18
Dilepton Signal from GiBUU Transport Model Janus Weil Frankfurt Institute for Advanced Studies in collab. with: U. Mosel, H. van Hees, K. Gallmeister, S. Endres, M. Bleicher Workshop on Electromagnetic Probes of Strongly Interacting Matter ECT* Trento, May 20, 2013 J. Weil Dilepton Signal from GiBUU Transport Model

Dilepton Signal from GiBUU Transport Model · all resonance parameters taken from Manley/Saleski PWA good descr. of total NN cross sections up to p s ˇ3:5GeV all ˇ, and ˆmesons

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Dilepton Signal fromGiBUU Transport Model

    Janus Weil

    Frankfurt Institute for Advanced Studies

    in collab. with: U. Mosel, H. van Hees, K. Gallmeister, S. Endres, M. Bleicher

    Workshop onElectromagnetic Probes of Strongly Interacting Matter

    ECT* Trento, May 20, 2013

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Introduction

    HADES has measured various dileptonspectra in the few-GeV regime (1-4 GeV):

    elementary reactions (pp, dp, pNb)heavy-ion collisions (CC, ArKCl, AuAu)

    We need models (e.g. transport)to interpret & understand them!

    What do we want to learn?⇒ in-medium spectral functions(in particular for the ρ meson)

    heaviest system so far: Ar+KCl at 1.76 GeV(ρ . 3ρ0, T ∼ 80MeV)

    What is the current status?

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Ar + KCl @ 1.76: status (aka the “∆ puzzle”)

    10-7

    10-6

    10-5

    10-4

    10-3

    0 0.2 0.4 0.6 0.8 1

    1/N

    π0 d

    N/d

    mee

    dilepton mass mee [GeV]

    GiBUU(vacuum SF)

    datatotal

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    NN Brems.D13(1520)S31(1620)

    ππ

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Questions

    Is a ’vacuum’ cocktail sufficient to describethe ArKCl spectrum?

    Is there hope to see any modifications of the ρ spec. func.?

    answers currently depend on which model you believe in ...

    biggest discrepancy: ∆ Dalitz channel

    ⇒ we need to check very carefully if we understand thecocktail with all its contributions

    separating vacuum cocktail from medium modificationsrequires two steps:

    1 fix vacuum cocktail & model input via elementary collisionsonly!

    2 only afterwards: check if the same cocktail can describeheavy-ion collisions (or if medium-mod. are required)

    J. Weil Dilepton Signal from GiBUU Transport Model

  • The GiBUU Transport Model

    hadronic transport model (microscopic, non-equilibrium)unified framework for various types of reactions(γA, eA, νA, pA, πA, AA) and observablesBUU equ.: space-time evolution of phase-space density F(via gradient expansion from Kadanoff-Baym)

    ∂(p0−H)∂pµ

    ∂F (x ,p)∂xµ −

    ∂(p0−H)∂xµ

    ∂F (x ,p)∂pµ = C (x , p)

    Hamiltonian H:hadronic mean fields, Coulomb, “off-shell potential”

    collision term C (x , p): decays and collisionslow energy: resonance model, high energy: string fragment.

    O. Buss et al., Phys. Rep. 512 (2012),http://gibuu.physik.uni-giessen.de

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Modeling collisions in the few-GeV regime

    baryon-baryon collisions at low energies:resonance models vs. string fragmentation

    HADES energy range is clearly in the resonance regime!

    we need one consistent model for the whole energy range!

