 01 11 10Q

    0

    1

    SR S

    RQ(t+1) = S+RQ

    (b) Graphical Symbol

    (d) Characteristic equationClocked RS flip-flop

    SR = 0

    R

    CP

    S

    CP

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    5/51

    3

    4

    Q

    Q

    1

    2

    5

    (a) Logic diagram with NAND gates

    Q Q

    D

    (b) Graphical Symbol

    Q D Q(t+1)

    0 0 0

    0 1 1

    1 0 0

    1 1 1

    1

    1

    0

    1

    0 1

    Q(t+1) = D

    (c) Characteristic table (d) Characteristic equation

    Clocked D flip-flop

    D

    CP

    R

    S

    CP

    Q

    D

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    6/51

    (a) Logic diagram

    Q

    Q

    Clocked JK

    flip-flop

    Q Q

    K J

    J K Q(t+1)

    0 0 0 0

    0 0 1 0

    0 1 0 1

    0 1 1 1

    1 0 0 1

    1 0 1 0

    1 1 0 1

    1 1 1 0

    1 1

    1 1

    00 01 11 10Q

    0

    1

    JK J

    KQ(t+1) = JQ+KQ

    (d) Characteristic equation(b) Graphical Symbol (c) Characteristic table

    K

    CP

    J

    CP

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    7/51

    (a) Logic diagram

    Q

    Q

    Clocked T

    flip-flopCP

    T

    Q Q

    T

    (b) Graphical Symbol

    CP

    Q T Q(t+1)

    0 0 0

    0 1 11 0 1

    1 1 0

    (c) Characteristic table

    1

    1

    0

    1

    0 1Q

    T

    Q(t+1) = TQ+TQ

    (d) Characteristic equation

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    8/51

    Positive Pulse Negative Pulse

    Positive-

    edge

    Negative-

    edge

    Negative-

    edge

    Positive-

    edge

    Definition of clock pulse transition

    1

    0

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    9/51

    Master

    S

    R

    Slave

    S

    R

    S

    R

    Q

    Q

    CP

    MASTER-SLAVE FLIP-FLOP

    Logic diagram of master-slave flip-flop

    Y

    Y

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    10/51

    Timing relationships in a master-slave flip-flop

    S

    Q

    Y

    CP

    S=1, R=0 S=0, R=1

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    11/51

    13

    42

    5

    6

    Q

    Q

    7

    8

    9

    K

    CP

    J Y

    Y

    Clocked master-slave JK flip-flop

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    12/51

    1

    2

    3

    4

    5

    6

    CP

    S

    R

    Q

    Q

    R Q

    1 0 0 1

    1 1 0 1

    1 1 0

    1 1 1 0

    0 1 1

    (NC)

    (NC)

    S=R=1 for steady state values

    When S=1 & R=0 : Q=0

    When S=0 & R=1 : Q=1

    D-type positive-edge-triggered flip-flop

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    13/51

    1

    2

    3

    4

    CP=0

    S

    D=0

    1

    2

    3

    4

    CP=0

    S

    D=1

    0

    1

    1

    1

    1

    1

    1

    0

    No Change at the outputs of the flip flop whether D = 0 or 1

    (a) With CP = 0

    Operation of the D-type edge-triggered flip-flop

    So Q = 0 & Q = 1

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    14/51

    1

    2

    3

    4

    CP=1

    S

    D=0

    1

    2

    3

    4

    CP=1

    S

    D=1

    0

    1

    0

    1

    1

    0

    1

    0

    Operation of the D-type edge-triggered flip-flop

    (b) With CP = 1

    So Q = 0 & Q = 1 So Q = 1 & Q = 0So Q = 1 & Q = 0

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    15/51

    Q Q

    K J

    Function TableInputs Outputs

    Clear Clock J K Q Q

    0 x x x 0 1

    1 0 0 No Change

    1 0 1 0 1

    1 1 0 1 0

    1 1 1 Toggle

    CP

    Direct Inputs

    Asynchronous

    JK flip-flop with direct clear

    Clear

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    16/51

    yx

    A

    B

    R Q

    S Q

    xA

    x

    A

    B

    B

    R Q

    S Q

    x

    B

    x

    B

    A

    A

    CP

    Example of clocked sequential circuit

    (Analysis)

    Input = x (External)