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Resonance Model

    assumption: inel. NN cross section is dominated byproduction and decay of baryonic resonancesNN → NR,∆R (R : ∆, 7 N∗ and 6 ∆∗ states)based on Teis RM [Z. Phys. A 356, 1997] with several extensionsall resonance parameters taken from Manley/Saleski PWAgood descr. of total NN cross sections up to

    √s ≈ 3.5GeV

    all π, η and ρ mesons produced via R decays (ω, φ: non-res.)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    2 2.5 3 3.5 4

    σin

    el [

    mb]

    sqrt(s) [GeV]

    pp → X

    HADES

    2 2.5 3 3.5 4 0

    5

    10

    15

    20

    25

    30

    35

    40

    sqrt(s) [GeV]

    np → X

    datainel.N∆

    NN*N∆*∆∆

    ∆N*∆∆*

    NNπω/φ

    BYK

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Dilepton sources

    V → e+e− (with V = ρ, ω, φ) via strict VMD: Γee(m) ∝ m−3

    P → γe+e− (with P = π0, η, η′) [Landsberg, Phys.Rep.128, 1985]ω → π0e+e− [Landsberg]∆ → Ne+e− [Krivoruchenko, Phys.Rev.D65, 2002],em. transition form factor from Ramalho/Pena [Phys.Rev.D85, 2012]

    baryonic resonances N∗, ∆∗: two-step decay R → ρN → e+e−N⇒ dilepton contributions from all res. which have a ρ coupling(with an ’implicit’ FF: strict VMD)

    Bremsstrahlung in soft-photon approximation

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Delta form factor

    electromagnetic N-∆ transition form factor only constrainedby data in space-like region

    experimentally unknown in time-like region

    recent models: Wan/Iachello (red, IJMP A20, 2005),Ramalho/Pena (green, PRD85, 2012)

    100

    101

    102

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    |GM

    |2

    mee [GeV]

    3.029**2W/I 1.23W/I 1.43W/I 1.63W/I 1.83W/I 2.03R/P 1.23R/P 1.43R/P 1.63R/P 1.83R/P 2.03

    J. Weil Dilepton Signal from GiBUU Transport Model

  • ∆ production cross section

    only exclusive ∆+ production constrained by data

    resonance models (UrQMD/GiBUU) agree roughly oninclusive production

    but: inclusive cross section much larger in HSD/FRITIOF

    string models do not obey isospin relations!

    10-1

    100

    101

    2 2.5 3 3.5 4 4.5 5 5.5

    σpp [m

    b]

    sqrt(s) [GeV]

    pp → ∆+X production

    ∆+X (Res)

    ∆+p (Res)

    ∆+X (Py)

    ∆+p (Py)

    ∆+X (Fr)

    ∆+p (Fr)

    HSD inclHSD excl

    UrQMD inclUrQMD excl

    ∆+p data

    2 2.5 3 3.5 4 4.5 5 5.5

    sqrt(s) [GeV]

    pp → ∆++

    X production

    ∆++

    X (Res)∆

    ++n (Res)

    ∆++

    X (Py)∆

    ++n (Py)

    ∆++

    X (Fr)∆

    ++n (Fr)

    2 2.5 3 3.5 4 4.5 5 5.5-0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    sqrt(s) [GeV]

    isospin ratio ∆++

    /∆+

    incl. (Res)excl. (Res)

    incl. (Py)excl. (Py)incl. (Fr)

    excl. (Fr)

    lesson: don’t trust string fragmentation models at low energies!J. Weil Dilepton Signal from GiBUU Transport Model

  • p+p at 3.5 GeV

    Pythia + Iachello FF

    10-3

    10-2

    10-1

    100

    101

    0 0.2 0.4 0.6 0.8 1

    /dm

    ee [

    µb

    /Ge

    V]

    dilepton mass mee [GeV]

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    10-3

    10-2

    10-1

    100

    101

    0 0.2 0.4 0.6 0.8 1

    /dp

    T [

    µb/G

    eV

    ]

    0 0.2 0.4 0.6 0.8 1

    transverse momentum pT [GeV]

    0 0.2 0.4 0.6 0.8 1

    10-3

    10-2

    10-1

    100

    101

    0 0.2 0.4 0.6 0.8 1

    /dp

    T [

    µb/G

    eV

    ]