    Output = y

    Clocked RS flip-flop

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    17/51

    Next State Output

    Present State x=0 x=1 x=0 x=1

    AB AB AB y y

    00 00 01 0 0

    01 11 01 0 0

    10 10 00 0 1

    11 10 11 0 0

    State table for circuit

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    18/51

    00

    11

    01 10

    0/0

    0/0

    0/00/0

    1/01/0

    1/0

    1/1

    State diagram for the circuit

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    19/51

    1 1 1

    1

    A

    0

    1

    Bx B

    x

    00 01 11 10

    A

    1

    1 1 1

    A

    0

    1

    Bx B

    x

    A

    00 01 11 10

    A(t+1) = Bx+(B+x)A B(t+1) = Ax+(A+x)B

    (a) A(t+1) = Bx + (Bx) A (b) B(t+1) = Ax + (Ax) B

    A(t+1) = S+ RA B(t+1) = S+ RB

    State equations for flip-flops A and B

    Q(t+1) = S+ RQ

    SR=0

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    20/51

    SA = B x RA = Bx

    SB = Ax

    RB = Ax y =

    ABx

    Analysis of clocked sequential circuit

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    21/51

    yx

    A

    B

    R Q

    S Q

    xA

    x

    A

    B

    B

    R Q

    S Q

    x

    B

    x

    B

    A

    A

    CP

    Clocked sequential circuit

    Input = x (External)

    Output = y

    Clocked RS flip-flop

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    22/51

    K Q

    J Q

    A

    A

    B

    C

    x

    B

    C

    x

    B

    y

    CP

    JA = BCx + BCx and KA = B+y

    Implementation of the flip-flop input functions

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    23/51

    a

    b

    d

    f

    c

    e

    g

    0/0

    1/0

    1/1

    0/0

    0/0

    0/0

    0/0

    0/0

    0/0

    1/01/0

    1/1

    1/1

    1/1

    Present State a a b c d e f f g f g a

    Input Value 0 1 0 1 0 1 1 0 1 0 0

    Output Value 0 0 0 0 0 1 1 0 1 0 0

    State diagram

    The problem of state-

    reduction is to find ways of

    reducing the number of

    states in a sequential circuit

    without altering the input-

    output relationships.

    minimizes the cost of

    circuit by reducing flip-

    flops & gates.

    Consider the input

    sequence 01010110100

    starting from present state a.

    We are interested only in

    output sequences caused by

    input sequences..

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    24/51

    Next State Output

    Present State x=0 x=1 x=0 x=1

    a a b 0 0

    b c d 0 0

    c a d 0 0

    d e f 0 1

    e a f 0 1

    f g f 0 1

    g a f 0 1

    State Table

    R d i h S T bl

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    25/51

    Next State Output

    Present State x=0 x=1 x=0 x=1

    a a b 0 0

    b c d 0 0

    c a d 0 0

    d e f 0 1

    e a f 0 1f g f 0 1

    g a f 0 1

    Reducing the State Table

    State a a b c d e d d e d e aInput 0 1 0 1 0 1 1 0 1 0 0

    Output 0 0 0 0 0 1 1 0 1 0 0

    d

    de

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    26/51

    Next State OutputPresent State x=0 x=1 x=0 x=1

    a a b 0 0

    b c d 0 0c a d 0 0

    d e d 0 1

    e a d 0 1

    Reduced State Table

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    27/51

    001

    a

    010

    b

    100

    d

    011

    c

    101

    e

    0/01/0

    1/1

    0/0

    0/0

    0/0

    0/01/1

    1/01/0

    Reduced State diagram

    m flip-flops can represent

    up to 2m distinct states (i.e.

    if m=3, 8 states => 000-

    111)

    For five states, 3 flip-

    flops are required.

    Fewer states do not

    guarantee a saving in the

    number of flip-flops or

    number of gates.

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    28/51

    10100001101

    10100101100

    00100001011

    0010001101000010001001

    x=1x=0x=1x=0Present StateOutputNext State

    Reduced State Table with binary assignment 1

    011111101e

    101101100d

    010011011c

    100010010b

    000000001a

    Assignment3Assignment2Assignment 1State

    Three possible binary state assignments

    Fli fl h t i ti t bl

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    29/51

    S R Q(t+1) J K Q(t+1)

    0 0 Q(t) NC 0 0 Q(t) NC

    0 1 0 0 1 0

    1 0 1 1 0 1

    1 1 ? 1 1 Q(t)

    D Q(t+1) T Q(t+1)

    0 0 0 Q(t) NC

    1 1 1 Q(t)

    (a) RS (b) JK

    (c) D (d) T

    Flip-flop characteristic tables

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    30/51

    Q(t) Q(t+1) S R Q(t) Q(t+1) J K

    0 0 0 X 0 0 0 X

    0 1 1 0 0 1 1 X

    1 0 0 1 1 0 X 1

    1 1 X 0 1 1 X 0

    Q(t) Q(t+1) D Q(t) Q(t+1) T

    0 0 0 0 0 0

    0 1 1 0 1 1

    1 0 0 1 0 1

    1 1 1 1 1 0

    (a) RS (b) JK

    (c) D (d) T

    Flip-flop excitation tables

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    31/51

    Design Procedure for Sequential Logic Circuits

    1. The word description of the circuits behavior is stated. This may beaccompanied by a state diagram, a timing diagram, or other pertinentinformation.

    2. From the given information about the circuit, obtain the state table.

    3. The number of states may be reduced by state reduction methods if thesequential circuit can be characterized by input-output relationshipsindependent of the number of states.

    4. Assign binary values to each state if the state table obtained in step 2 or3 contains letter symbols.

    5. Determine the number of flip-flops needed and assign a letter symbol toeach.

    6. Choose the type of flip-flop to be used.7. From the state table, derive the circuit excitation and output tables.

    8. Using the K-Map or any other simplification method, derive the circuitoutput functions and the flip-flop input functions.

    9. Draw the logic diagram.

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    32/51

    00

    10

    01 110

    1

    1

    1

    1

    0

    0

    0State diagram

    Design the clocked sequential circuit

    using JK flip-flops from the given state

    diagram.

    Next State Output

    Present State x=0 x=1

    A B A B A B

    0 0 0 0 0 1

    0 1 1 0 0 1

    1 0 1 0 1 1

    1 1 1 1 0 0

    State Table

    Q( ) Q( 1) J K

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    33/51

    Inputs of Combinational

    Circuit Next state

    Outputs of Combinational circuit

    Present state Input Flip-flop inputs

    A B x A B JA KA JB KB

    0 0 0 0 0 0 X 0 X

    0 0 1 0 1 0 X 1 X

    0 1 0 1 0 1 X X 1

    0 1 1 0 1 0 X X 0

    1 0 0 1 0 X 0 0 X

    1 0 1 1 1 X 0 1 X1 1 0 1 1 X 0 X 0

    1 1 1 0 0 X 1 X 1

    Q(t) Q(t+1) J K

    0 0 0 X

    0 1 1 X

    1 0 X 1

    1 1 X 0

    Excitation table

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    34/51

    Combinational Circuit

    A

    A

    B

    B

    Q Q

    K J

    Q Q

    K J

    A A B B

    KA JA KB JB

    CP

    External

    outputs

    (none)

    External Inputs

    Block diagram of sequential circuit

    x

    B B

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    35/51

    1

    X X X X

    00 01 11 10A

    0

    1

    Bx B

    x

    A

    X X X X

    1

    00 01 11 10A

    0

    1

    Bx B

    1 X X

    1 X X

    00 01 11 10A

    0

    1

    Bx B

    X X 1

    X X 1

    00 01 11 10A

    0

    1

    Bx B

    JA = BxKA = Bx

    JB = x KB = A . X = Ax + Ax

    Maps for combinational circuit

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    36/51

    Q Q

    K J

    Q Q

    K J

    A

    B

    CP

    x

    Logic diagram of Sequential Logic Circuit

    JA = Bx

    KA = Bx

    JB = x

    KB = A x

    Q: Design a sequential circuit using state table with assignment 1 employing

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    37/51

    Present state Input Next State Flip-flop Inputs OutputA B C x A B C SA RA SB RB SC RC y

    0 0 1 0 0 0 1 0 X 0 X X 0 0

    0 0 1 1 0 1 0 0 X 1 0 0 1 0

    0 1 0 0 0 1 1 0 X X 0 1 0 0

    0 1 0 1 1 0 0 1 0 0 1 0 X 0

    0 1 1 0 0 0 1 0 X 0 1 X 0 0

    0 1 1 1 1 0 0 1 0 0 1 0 1 0

    1 0 0 0 1 0 1 X 0 0 X 1 0 0

    1 0 0 1 1 0 0 X 0 0 X 0 X 1

    1 0 1 0 0 0 1 0 1 0 X X 0 0

    1 0 1 1 1 0 0 X 0 0 X 0 1 1

    Excitation table

    Q: Design a sequential circuit using state table with assignment 1 employing

    RS flip-flops.