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    10-4

    10-3

    10-2

    10-1

    100

    0 0.5 1 1.5 2

    /dy [

    µb]

    m < 150 MeV

    0 0.5 1 1.5 2

    rapidity y

    150 MeV < m < 470 MeV

    0 0.5 1 1.5 2

    470 MeV < m < 700 MeV

    0 0.5 1 1.5 2

    10-4

    10-3

    10-2

    10-1

    100

    /dy [

    µb]

    700 MeV < m

    Resonance Model + Ramalho FF

    10-3

    10-2

    10-1

    100

    101

    0 0.2 0.4 0.6 0.8 1d

    σ/d

    mee [

    µb

    /Ge

    V]

    dilepton mass mee [GeV]

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    10-3

    10-2

    10-1

    100

    101

    0 0.2 0.4 0.6 0.8 1

    /dp

    T [

    µb/G

    eV

    ]

    0 0.2 0.4 0.6 0.8 1

    transverse momentum pT [GeV]

    0 0.2 0.4 0.6 0.8 1

    10-3

    10-2

    10-1

    100

    101

    0 0.2 0.4 0.6 0.8 1

    /dp

    T [

    µb/G

    eV

    ]

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    10-4

    10-3

    10-2

    10-1

    100

    0 0.5 1 1.5 2

    /dy [

    µb]

    m < 150 MeV

    0 0.5 1 1.5 2

    rapidity y

    150 MeV < m < 470 MeV

    0 0.5 1 1.5 2

    470 MeV < m < 700 MeV

    0 0.5 1 1.5 2

    10-4

    10-3

    10-2

    10-1

    100

    /dy [

    µb]

    700 MeV < m

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Resonance contributions in p+p @ 3.5

    10-3

    10-2

    10-1

    100

    0 0.2 0.4 0.6 0.8 1

    /dm

    ee [

    µb/G

    eV

    ]

    dilepton mass mee [GeV]

    ρ → e+e

    -

    D13(1520)S11(1535)S11(1650)F15(1680)P13(1720)

    all Res.S31(1620)D33(1700)F35(1905)

    in the resonance model approach we get large contributionsfrom several N∗ and ∆∗ resonances

    πN spectra confirm significant resonance contr. (A. Dybczak)

    J. Weil Dilepton Signal from GiBUU Transport Model

  • other elementary collisions

    10-3

    10-2

    10-1

    100

    101

    0 0.1 0.2 0.3 0.4 0.5

    /dm

    ee [

    µb

    /Ge

    V]

    dilepton mass mee [GeV]

    p + p at 1.25 GeV

    dataGiBUU total

    π0 → e

    +e

    ∆ → Ne+e

    -

    ρ → e+e

    -

    D13(1520)

    10-3

    10-2

    10-1

    100

    101

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    /dm

    ee [

    µb

    /Ge

    V]

    dilepton mass mee [GeV]

    p + p at 2.2 GeV

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    D13(1520)P13(1720)

    10-4

    10-3

    10-2

    10-1

    100

    101

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    /dm

    ee [

    µb/G

    eV

    ]

    dilepton mass mee [GeV]

    d + p at 1.25 GeV

    dataGiBUU total

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    pn Brems.ρ → e

    +e

    -

    D13(1520)S11(1535)

    p+p at 1.25 and 2.2 GeV rather well described

    large underestimation in d+p

    OBE models can help to understand isospin effects(Shyam/Mosel, PRC82, 2010)

    J. Weil Dilepton Signal from GiBUU Transport Model

  • ’light’ nuclear systems

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    /dm

    ee

    dilepton mass mee [GeV]

    C + C @ 1.0 GeV

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    NN Brems.D13(1520)S31(1620)

    ππ

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    0 0.2 0.4 0.6 0.8 1

    1/N

    π0 d

    N/d

    mee

    dilepton mass mee [GeV]

    C + C @ 2.0 GeV

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    NN Brems.D13(1520)S31(1620)

    ππ

    10-1

    100

    101

    102

    103

    0 0.2 0.4 0.6 0.8 1 1.2

    /dm

    ee [

    µb/G

    eV

    ]

    dilepton mass mee [GeV]

    p + Nb @ 3.5 GeV

    dataGiBUU total

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    D13(1520)S31(1620)F35(1905)