    Q(t) Q(t+1) S R

    0 0 0 X

    0 1 1 0

    1 0 0 1

    1 1 X 0

    C

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    38/51

    x x

    1 1

    x x x x

    x x x

    00 01 11 10

    00

    01

    11

    10

    AB

    A

    C

    x x x x

    x x

    x x x x

    1

    x x 1

    x

    x x x x

    x x x

    1 1 1

    x x x x

    x x x x

    x x x

    1 x

    x x x x

    1 x

    x x 1

    x 1

    x x x x

    x 1

    x x

    x x x x

    1 1

    SA=Bx RA=Cx SB=ABx

    RB=BC+Bx SC=x y=AxRC=x

    Maps for simplifying the sequential circuit

    Cx

    Cx

    B

    00 01 11 10AB 00 01 11 10AB

    00 01 11 10AB00 01 11 10AB00 01 11 10AB00 01 11 10

    Cx Cx

    Cx Cx

    00

    01

    11

    10

    00

    01

    11

    10

    00

    01

    11

    10

    Logic diagram

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    39/51

    S Q

    R Q

    S Q

    R Q

    S Q

    R Q

    y

    A

    A

    B

    B

    C

    CP

    x

    Logic diagram

    SA = Bx, RA = Cx, SB = ABx, RB = BC + Bx, SC = x, RC =x & y = Ax

    Example: Analyse the sequential circuit and determine the effect of unused states.

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    40/51

    p y q

    001

    011

    100

    010101

    0/01/0

    1/1

    0/0

    0/0

    0/0

    0/01/1

    1/01/0

    000

    110

    111

    0/0

    0/0

    0/0

    1/0

    1/1

    1/1

    000 0 0

    0 0 1

    110 1 1

    1 1 1

    111 1 1

    1 1 1

    Unused states

    The circuit is

    self-starting and

    self-correcting

    since it

    eventually goes

    to a valid state

    from which it

    continues to

    operate as

    required. State diagram of the circuit

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    41/51

    000

    111

    110

    101

    100

    011

    010

    001

    State diagram of a 3 bit binary counter

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    42/51

    Count sequence Flip-flop inputs

    A2 A1 A0 TA2 TA1 TA0

    0 0 0 0 0 1

    0 0 1 0 1 1

    0 1 0 0 0 1

    0 1 1 1 1 1

    1 0 0 0 0 1

    1 0 1 0 1 1

    1 1 0 0 0 1

    1 1 1 1 1 1

    1

    1

    0

    1

    00 01 11 10A21 1

    1 1

    A1A0

    1 1 1 1

    1 1 1 1

    A1

    A2

    A0TA2 = A1A0

    TA1 = A0 TA0 = 1

    Maps for a 3-bit binary counter

    Excitation table for a 3-bit binary counter

    Q(t) Q(t+1) T

    0 0 0

    0 1 1

    1 0 1

    1 1 0

    0A2

    1

    0A2

    1

    00 01 11 10A1A0

    00 01 11 10A1A0

    Logic diagram 0f a 3-bit binary counter

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    43/51

    Logic diagram 0f a 3 bit binary counter

    CP

    A2 A1 A0

    TA2 = A1A0

    TA1 = A0

    TA0

    = 1

    1

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    44/51

    A B C

    0 0 0

    0 0 1

    0 1 0

    5 0 0

    1 0 1

    7 1 0

    JA

    0

    0

    1

    X

    X

    X

    KA

    X

    X

    X

    0

    0

    1

    JB

    0

    1

    X

    0

    1

    X

    KB

    X

    X

    1

    X

    X

    1

    JC

    1

    X

    0

    1

    X

    0

    KC

    X

    1

    X

    X

    1

    X

    Flip-flop inputsCount sequence

    Excitation table

    Q(t) Q(t+1) J K

    0 0 0 X

    0 1 1 X

    1 0 X 1

    1 1 X 0

    Dont care

    011

    111

    Q: Design a counter that counts a repeated sequence as

    shown below using JK flip-flop

    Counting Sequence : 0, 1, 2, 4, 5 and 6

    Dont care: 011 & 111

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    45/51

    x 1

    x x x x

    A

    0

    1

    00

    x x x x

    x 1

    A

    0

    1

    1 x x

    1 x x

    A

    0

    1

    x x x 1x x x 1

    A

    0

    1

    1 x x

    1 x x

    A

    0

    1

    x 1 x x

    x 1 x x

    A

    0

    1

    01 11 10 00 01 11 10

    00 01 11 1000 01 11 10

    00 01 11 10 00 01 11 10

    KA = B

    KB = 1

    KC = 1

    JA = B

    JB = C

    JC = B

    BC

    BC

    BCBC

    BC

    BC

    B

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    46/51

    1

    Q Q

    K J

    Q Q

    K J

    Q Q

    K J

    B

    Count

    Pulses

    (a) Logic Diagram

    of Counter

    000

    001 110

    010 101

    100

    111

    011

    (b) Logic Diagram

    of Counter

    Using K-maps

    JA = B

    KA = BJB = C

    KB = 1

    JC = B

    KC = 1

    Counter is self-starting

    Unused states

    011

    111

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    47/51

    Design with State EquationPresent

    State

    Input Next

    StateA B x A B

    0 0 0 0 0

    0 0 1 0 1

    0 1 0 1 0

    0 1 1 0 11 0 0 1 0

    1 0 1 1 1

    1 1 0 1 1

    1 1 1 0 0

    With D Flip Flops

    Characteristic equation

    Q(t+1) = D

    Example # 1: State equations from the given table are:

    A(t+1) = DA(A,B,x) = (2,4,5,6)

    B(t+1) = DB(A,B,x) = (1,3,5,6)

    DA = AB + Bx

    DB = Ax + Bx +ABx

    1

    1 1 1

    0

    1

    00 01 11 10A

    Bx

    1 1

    1 1

    0

    1

    00 01 11 10A

    Bx Q Qt D

    0 0 0

    0 1 1

    1 0 0

    1 1 1DA = AB + BxDB = Ax + Bx

    +ABx

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    48/51

    D Q

    D Q

    A

    A

    B

    B

    CP

    x

    DA = AB + Bx

    DB = Ax + Bx +ABx Logic diagram

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    49/51

    Example # 2 : Design a sequential Circuit as per given conditions using D flip flops:-

    A(t+1) = C + D

    B(t+1) = A

    C(t+1) = BD(t+1) = C

    So

    DA = C + D

    DB = A

    DC = BDD = C

    Q D Q D Q D Q DAB

    CP

    CD

    Example # 3:- Design a Sequential Circuit with JK flip-flops to satisfy

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    50/51

    p g q p p y

    the given equations:-State Equations [Characteristic equation of JK flip-flops = Q(t+1) = (J) Q + (k) Q ]

    A(t+1) = ABCD + ABC + ACD + ACD

    B(t+1) = AC + CD + ABC

    C(t+1) = BD(t+1) = D

    Algebraic manipulations for matching characteristic equation of JK flip-

    flops:

    A(t+1) = (BCD + BC) A + (CD + CD)A

    = (J)A + (K) A

    J = BCD + BC = BC ------------(i)

    (K) = (CD +CD) = CD + CD------(ii)

    B(t+1) = (AC +CD) + (AC)B

    B(t+1) = (AC + CD)(B+B) + (AC)B= (AC + CD) B + (AC + CD + AC) B

    = (J)B + (K) B

    J = AC + CD -------------(iii)

    (K) = (AC + CD + AC) = AC + AD ---------- (iv)

  • 8/14/2019 Digital And Logic Devices No.5 (DLD Basic Devices(Basic Flip Flop (Sequential Circuit)) From APCOMS

    51/51

    C(t+1) = B = B(C + C) = BC + BC

    = (J) C + (K) C

    J = B ----------(v)

    (K) = B -------(vi)

    D(t+1) = D = 1.D + 0.D

    = (J) D + (K) D

    J = K = 1

    J = 1----------(vii)(K) = (O) = (K) = 1-----------(viii)

    JA = BC ----------(i) KA = CD + CD-----------(ii)

    JB = AC + CD --------(iii) KB = AC + AD -------(iv)

    JC = B ---------(v) KC = B ----------(vi)JD = 1 ----------(vii) KD = 1 ------------(viii)