    C+C is a light system, can be described roughly by asuperposition of NN collisions

    2 GeV data well described, some discrepancies at 1 GeV

    also p+Nb well reproduced, based on the good agreementwith [email protected]

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Ar + KCl @ 1.76 AGeV

    10-7

    10-6

    10-5

    10-4

    10-3

    0 0.2 0.4 0.6 0.8 1

    1/N

    π0 d

    N/d

    mee

    dilepton mass mee [GeV]

    GiBUU(vacuum SF)

    datatotal

    ρ → e+e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    NN Brems.D13(1520)S31(1620)

    ππ

    ]2 [MeV/ceeM

    0 0.2 0.4 0.6

    )ee

    /dM

    NN

    )/(d

    Nee

    /dM

    AA

    ) (d

    N0

    πAA

    /N0

    πNN

    (N 0

    1

    2

    3

    4

    5

    6

    7

    8

    (b)Ar+KCl 1.76A GeVC+C 1A GeV

    C+C 2A GeV

    Ar+KCl data shows excess over NN/CC (∼ factor 3)GiBUU with vac. SF misses data⇒ room for medium mod.

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Ar+KCl: off-shell transport

    off-shell EOM for test particles[Cassing/Juchem (NPA 665, 2000),

    Leupold (NPA 672, 2000)]:

    ~̇ri =1

    1− Ci

    1

    2Ei

    [2~pi +

    ∂~piRe(Σi ) + χi

    ∂Γi

    ∂~pi

    ],

    ~̇pi = −1

    1− Ci

    1

    2Ei

    [∂

    ∂~riRe(Σi ) + χi

    ∂Γi

    ∂~ri

    ],

    Ci =1

    2Ei

    [∂

    ∂EiRe(Σi ) + χi

    ∂Γi

    ∂Ei

    ],

    χi =m2i − M

    2

    Γi,

    dχi

    dt= 0

    test particles dynamicallychange their masses

    some approximations required

    only works ’close to mass shell’

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    0 0.2 0.4 0.6 0.8 1

    /dm

    ee [

    mb

    /Ge

    V]

    dilepton mass mee [GeV]

    VM in-medium effects

    datashift

    CB+shiftvacCB

    J. Weil Dilepton Signal from GiBUU Transport Model

  • pion-induced reactions

    10-3

    10-2

    10-1

    100

    101

    102

    103

    0 0.5 1 1.5 2

    σee [

    µb

    ]

    Ekin [GeV]

    π- p: dilepton excitation function

    GiBUU totalρ → e

    +e

    -

    ω → e+e

    -

    φ → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    D13(1520)S11(1535)F15(1680)F35(1905)

    10-2

    10-1

    100

    101

    102

    103

    0 0.2 0.4 0.6 0.8 1

    /dm

    ee [

    µb/G

    eV

    ]

    dilepton mass mee [GeV]

    π- p at 540 MeV

    GiBUU totalρ → e

    +e

    -

    ω → e+e

    -

    ω → π0e

    +e

    -

    π0 → e

    +e

    η → e+e

    ∆ → Ne+e

    -

    D13(1520)S11(1535)

    biggest opportunity: directly determine dilepton contributionfrom N∗(1520), including form factor!

    but: pion beam will actually not help to solve the “∆ puzzle”!

    prev. calculations by Weidmann (PRC59, 1999) andEffenberger (PRC60, 1999)

    J. Weil Dilepton Signal from GiBUU Transport Model

  • Conclusions

    1 resonance-model approach provides good description of mostelementary dilepton data (as well as C+C)

    2 contributions of N∗ and ∆∗ resonances are significant!

    3 better constraints on resonance parameters needed(⇒ pion beam at GSI!)

    4 future investigations of in-medium effects:

    off-shell transport (GiBUU)coarse graining (UrQMD)

    5 stop the black-boxing! we need open models!

    J. Weil Dilepton Signal from GiBUU Transport Model